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We have determined a first-principles temperature-composition phase diagram describing the
ordering of oxygen atoms in the “chain” layers of YBazCu3zO,. The calculations are based on a
transfer-matrix finite-size-scaling study of a two-dimensional lattice-gas Hamiltonian (the asymmet-
ric next-nearest-neighbor Ising [ASYNNNI] model). The interaction parameters are obtained from
ab initio electronic structure calculations. The resulting phase diagram compares favorably with
experiment. We analyze its sensitivity to the relative size of the interactions. We also show that
the addition of a third-neighbor interaction has a minimal effect on the phase boundaries. Based on
these results, we assess the applicability of the ASYNNNI model to YBazCusO,.

I. INTRODUCTION

Understanding the electronic and structural properties
of oxides presents a major theoretical challenge. In ad-
dition to possessing various types of electronic and ionic
disorder, many oxides are nonstoichiometric, i.e., they
exhibit a continuous range of compositions without ma-
jor structural changes.! This is due to the ability of these
materials to incorporate concentration changes by form-
ing defects that remain largely disordered. At large de-
fect concentrations, new phases may form with accom-
panying structural changes. Examples range from rel-
atively simple transition metal oxides, such as Fe;_,O
and TiO2_,, to more complex systems such as spinels,
garnets, and perovskites. The high-temperature super-
conductor YBa;Cu3zO, belongs to the latter family and
displays rich structural behavior.? The stoichiometric in-
dex z in this compound ranges from 7.0 to close to 6.0.
At high temperature, oxygen/vacancy sites in the Cu-
O basal plane are randomly populated and the mate-
rial has tetragonal symmetry. This nonsuperconducting
phase will be referred to as Tetra. As the temperature
is reduced, the oxygen atoms order into Cu-O chains.
This breaks the tetragonal fourfold symmetry, leading to
superconducting orthorhombic structures. The Orthol
phase occurs near z = 7.0, with Cu-O chains in each
unit cell. In addition, an Ortholl phase forms around
z = 6.5, with a structure derived from that of Orthol
by removing the oxygens in every second chain. Orthol
and Ortholl are commonly believed to be associated with
the 90 K and 60 K plateaus in 7.. These plateaus are
thought to be due to the oxygen ordering in the basal
plane which provides a source of holes for the supercon-
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ducting CuO; planes.? In order to optimize the material’s
superconducting characteristics, one should understand
clearly the temperature-composition phase diagram as
well as the nature of various metastable phases. These
issues have therefore received considerable study, both
theoretical and experimental.

The most frequently used model is the two-dimensional
asymmetric next-nearest-neighbor Ising (ASYNNNI)
model,* based on a square lattice with a nearest-neighbor
(NN) interaction V; and two types of next-nearest-
neighbor (NNN) interactions V, and V3. This anisotropy
results from the fact that Cu atoms are present in the
V2 NNN bonds, but not in the V3 NNN bonds. The
ASYNNNI model contains the Orthol and Ortholl struc-
tures as ground states for appropriate ranges of these
interactions® and it provides a remarkably accurate de-
scription of the phase diagram.61® Moreover, this model
has also been used to account for kinetic phenomena in
YBa;Cu30, such as the room-temperature annealing of
quenched material.2® In spite of its success in describing
these material properties, the model does have limita-
tions. For example, chemical potential isotherms?! and
partial molar quantities?? appear to be described poorly.

The ASYNNNI model omits longer-range interactions
which could stabilize other chain-ordered phases.?3:24
However, such structures have only been observed in
small patches within a matrix of one of the major phases
(Orthol, Ortholl, or Tetra),2® and it is therefore un-
clear if they are thermodynamically stable. While some
further extensions of the model have been proposed
to explain a number of minor features,2673° the basic
ASYNNNI model is appealing because only three param-
eters are used and these may be computed from first-
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principles. We emphasize that all phases that have been
observed unambiguously in experiments are contained
within the ASYNNNI Hamiltonian.

The transfer-matrix finite-size-scaling (TMFSS)
method has proven to be a reliable and accurate
technique to calculate the phase diagram of two-
dimensional models in general and the ASYNNNI model
in particular.®:1%:14 In this work, we replace the canon-
ical interactions used in previous studies®? by realistic
values obtained from first-principles electronic structure
calculations.31733 We also investigate the sensitivity of
the phase diagram to changes in interaction parameters
and examine the effects of including interactions beyond
NNN.

The remainder of this paper is organized as follows.
Section II describes the ASYNNNI model, discusses its
limitations and underlying assumptions, and gives a
brief overview of previous work relevant to the present
study. Section III outlines the application of the TMFSS
method to the problem at hand, while Sec. IV presents
our results for the present interaction parameters within
the ASYNNNI model as well as for hypothetical further-
neighbor interactions. These findings are analyzed and
compared to other theoretical and experimental work.
Finally, Sec. V contains a summary and some conclud-
ing remarks.

II. MODEL

We assume that the Cu-O basal plane may be de-
scribed by a two-dimensional lattice-gas model, in which
the oxygen atoms can occupy sites on a square lattice
and have pairwise interactions. The Hamiltonian for this
system can be written in either Ising form,

H = ——HZO’i—F‘/lZO','O'J'-i—‘/zZIUiO’j
i NN NNN

"
+V3Z 0’,'0']‘+V:120,'0'j+-“, (1)
NNN 3rd

or in the lattice-gas form,

’
H = ——pZni + FE, Zninj +EZE n;n;
7 NN NNN
"
+E32 ninj+E4Zninj+~--, (2)
NNN 3rd

where the Ising spin o; takes the value 1 (—1), and
the lattice-gas occupation number n; takes the value 1
(0), when there is (is not) an oxygen atom on site <.
The model was originally couched in the Ising form,*
but the lattice-gas form is equivalent and is more nat-
ural for transfer-matrix calculations.®'* Since most of
the literature uses the Ising formulation, we follow that
convention here. The V;’s are effective pair interactions
(EPI’s): Vi is the NN interaction, V3 is the NNN in-
teraction through a Cu atom, V3 is the NNN interac-
tion between sites with no intervening Cu atom, and V,
is the third-nearest-neighbor interaction. If terms from
V4 onwards are neglected, the Hamiltonian (1) reduces
to that of the ASYNNNI model. Since o; = 2n; — 1,
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we see easily that V,,, = E,,/4; furthermore, the chemi-
cal potential is related to the effective magnetic field by
1= 2H + 471Vy + 472 V2 + 4v3V3 + 4v4V4 + - - -, where
Ym is the number of m-type bonds per site (y; = v4 =
4,72 =73 = 2)

There are three major assumptions in the model given
by Eq. (1). First it is a strictly two-dimensional model:
only a single basal plane is considered, interactions be-
tween basal planes are neglected and the apical oxygen
sites are fully occupied. Second, the oxygen atoms reside
on a rigid, square lattice. Omne neglects the rectangu-
lar distortion associated with the difference in length of
the two NNN bonds; thermal lattice expansion is also ig-
nored. Third, only concentration-independent pair inter-
actions are considered: effective cluster interactions that
may in principle be present are taken to be negligible
and the EPI’s are assumed to be independent of oxygen
content and temperature. In the ASYNNNI model the
additional assumption is made that EPI’'s beyond NNN
are also negligible.

Figure 1 illustrates the interactions between oxygen
sites used in the Hamiltonian of Eq. (1). Also shown are
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FIG. 1. The two ordered phases and interactions of the
lattice-gas model for oxygen atoms on a square lattice. Open
squares denote oxygen lattice sites; those with x’s are oc-
cupied. Dots denote copper atoms. (a) The orthorhombic
(Orthol) phase. (b) The double-cell (Ortholl) phase. In (a)
the interactions of the lattice-gas model are indicated, while
in (b) the M = 8 strips and the transfer matrices connecting
neighboring strips are indicated.
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the two observed ordered structures, Orthol and Ortholl,
with oxygen concentrations ¢ = (n;) = 1/2 and ¢ = 1/4,
respectively. Neglecting interactions beyond NNN, the
parameter choice is restricted by the conditions V; > 0,
Va2 < 0, and 0 < V3 < Vi, so that the two orthorhombic
structures are the ground states at ¢ = 1/2 and ¢ = 1/4.%

“Canonical” values, V1 > 0,Vo = —V3 = —(1/2)V4,
were used to calculate the phase diagram using the clus-
ter variation method®” (CVM) and related mean-field
techniques,'®151% Monte Carlo simulations,0712:16,17
transfer-matrix finite-size scaling,®!'%1* and low-
temperature series expansions.'® All transitions in the
ASYNNNI model are second order, although the CVM
erroneously predicts a first-order transition along part of
the Ortholl-Tetra phase boundary. This is an artefact of
the mean-field approximation and is absent in the more
accurate statistical mechanical treatments.810,11,14,16,18
For a two-dimensional lattice-gas model with limited-
range interactions, the transfer-matrix method yields
a better estimation of the phase boundary than other
methods, but it becomes unfeasible for long-range in-
teractions. The simplest mean-field theories are able
to handle such interactions, but their neglect of fluc-
tuations leads to qualitative and quantitative errors in
two-dimensional systems. All other techniques also have
trouble with such long-range interactions.

A number of authors used a variety of approaches
to determine a more realistic set of EPI's. Sterne
and Wille33?2 computed a parameter set from first-
principles total energy calculations which provided a
nonempirical phase diagram in excellent agreement with
experiment.® 143132 Poulsen et al.l? obtained a set
of EPI’'s by fitting Monte Carlo calculations of the
ASYNNNI model to neutron powder diffraction data.
Keeping the ratios fixed, the group subsequently!” scaled
up the interactions by 26%. Hilton et al.'* deduced a set
of EPT’s by fitting the results of TMFSS calculations to
several experiments. Both groups found values that are
in reasonable agreement with the first-principles values,
but show some quantitative differences.

Extensions to the basic ASYNNNI Hamiltonian have
been proposed to account for recent experimental re-
sults. The effect of electron spin and charge degrees
of freedom?' can be included by modifying the en-
tropy expression of the free energy, which enables a bet-
ter description of the thermodynamic response function.
Also, elastic strain interactions and the associated or-
thorhombic distortion?®3° have been invoked to explain
the experimentally observed first-order transitions, while
others2® rationalize this effect in terms of weakly at-
tractive long-range interactions. Elastic interactions in
a model that allows atomic displacements also produce
as metastable or transient inclusions2®3° other ordered
structures that have been experimentally obtained, no-
tably the /2 X /2 and 2+/2 x 2,/2 superstructures.34:35
Long-range interactions?®243673% wi]l stabilize other
chain-ordered structures with unit cells that are a mul-
tiple of that of Orthol, and for some values3%3% even
stabilize the /2 structures as true ground states of a
rigid-lattice Hamiltonian. However, most authors3* be-
lieve that these /2 structures are not thermodynamically
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stable and are the result of elastic deformations. Such
states have also been obtained in a model that includes
strain terms in the Hamiltonian.#® Out-of-plane interac-
tions with the apical oxygen sites have been added to the
ASYNNNI model?? in order to describe the depopulation
of these sites at low oxygen contents. In the present pa-
per the majority of the calculations have been restricted
to the original ASYNNNI model, except that the effects
of a repulsive V; term have also been considered.

III. METHOD

In the transfer-matrix method, the lattice is approx-
imated by an M X oo lattice with periodic boundary
conditions in the finite direction (i.e., an M X oo cylin-
drical surface). The actual transfer matrix accounts for
the interactions due to a strip M sites wide. One then
iterates this matrix to account for all sites on the cylin-
der. The principal directions of the cylinder should re-
spect the symmetries of all the phases to insure the most
rapid and direct convergence with increasing M. For
the ASYNNNI model, the strip leading to the transfer
matrix and the associated direction of transfer are indi-
cated in Fig. 1(b). The interactions are translationally
invariant only over two (not one) lattice spacings in this
direction. Therefore a product of two distinct transfer
matrices should be used, as in the case of a modulated
model.*! For the Ortholl ground state to be consistent
with the periodic boundary conditions, strip widths M
should be multiples of 4. Within a column, the inter-
actions are symmetric with respect to translation of two
lattice sites along the column (P) and reflection about a
copper ion (R).

For a system in the thermodynamic limit, the free en-
ergy can be conveniently represented by the logarithm
of the largest eigenvalue of the transfer matrix. The de-
generacy of the leading eigenvalues indicates a symmetry
breaking associated with a phase transition. For a finite
system, the leading eigenvalue is always nondegenerate.
It is convenient (and greatly reduces the size of the trans-
fer matrix) to separate all the eigenvalues into different
symmetry classes according to the symmetry of their cor-
responding eigenvectors. The largest of those eigenvalues
whose eigenvectors have both P and R symmetry is de-
noted as Ag; the largest of those which breaks R sym-
metry, which is associated with orthorhombic symmetry
breaking, is labeled A,. The largest eigenvalue which
breaks P symmetry is labeled A;. In this system, the
largest eigenvalue of the transfer matrix T is always Ao.
The close approach of A, or A; to Ao is the signature
of a symmetry breaking. Finite-size-scaling theory pre-
dicts that when second-order phase transitions occur, the
appropriate correlation length should grow linearly with
strip width M,*%:43 for sufficiently large M. Thus, one
expects

e = 1n(322) ~ /M 3)

for the Tetra-Orthol transition, which breaks rotational
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TABLE 1. Interaction constants, in the Ising formulation, used in the phase diagram calculations,
including the “canonical” values, the previous first-principles values of Refs. 31 and 32, the present
first-principles values of Ref. 33, and those obtained by x? fitting to experimental data in Poulsen
et al. (Ref. 12), Fiig et al. (Ref. 17), and Hilton et al. (Ref. 14). Errors in fitting are not indicated.

Parameter set 21

“Canonical” (Ref. 6)

Old first-principles (Refs. 31, 32)
Present first-principles (Ref. 33)
Poulsen et al. (Ref. 12)
Fiig et al. (Ref. 17)
Hilton et al. (Ref. 14)

(mRy) V2 (mRy) Vs (mRy)
>0 —0.5V1 0.5V,
6.9 —-24 1.1
6.71 —5.58 0.73
6.81 —2.45 0.82
8.58 —-3.09 1.03
4.4 -3.77 0.428

and reflectional (4mm) symmetry, and

&k = ln(/\O’M) ~1/M (4)
! /\t,M

at the Orthol-Ortholl phase transition, which breaks
translational symmetry. Both these transitions involve
the breaking of twofold degeneracy and correspondingly
are in the Ising universality class. At the Tetra-Ortholl
transition, both symmetries are broken simultaneously,
with critical behavior associated with the class of XY
models with cubic anisotropy. For finite strips, the ro-
tational/reflectional breaking transition will precede the
translation breaking transition as temperature is lowered,
but as M increases the transitions will approach each
other.

Each phase boundary was obtained by using Egs. (3)
and (4) for two different strip sizes M and N = M +4 and
finding where {p /M = En/N. To make the computer
calculation of eigenvalues of the transfer matrix for large
M possible, we follow the symmetry reduction method of
Runnels and Combs** by dividing all 2™ configuration
1;’s into disjoint equivalence classes K, Ka,.... States
in a given equivalence class are related through the P or
the R operation. To calculate the largest eigenvalue Ao,
we define the equivalence class by both P and R. The
reduced matrix S defined by

Sap= Y, Ty (i € Ka) (5)

¥;€Kp
will give all the eigenvalues satisfying Pz = z and
Rx = z. Here the Greek letters denote equivalence

classes. Other definitions of the reduced matrix give
eigenvalues satisfying different symmetries. Thus we can
greatly reduce the size of the matrix. For example, in
order to find the three largest eigenvalues for a trans-
fer matrix with M = 8, we need to consider matrices of
dimension no greater than 43 x 43. The eigenvalues are
obtained numerically by applying the QR algorithm after
reducing the matrix to Hessenberg form.4%

IV. RESULTS AND DISCUSSION

The interaction parameters used here are based on
first-principles linear muffin tin orbital (LMTO) elec-
tronic structure calculations and were obtained from the

calculated total energies using the Connolly-Williams
method.%® The present EPI’s (Ref. 33) differ slightly from
those previously published®!:32 and are based on a more
highly converged set of electronic structure calculations
and on a different set of ordered structures which spans
only the region 6.0 < z < 7.0. Further details on these
calculations and the ensuing parameters will be given
elsewhere.3® Table I lists the values of the various inter-
action parameter sets considered here. All of these values
obey the inequalities set out in Ref. 5 and therefore sup-
port the stability of Orthol and Ortholl as ground states.

For the ASYNNNI model with the present EPI's and
no interaction beyond NNN, the T-c phase diagram is
shown in Fig. 2. The solid line is generated by scaling of
strips with widths of 8 and 12 and the dashed line is gen-
erated by scaling of strips with widths of 4 and 8 to assess
the finite-size effect. Previous work®1? has shown only a
small deviation of the phase boundary between 8-12 scal-
ing and 12-16 scaling at most temperatures and through-
out the concentration region. Therefore 8-12 scaling is
believed to be sufficient to determine the phase bound-
ary. The topology of this diagram is very similar to
that determined for other values of the EPI’s.810.14,17
The main difference is that the Tetra-Orthol line and
the Orthol-Ortholl line never meet (although their ex-
trapolations, with larger matrices, might). These results
allow for the possibility that a sample preparation pro-
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FIG. 2. Temperature-concentration phase diagram calcu-
lated from transfer-matrix finite-size scaling using the present
first-principles interaction parameters. Solid lines: 8-12 scal-
ing; dotted lines: 4-8 scaling.
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cess comnsisting of annealing at constant chemical poten-
tial (i.e., constant oxygen partial pressure) passes from
the Tetra phase through a narrow region of Orthol into
the Ortholl field and finally into the high-concentration
Orthol region. However, the ASYNNNI model is less ap-
propriate at low concentrations because of depletion of
the apical oxygen sites, and therefore this effect may not
be experimentally observable. Moreover, sample equili-
bration at low temperatures is very hard to accomplish,
exacerbating the difficulty of observing a Tetra-Orthol-
Ortholl transition sequence.

To illustrate the effects of various choices for the EPI’s,
in Fig. 3 we compare the phase diagrams computed by
the TMFSS method for the present first-principles pa-
rameters and for the “canonical” parameters with V3 =
—V, = (1/2)V; as used in previous studies.®'° The most
significant effects are the possible disappearance of the
intersection (4-state Potts®) point, a slight lowering of
the top of the Ortholl stability region, and a broadening
of the Ortholl phase field. This can be readily under-
stood if one realizes that for the present parameters the
ratio |V,/V;| = 0.83 is substantially larger than for the
canonical values, while the ratio V3/V; = 0.11 is con-
siderably less than in the canonical case. Thus the EPI
responsible for holding the chains together is much larger
than first estimated, while that responsible for interchain
repulsion is weaker. Note that the temperature scale in
this figure is in units of kT /V1, and therefore shifts on
this temperature scale do not necessarily correspond to
a shift in absolute temperature.

Figure 4 compares the phase diagram computed
from the first-principles parameters with experimental
data.l432 Most of these measurements are for the Orthol-
Tetra transition line. Schwarz et al.#” have argued that
the top of the Ortholl stability region should be near
420 K, considerably lower than in the old first-principles
calculations® 143132 which put it near 600 K. The present
parameters extend this region to even higher tempera-
tures. In fact, whereas the old first-principles EPI’s led
to a phase diagram for which the Orthol-Tetra line was
too low, the present parameters, based on improved elec-
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FIG. 3. Comparison of phase diagrams obtained using dif-
ferent interactions. Solid lines represent the phase boundary
for the first-principles interactions, and the dotted lines rep-
resent the canonical interactions with Vo = —V3 = —(1/2)V1.

The phase diagrams are obtained by 8-12 scaling for both
cases.
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FIG. 4. Comparison between the calculated phase dia-
grams and experiment. Solid lines are obtained using the
present first-principles interactions (Ref. 33) and the dashed
lines by the previous first-principles interactions (Refs. 31,
32). Also the phase boundary using interactions from x? fits
to experimental data (Ref. 14) is shown here, as represented
by dotted lines. The experimental data points, the surnames
of the first author, and the initials of the measurement tech-
niques are taken from Ref. 14 and references therein.

tronic structure calculations, overestimate the upwards
shift of this transition line, as well as the extent of the
Ortholl region. Nevertheless, the current phase diagram
fits the experimental values quite well, especially since
no adjustable parameters were used. The discrepancies
are most probably caused by physical factors which are
not taken into account in the ASYNNNI model, for ex-
ample, elastic effects, weak long-range interactions, and
interactions in the z-axis direction of the unit cell.
Figure 4 also shows the phase diagram obtained by
Hilton et al. using transfer-matrix finite-size scaling.l4
These authors fitted the Vi, V2, and V3 interactions to
experimental data and naturally get a very good agree-
ment between theory and experiment, which can be taken
as a justification of the underlying assumptions of the
ASYNNNI model. Moreover, a comparison of the pa-
rameters obtained by Hilton et al. and the present first-
principles values allows us to identify those contributions
to the Hamiltonian that are essentially electronic in ori-
gin (and therefore contained in the first-principles EPI’s)
and those for which a different mechanism must be in-
voked. The parameters obtained by Hilton et al. are a
synthesis of electronic structure contributions and other
physical effects not included in the first-principles cal-
culations. In this way, physical effects which are not
readily represented within the electronic structure cal-
culations renormalize the values of the fitted parameters,
accounting for much of the observed difference between
the first-principles results and the experimental data.
However, the generally strong correspondence between
the experimental data and the phase diagram calculated
from the ASYNNNI model with first-principles interac-
tions demonstrates that the dominant effects are already
well treated, and that the contribution of effects omitted
from the electronic structure calculations and from the
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Hamiltonian is relatively minor. Note that the signs of
the interaction parameters were not constrained in the
Connolly-Williams fit to the calculated total energies, so
the observed physical region of parameter space for the
observed orthorhombic phases is already a consequence
of the electronic structure.

As listed in Table I, the present first-principles calcu-
lations yield an increased magnitude for V, compared to
the old values, in the same direction as Hilton et al. in-
dicate, although the increase in magnitude is larger than
needed to provide an optimal fit to experiment. Likewise,
the V3 interaction is decreased in magnitude, again in the
same direction indicated by the least-squares fit. The
largest difference between Hilton et al.’s fit and the first-
principles EPI’s is in the NN parameter V;. The value
needed for an optimal fit is almost 35% less than that ob-
tained from the electronic structure determination. This
is a significant difference that cannot be attributed to un-
certainties in the Connolly-Williams method or approx-
imations in the band structure calculations, such as the
local density approximation and others. Thus, this dis-
crepancy must be attributed to effects that are not in-
cluded in the calculations, most likely elastic in origin.
It is also worth pointing out that the interactions fitted
by Hilton et al. are restricted to a rather narrow con-
centration range (0.15 < ¢ < 0.30) because experiments
have only measured the transition points in this domain,
whereas those obtained by first-principles stretch across
the entire region 0.0 < ¢ < 0.5. We note that all of
the statistical mechanical treatments neglect a number of
contributions to the free energy, such as vibrational en-
tropy. However, these are expected to have only a minor
effect on the phase diagram, although they may pecome
important for comparison with experimentally measured
thermodynamic functions, such as specific heat.

Poulsen et al.'? and Fiig et al.'” also determined a set
of EPI’s based on a fit to experimental data. The pa-
rameters they obtained were in good agreement with the
old first-principles values,3:32 but differed significantly
from the results of Hilton et al. This is indicative of the
uncertainties involved in extracting a set of EPI’s from
experimental data, as it is possible that several different
parameter sets could result in equally good fits. In view
of this, the differences between the experimental EPI’s
obtained by Hilton et al. and the present first-principles
values may not be all that significant. However, since
the parameter set of Hilton et al. is based on a larger set
of experimental data, we prefer to use their EPI’s as a
reference for the experimental parameters.

In order to investigate the contribution that each NNN
interaction separately makes to the phase diagram, Fig.
5 gives an indication of how much the phase boundaries
change as each interaction is modified individually. The
dotted lines represent the calculated boundaries when V;
is replaced by Vo' = V2/1.1, while the dashed lines show
the effects of replacing Va by V3’ = 1.5V5. The observed
shifts may be interpreted as follows. The attractive V5
interaction favors oxygen atoms forming O-Cu-O chains;
therefore the Tetra-Orthol and the Orthol-Ortholl tran-
sition temperatures increase as the attraction becomes
stronger. In the high-oxygen-content region, a stronger
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FIG. 5. Sensitivity of the phase boundary to the change
of interaction value. Solid lines represent the first-principles
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shift when V3’ = 1.5V;. In each case, only one interaction is
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first-principles values.

repulsive V3 makes the Orthol phase relatively less fa-
vorable than the Tetra phase by increasing the repulsion
between adjacent Cu-O chains; at low oxygen content,
it correspondingly makes the Ortholl phase more favor-
able. Therefore, as shown in Fig. 5, a stronger V3 raises
the Orthol-Ortholl transition temperature but lowers the
Tetra-Orthol transition temperature slightly in the high-
oxygen-content region. These trends are consistent with
those observed in Figs. 3 and 4, but since in those cases
all parameters were allowed to change simultaneously,
the various contributions are hard to resolve. Compat-
ibility with the measurements of Schwarz et al.,*” who
find that the Ortholl phase disappears at temperatures
above 420 K, could be achieved by a major decrease of
|V2|; however, that would shift the Orthol-Tetra bound-
ary line, and it is not clear that V; and V3 can be adjusted
sufficiently to retain the good agreement between theory
and experiment for that transition line. Alternatively,
a reduction of V3 also tends to destabilize the Ortholl
phase. In any case, even the fitted parameters of Hilton
et al. put the Ortholl region considerably higher than
permitted by the results of Schwarz et al. Further exper-
imental study of this issue would be useful. Table II lists
the shifts of the various phase transition temperatures
when either V; or V3 is varied slightly about its “present
first-principles” value in Table I, with c fixed at 0.25.

TABLE II. Incremental variations (AT./A|V;|) of the tran-
sition temperatures due to modifications of interaction con-
stants. The basal plane oxygen concentration is fixed at
c = 0.25 and the phase boundaries are evaluated by 8-12
scaling. Positive values indicate that T increases as the in-
teractions increase in absolute value.

Interaction Tetra-Orthol Tetra-Ortholl
modified (K/mRy) (K/mRy)
Va 175 110
Vs 66.5 352
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The first-principles electronic structure calculations
also yield values for longer-range interactions,3® though
their magnitude is smaller than those in the usual pa-
rameter set. The transfer-matrix method has difficulties
in dealing with long-range interactions in general, as do
most other phase diagram calculation methods. If we in-
clude long-range interactions between nearest-neighbor
columns only, we will break the rotational symmetry
of the square lattice and its effect is hard to evaluate.
But at low temperature, i.e., kgT < 0.2V7, the oxygen
atoms are very unlikely to form a nearest-neighbor pair;
therefore we can consider the nearest-neighbor interac-
tion by an exclusion and reduce the number of permis-
sible states. To make the calculations feasible, we first
approximate V; by an exclusion, which only shifts (to
lower concentration) the high-temperature Tetra-Orthol
boundary, but hardly has any effect at low-temperatures.
Subsequent inclusion of the third-neighbor interaction
V4 has minimal effect. We show in Fig. 6 that, in the
low-temperature region, the phase diagram obtained by
taking V; as an exclusion is almost indistinguishable
from that obtained with a finite V;. Thus, we can in-
clude a third-nearest-neighbor interaction V, without a
formidable increase in computer time. Figure 6 shows
the T-c¢ diagram with V; = 0 and V; = 0.05 mRy. As
can be seen, the inclusion of this longer-range interaction
does not change the phase diagram significantly. Like V3,
this interaction also makes Orthol less favorable with re-
spect to Ortholl at low oxygen content and raises the
Orthol-Ortholl transition temperature.

Other authors have also considered the effects of
adding another more-distant-neighbor interaction to the
ASYNNNI Hamiltonian, although these are typically
viewed as interactions between parallel chains. Giinther
et al.2® invoke a weakly attractive “¢cc” between
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FIG. 6. Estimation of the effect of the third-NN interac-
tion V4. Solid lines represent the phase boundary for the
first-principles interactions with finite V3 and no Vj; the
dashed line is obtained by making V; infinite. One can note
that at low temperatures the phase boundary is indistinguish-
able from the original one (with finite V7). At high temper-
atures, of course, treating Vi as an exclusion will produce a
major shift in the Orthol-Tetra phase boundary. The dotted
lines represent the phase boundary with infinite V; and V4 =
0.05 mRy.
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alternate-spacing (Ortholl-like) chains to produce a first-
order transition between Orthol and Ortholl as observed
in a number of experiments.?%:2® This interaction is actu-
ally between seventh neighbors, although it is the second
shortest “through-copper” bond. In order to keep the
size of the transfer matrix manageable, only the subset
of such bonds that connect adjacent strips was retained.
Ceder et al.*® added to the ASYNNNI model a repulsive
interaction between alternately spaced chains along a V3
bond, but twice its length, which stabilizes a triple-cell
chain phase Ortholll. This fifth-neighbor interaction was
also called V4, but should not be confused with the V,
interaction in this paper. In addition they considered
the effects of out-of-plane interactions to make the cal-
culations feasible within the CVM. They treated V; as
an exclusion, an excellent approximation at low temper-
ature, and found first-order transitions between Ortholll
and the other orthorhombic phases.?® Rather than in-
troducing out-of-plane interactions, Zubkus et al.5° ob-
tained similar results by adding long-range attractive in-
teractions to stabilize the Ortholll phase. These interac-
tions were taken into account via a mean-field approxi-
mation, amounting to a concentration-dependent shift in
the chemical potential. Their calculated phase diagram
exhibits coexistence regions between all three orthorhom-
bic phases. However, there is as yet no experimental ev-
idence to support these results.

V. CONCLUSIONS

Starting from first-principles calculations of the inter-
actions responsible for oxygen ordering in YBa;Cu3O,
within the ASYNNNI model, we have obtained a struc-
tural phase diagram that shows satisfactory agreement
with experimental results. This model clearly includes
much of the important physics in the real system.
The remaining qualitative discrepancies must be at-
tributed to physical effects not incorporated into the
two-dimensional lattice model, such as elasticity, further-
neighbor interactions, and three-dimensional interactions
along the z axis. The quantitative discrepancies between
theory and experiment must be traced back to effects
that are not included in the electronic structure calcula-
tions which form the basis for the calculated EPI’s and,
to a lesser extent, to approximations inherent in the sta-
tistical mechanical treatment.

A quantitative comparison between the first-principles
phase diagram and experiment is aided by the work of
Hilton et al.,'* who determined a set of Vi, V5, and V3
interactions that best describe the experimental phase
boundary. A comparison between those EPI’s and the
first-principles ones permits one to attribute any differ-
ences to effects not contained in the electronic structure
calculations, with most likely elastic strain energies as
the dominant factor. One may conclude that strain will
tend to diminish all interactions in magnitude (see Table
I). There is reason to believe that this is true at least
for the V7 interaction, so the present first-principles val-
ues are expected to overestimate the magnitude of this
parameter.3® This suggests that the values determined by
Hilton et al. are a better representation of experiment
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than the other empirically derived parameter sets.?17

Unfortunately, the values determined by Hilton et al.
did not include the more recent finding®’ that the Or-
tholl phase boundary region peaks at lower temperatures
than was hitherto believed. It would be very interesting
to see if this discovery has a major impact on the best-fit
parameters, or might even necessitate a revision of the
ASYNNNI model itself. Strain energies have recently
been included in empirical ways in lattice-gas models for
YBa;CuzO, (Refs. 29, 30, and 40) and bear further in-
vestigation.

Elastic effects are probably also responsible for the ex-
perimentally observed /2 structures,3%3% so these phases
are not likely to be stable ground states of a static-lattice
Hamiltonian. No first-order transitions exist within the
ASYNNNI model using parameters that stabilize Orthol
and Ortholl, but they also may be caused by elastic
effects.?® Modulated superstructures consisting of chain-
ordered phases beyond Orthol and Ortholl are not sta-
ble within the ASYNNNI model but become so upon the
addition of further-neighbor interactions.?3:24:38:3%9 Weak
repulsive interactions are compatible with the LMTO re-
sults and hardly affect the main phase boundaries, but
they do produce narrow stability regions for the modu-
lated phases.

The quantitative differences between the first-
principles parameters and the empirical parameter sets
may well be due to a renormalization of the first-
principles EPI’s due to elastic and other effects. How-
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ever, the actual strength of such a renormalization is still
in question due to uncertainties in the determination of
empirical parameter values. The calculations presented
here demonstrate that it is difficult to identify charac-
teristic phase diagram features that are associated with
a single interaction parameter. All the features in the
phase diagram are altered when a single parameter is
varied (see Fig. 5), so the problem of determining a good
fit to experimental data becomes more challenging. This
inversion procedure may well be ill posed so its ability
to provide a unique set of parameters is in doubt. Nev-
ertheless, the calculations do suggest that some renor-
malization of the first-principles EPI’s is in order, since
an accurate phase diagram calculation based on the best
available theoretical parameters still yields phase bound-
aries slightly higher than experiment. Further analysis
of the experimental data and the stability and unique-
ness of the empirically derived parameters would be very
helpful in resolving this issue.
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