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We propose a theory of two-magnon Raman scattering from the insulating parent compounds
of high-T superconductors, which contains information not only on magnetism, but also on the
electronic properties in these materials. We use spin-density-wave formalism for the Hubbard model,
and study diagrammatically the pro6le of the two-magnon scattering and its intensity dependence
on the incoming photon frequency co, both for u; (( U and in the resonant regime, in which the
energy of the incident photon is close to the gap between conduction and valence bands. In the
nonresonant case, we identify the diagrams which contribute to the conventional Loudon-Fleury
Hamiltonian. In the resonant regime, where most of the experiments have been done, we 6nd that
the dominant contribution to Raman intensity comes from a different diagram, one which allows
for a simultaneous vanishing of all three of its denominators (i.e., a triple resonance). We study
this diagram in detail and show that the triple resonance, combined with the spin-density-wave
dispersion relation for the carriers, explains the unusual features found in the two-magnon profile
and in the two-magnon peak intensity dependence on the incoming photon frequency. In particular,
our theory predicts a maximum of the two-magnon peak intensity right at the upper edge of the
features in the optical data, which has been one of the key experimental puzzles.

I. INTRODUCTION

There is a widespread belief that strong electron-
electron correlations in the high-T compounds may
hold a clue to the phenomenon of high-temperature
superconductivity. One of the manifestations of these
correlations is in the fact that the insulating parent com-
pounds are antiferromagnets. An important probe of an-
tiferromagnetism is magnetic Raman scattering. Its
prominent signature in the underdoped high-T materi-
als is a two-magnon peak observed at about 3000 cm
To first approximation, this peak can be attributed to
inelastic scattering &om the two-magnon excitations.
In fact, Raman experiments yielded the Grst estimate of
the exchange interaction constant in La20u04. The
two-magnon peak has also been observed in the electron-
doped materials and more recently in the underdoped
YBa2CusOs+ materials (up to x = 0.9).

The traditional framework for understanding the two-
magnon Raman scattering in antiferromagnets has been
an effective Hamiltonian for the interaction of light with
spin degrees of freedom known as the Loudon-Fleury
Hamiltonian: ~5

H = o) (e;.R1)(eI Rs)S;.Ss.
(ij)

Here e; and ey are the polarization vectors of the in- and

outgoing photons, n is the (generally poorly known) cou-
pling constant, and R;~ is a vector along the bond con-
necting two nearest-neighbor sites i and j. This equa-
tion has been reexamined in recent years to better ac-
count for the possible importance of quantum fluctua-
tions, the four-magnon processes, and the further neigh-
bor terms. 6 ~6 ~"

The Loudon-Fleury theory is expected to work well
when the frequencies of the incoming and outgoing pho-
tons are considerably smaller than the gap between con-
duction and valence bands. The experimental reality in
high-T materials is such, however, that the two-magnon
scattering is observed mostly in or near the so-called res-
onant regime, when the frequencies of the ingoing and/or
outgoing photons are close to the gap value. This is
simply a consequence of the fact that the experiments
are mostly done with visible or near ultraviolet lasers,
while the gap and the upper Hubbard band states lie in
the same range of frequencies (roughly between 2 and
3 eV) in the high-T, materials. The experimental cross
sections vary strongly in this range of incident photon
&equencies, ' ' and it becomes an issue whether the
Loudon-Fleury Hamiltonian is still applicable. Whatever
the answer to this question, we still need to have the
means of evaluating the variation of the overall scale of
the coupling constant n in Eq. (1) with the incident pho-
ton &equency cui.

The profile of the Raman cross section as a function of
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FIG. 1. A typical Raman cross section as a function of
transferred photon frequency. A two-magnon peak is clearly
seen. Data courtesy of the authors of Ref. 19.

the transferred photon frequency is shown in Fig. 1. The
two-magnon peak is clearly identi6able. The behavior of
the two-magnon peak height as a function of the inci-
dent photon frequency is presented in Fig. 2, where the
absorptive part of the dielectric constant is also shown
for comparison.

The key experimental features that require explanation
in Fig. 1 are the following.

(a) Asymmetry of the two magnon peak-profile. The
two-magnon peak is asymmetric, with the spectral weight
shifted to higher frequencies.

(b) Selection rules. The Loudon-Fleury Hamiltonian
predicts no scattering in the Aqs configuration; experi-
mentally in the resonant regime the A~~ cross section is
about half of that in the B~~ geometry.

(c) Stability of the tzuo-magnon peak profile As the.
incident photon frequency changes over the frequency
range from 15000 to 22000 cm, the two-magnon scat-
tering intensity profile merely scales with incident &e-
quency, without a noticeable change in shape. (How-
ever, at higher photon energies, a distortion of the Ra-
man spectrum occurs. )

In Fig. 2, explanations are needed for the following.
(a) A single peak. Ordinarily one might expect two

peaks, the so-called ingoing and outgoing resonances,
and here only one is observed.

(b) Peak location. A comparison with the dielectric
constant shows that the strength of the two-magnon Ra-
man scattering is at its maximum away &om the band
edge, in fact right at the upper end of the features in the
optical data that can be interpreted as the particle-hole
excitations between the lower and upper Hubbard bands.
(Phonons, on the contrary, are known to resonate with
the features in the dielectric constant. )

Raman scattering in a one-band model of corre-
lated electrons has been considered several times in the
literature. ' ' Shastry and Shraiman have recently
given a derivation of the Loudon-Fleury Hamiltonian
starting &om the usual large-U Hubbard model. Work-
ing in a localized basis, they performed a hopping ex-
pansion controlled by t/(U —~), where t and U are the
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FIG. 2. The strength of the two-magnon peak as a function
of incoming photon frequency. Also shown is the imaginary
part of the dielectric constant. Data courtesy of the authors
of Ref. 19. The data in the figure were obtained at room tem-
peratures. At low T, both the peak in the optical absorption
and the Raman profile shift to higher frequencies by about
O. l eV (Refs. 64, 65). The position of the peak in YBCO has
been reexamined in recent studies (Ref. 65), which place the
maximum at u; 3 eV rather than 2.8 eV, as in the figure.

nearest-neighbor hopping and on-site Coulomb repulsion,
and u is of the order of the photon frequencies. The lead-
ing term in the expansion turned out to be the Loudon-
Fleury Hamiltonian, Eq. (1).

A simple, though somewhat crude interpretation of
this outcome is to envision spins in a classical Neel state.
The incoming photon is absorbed by moving, say, a down-
spin to the neighboring site occupied by an up-spin. The
up-spin then returns to the formerly down site, emitting
the outgoing photon. The overall result is light scatter-
ing accompanied by the nearest-neighbor spin exchange,
which is encoded in Eq. (1). This process is shown in
Fig. 3.

Notice that the intermediate state in this process has
a doubly occupied site, and is thus of order U above the
ground state in energy. When the photon energy is far
smaller than U, no further precision in specifying the
intermediate state's energy is needed, and the leading
order term is sufficient. When (U —u) becomes of order
t (resonant regime), all of the terms in the expansion in
t/(U —u) are of the same order, and the leading term
can no longer provide a solution. However, it is in this
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FIG. 3. The real-space picture of the two-magnon scatter-
ing. Dashed lines denote photons, and wavy lines denote spin
waves. The explanations are given in the text. This picture
is valid away from resonance.

regime that the cross sections sensitively depend not just
on the magnetic, but also on the carrier properties, and
this makes it especially important to the field of high-T
superconductivity.

We will discuss the form of the Raman vertex in both
the nonresonant and resonant regimes later in the paper
and here merely note that, on physical grounds, the mul-
tiple hops affect the single-particle Green s function in
two distinct ways. First, the multiple hops are a way to
generate the band structures of the doubly occupied sites
and holes, i.e., they produce a dispersion in the coherent
part of the single-particle Green's function. Second, they
produce a distortion of the spin background around each
hole which gives rise to the incoherent part of the Green's
function. Since resonance is a phenomenon contingent
upon the vanishing of the denominators in perturbation
theory, it is plausible to assume that the incoherent parts
of the Green's functions are of lesser importance. We
thus model our particle and hole Green's functions as
fully coherent, but having a certain dispersion, which at
half 6lling we take to be that of the spin-density-wave
(SDW) solution of the Hubbard model. 2s We regard our
ability to address the experimental results on the basis of
this dispersion relation as partial evidence of the validity
of the SDW picture, not only for the antiferromagnetism,
but also for the hole dynamics.

We wish to stress that this is not a trivial distinc-
tion. There have been many interesting theoretical stud-
ies of the single-hole problem in the Hubbard and the t-J
models. However, even such a basic feature as the
band structure of a single hole has not been experimen-
tally tested. Indeed, in the low-doping regime the holes
are trapped near the dopant sites. Even in the trans-
lationally invariant case, the phonon polaron effects
could still destroy the hole dispersion predicted on the
basis of purely electronic models. Resonant Raman scat-
tering right at half 61ling is sensitive to the details of
the dispersion of the fermionic quasiparticles and thus

provides experimental information about the single-hole
dispersion without having to dope the material.

Before proceeding to the description of our calcula-
tions, we would like to make two comments about the
model we use. First, in this paper we exclusively con-
sider the one-band Hubbard model. This by itself is a
simplification, since in the "first-principles" calculation
one would start with a three-band model for the Cu02
unit. Within this model, the lowest gap (about 2 eV) is
a charge-transfer gap between Cu and 0 bands. How-
ever, it is generally accepted that at energies comparable
to this gap the hybridization between Cu and 0 orbitals
is relevant, and one can effectively describe the system
by a single degree of &eedom per Cu02 unit, which in
turn implies that the three-band Hubbard model can be
reduced to an effective one-band Hubbard model. 3

The relevant parameter which allows the reduction in
the number of degrees of &eedom is the splitting of the
triplet and singlet states of the 0 and Cu spins in the
Zhang-Rice theory. Their estimate of this splitting is
several eV, and thus the singlet states relevant to our
analysis are well separated &om the triplet states. This
is corroborated by the measured behavior of the dielec-
tric constant. For example, in GdCu02 there are strong
absorption features in the imaginary part of the dielectric
constant around 1.7—2.7 eV and around 5 eV, but only a
featureless continuum in between. We therefore expect
that the one-band. Hubbard model already captures all
the essential physics of Raman scattering up to photon
energies of order 3—4 eV.

Our second comment concerns the hopping term in
the Hamiltonian. In this paper, we restrict our model
to contain only the nearest-neighbor hopping t. Mean-
while, it was suggested on the basis of the photoemis-
sion data for YBa2Cu307, that the next-nearest-neighbor
hopping term in the 123 compounds is rather large,

—0.5t. For La-based compounds, t' was estimated
to be t' —0.2t. At finite doping, the restriction to only
the t term requires care, as the spin-density-wave theory
(which we will use in most of our considerations) is mean-
ingless near the minima of the quasiparticle band, unless
one takes into account the self-energy corrections which
lift the degeneracy of the quasiparticle spectrum along
the reduced Brillouin zone boundary. ' Fortunately,
as we will see below, the two-magnon Raman scatter-
ing in cuprates is not a phenomenon that is associated
with the minima of the quasiparticle band, and there-
fore the details of the quasiparticle dispersion right near
those minima will not be important in our analysis. For
this reason, we believe that, for a qualitative analysis of
Raman scattering in cuprates, one can use the simplest
model with just the nearest-neighbor hopping.

The paper is organized as follows. Section II discusses
the general formalism of the two-magnon Raman scatter-
ing in antiferromagnetic insulators. In Sec. III, we con-
sider the nonresonant scattering. In particular, we show
how the results of Shastry and Shraiman are reproduced
in the SDW formalism. We will also discuss the location
and shape of the two-magnon peak. Section IV is the
main part of the paper. We argue that the phenomenon
of multiple resonance, described in detail in that section,
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is a way to explain the unusual features in Figs. 1 and
2. %'e study the singularities of the integrals correspond-
ing to that type of resonant behavior, and present the
relevant calculations. Finally, in Sec. V, we present a
comparison with the experimental results and state our
conclusions. Some technical details of our calculations
are contained in the two Appendixes. Some of the re-
sults of this work have already been presented in a short
paper.

II. GENERAL CONSII3ERATIONS

We start with the general theory of magnetic Raman
scattering in the Hubbard model. The one-band Hub-
bard Hamiltonian is

H = t ) (c—J c~ + H.c.) + U) n, tn, g.
(i j)

A straightforward procedure to derive the coupling of
light to the fermions in this model was recently described
by Shastry and Shraiman. In the presence of the slowly
varying vector potential A(x, t), each fermion operator
acquires a phase e~"~"'l ~ ~'"i, and the hopping term gets
transformed into

quency. The velocity of light is several orders of mag-
nitude larger than the Fermi velocity, and therefore we
can safely set the momenta of photons equal to zero.

Consider now separately the last two terms in Eq. (5),
which contain the vector potential. The last term is al-
ready quadratic in A, so for photon scattering we have
to consider only the 6rst-order contribution Rom it. This
contribution does not lead to resonant scattering and, at
least in the resonant regime, can be neglected. compared
to the resonant scattering &om the first term. For this
reason we neglect the last term in Eq. (5) in this pa-
per, and focus only on the erst term which leads to pho-
ton scattering in the second order of perturbation theory.
This second-order scattering process involves an interme-
diate particle-hole state of the fermionic system which
can emit or absorb collective bosonic excitations before
collapsing into the outgoing photon. In particular, in the
two-magnon resonant scattering, a photon with the en-

ergy u, is injected into the antiferromagnetically ordered
set of electrons. This photon creates a virtual particle-
hole pair which then emits two spin waves with momenta
k and. —k, and then annihilates into an outgoing photon
with the energy ~f.

Ignoring the polaritonic efFects, the Raman scattering
cross section is obtained &om the lowest-order golden
rule

H, = t) e' —:~—''~" cJ c, + H.c.
(~ ~)

The vector potential is supposed to vary slowly on lattice
scales, and one can then approximate the phase factor by

f
2

A(L) dl =A
l l

R,~.
2 )

(4)

Hp ——H,
= ——) jq. A q

Substituting this into the expression for Hq and expand-
ing in powers of the vector potential, one obtains upon
transforming to the momentum space

8' 3e4 ).I (f IMR I&) I' ~(~' —~f + e' —ef )V 4) Q2g i,f

where e; and ef are the energies of the initial and Anal
states of the system (ef —e, = 0 is the total frequency
of two magnons in the final state), and the summation
over the final states f includes the integration over the
photon momenta. Further, (f lMR li) is a matrix element,
given by

. &fili, efl~& (~lj-i. e'li&

t~ + Ald~ —E~ + zh

1 e+— — ) ) A q, qq~+q, . A q„
ql q2

(fIj-i; . e'lii) (iilji & et li)+
e, —e„—Rdy + ib

(10)

where the current and the stress-tensor operators are

Bcy
C&+q~2 ~ Cy q/2

k

p ~ 02
—) ~ ~@ ~I ~k+qg2 k —/2,

n P

and eI, is the electron dispersion,

eg = —2t(cos k + cos k&).

Here the summation is over the intermediate electronic
states, labeled as n. Our primary goal will be to calculate
the dependence of this matrix element on the incident
photon frequency.

For completeness, we also list a number of possible
experimental scattering geometries. They difFer in the
polarizations of the incident (e,) and scattered (et) pho-
tons. For linearly polarized light, the scattering geome-
tries in the commonly used notations are

The vector potential can be quantized in the usual way

Aq g ——gq(eel q + e„'lt),

Agg. e;

Bgg.. e,

K+ g

K++
ey =

ef—

x+y

X. —g

where gq = [2mhc2/(uqV)I ~ and uq is the light &e- B,g. e; = x, ef ——y.
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For circularly polarized light, the scattering geometries
are

Ck, a = k+k, a + &kbk, a&

c g = sgn(o. )(u„b„—vga ), (15)
3C+ ZgLL:e;=

2

3C+ XgLR:e, =
2

ey =

ey ——

3C+ Xg

~2
3C —Xg

(12)

where the fermionic Bogolyubov coefBcients are

1( egl 1(—
I
1+

Eg) 2 0 Eg)
The scattering in each geometry measures a particular
combination of the components of the scattering tensor.
It is convenient to decompose (flM~li) into four one-
dimensional representations of the two-dimensional (2D)
square lattice symmetry group D4h.

M~' = (&IMRI&) + (ylMRly),

M~' = (xIM~Iy) —(yIM~Ix),
Mg' = (&IMRI&) —(ylMRIy&

M~' = (xIM~Iy) + (yIM~Ix).

I
H = ) Eg(at ag —

be bg ), (14)

where the prime restricts summat;ion to the magnetic
Brillouin zone, and the quasiparticle energy is Ek
gezg + A2. We will also need the relation between the
new and the old quasiparticle operators. It reads

Then the scattering in the experimental Aqg geometry
measures a combination of M&' and M&', the scatter-
ing in the Bqg geometry measures a combination of M&'
and MR', etc. In two-magnon Raman scattering, the
energy transfer u, —uy is small compared. to the gap
between conduction and valence bands. In this situa-
tion, the dominant components of the scattering tensor
are found experimentally to be those of M&' and MR'
symmetry. It is therefore suKcient to study scattering
in the Aqz and Bq~ experimental geometries.

The states in the general expression of Eq. (10) for
the matrix element are the full many-body states of the
system, which contain both the electronic and spin ex-
citations. Therefore to fully describe the two-magnon
Raman scattering we will need two different types of ver-
tices. The 6rst is the interaction between the vector po-
tential of light and the fermionic current density —this
vertex is given in Eq. (5). The second is the interaction
between the fermions and the spin waves.

A convenient way to express both types of vertices
on equal footing is to use the spin-density-wave (SDW)
formalism to describe the electronic state at half 611-
ing and the excitations around it. In the SDW for-
malism, one introduces a long-range order in Sq

Qg cg+ o. pcg p with q = Q = (vr, vr) and uses it tot

decouple the Hubbard interaction term. The diagonal-
ization then yields two bands of electronic states (the
conduction and valence bands) with the gap 2A U in
the strong coupling limit that will be assumed through-
out this work.

In terms of the cond. uction and valence band quasi-
particle operators a~& and bk, the quadratic part of the
Hubbard Hamiltonian takes the form

Upon performing the Bogolyubov transformation, we ob-
tain the current in terms of valence and conduction band
fermions,

~ Otk tj~ e ——) [(2ugvg)(ag bg +bg ag )
ka

+(u' vg) (ag. a—g- —bg. bg-)l

Note that the terms with only valence or conduction
fermions have a smallness in t/U from the Bogolyubov
coefBcients. Keeping only the leading terms, we obtain

(ag bg + bg ag )
k.

which is the expression we use almost exclusively in this
paper.

We can now obtain an expression for the optical con-
ductivity o (q = 0, (u) in the SDW state. From the Kubo
formula, in terms of the particle current given above,

~(~) = e' —).~(e- —eo —~)l(~l&*(q= o)Io)l' (2o)

where e —eo is the excitation energy between the ground
and excited SDW states. At half filling, we only have to
retain the intraband terms in Eq. (18), and, using also
Eq. (14) for the valence and conduction fermion energies,
we obtain

,4t'vr
o.(~) = e' ) sin'k, h((u —2Eg),

ka k
(21)

which agrees with the result in Ref. 25. We have obtained
a compact closed form answer for rr(u) in terms of com-
plete elliptic integrals. The answer is nonzero when the
photon energy is within the bands,

e2 /24) 4
4mb g~) ~P 4

—VAK 1 ——(
4)

0&A(4, (22)

Note that in the large-U limit 2ukvk 1.
We now discuss the vertices. The current operator can

be rewritten as

~ Bfk
3q=0 —g ~k ka ka

k

~ BCk
( g~ g~ g+g~ g+Q, ~).

k
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(& & 't) = '(T(S (t)S— (0))). (23)

The total transverse susceptibility is given in the SDW
theory by the diagrams containing a sequence of bub-
bles made of the conduction and valence fermions with
the four-fermion vertices connecting them. The restric-
tion to only such diagrams can be justified if one extends
the original S = 1/2 Hubbard model to large S by con-
sidering 2S orbitals at a given site. 44 At half filling this
extension transforms the Hubbard interaction term into
the Hund's rule coupling which favors the maximum pos-
sible spin S at each site. Notice that in this situation the
mean-field gap between lower and upper Hubbard bands
is related to U as 2L = 2US. In relating the large-S
calculations to the S = 1/2 case, it is the gap b, which
should be kept fixed.

The SDW spin susceptibility has been considered sev-
eral times in the literature. ' ' Since the unit cell
is doubled due to the presence of the antiferromagnetic

I

where A = [u2 —(2A) ]/16t2 counts the photon energy
&om the optical gap edge, and we momentarily restore
h for reference purposes. When t/U (( 1, 2A/w 1,
and A = (ug —U)U/8t . The plot of 0(w) at t (( U is
given below in Fig. 11(a). It has a square root singularity
at A = 0+ and vanishes as A —+ 4 . The singularity at
A = 0+ is due to the degeneracy of the mean-field disper-
sion Ek along the reduced Brillouin zone boundary. As
we described above, this singularity is an artifact of the
mean-field SDW approach. When the degeneracy in Ek
is broken by either quantum Buctuations or hopping to
further neighbors, only the more usual logarithmic sin-
gularity will survive at w = 2L. On the other hand, the
vanishing of 0.(w) at A = 4 is due to the vanishing of the
current form factor sink in Eq. (21) at k = 0, which is
where the maximum optical gap occurs for SDW states.
There is no mean-field degeneracy at k = 0, and thus
o = 0 at the top of the fermionic band should survive
also beyond the mean-Beld approximation.

The remaining ingredients for Raman scattering are
the magnon propagator and the magnon-fermion scat-
tering vertex. In the SD%' formalism the magnons
are described as collective modes in the transverse spin
channel. Specifically, the spin-wave excitations corre-
spond to the poles of the transverse spin susceptibility

long-range order, we have two susceptibilities —one with
zero transferred momentum and one with the momen-
tum transfer C} = (vr, 7r). The explicit forms of these
susceptibilities are

x+(vv ~) = —S 1 Qq 1

1+pq ~ —Oq+ ib

1
(d + Oq —28

x+(v, v+ Q, ~) = —S 1 1+
(d —Oq + 'Lb & + Oq —'ll

(24)

H) g
——

2A ) ).[.. ...,.",.(,+ .)
k q

+sgn(n) pqc„+ cA, +g p(e —eq)]h~ p.t

(»)
The expressions for gq and g are

t'1+ ~
V& (1+Vq) ' ' V~ &1 —&q)

Performing now the Bogolyubov transformation, we
obtain the Hamiltonian for the interaction between the
magnons and the conduction and valence band fermions:

Here Oq ——4JS 1 —p is the magnon frequency and

J = 4t2/(2S) U is the exchange integral.
Further, a sequence of bubble diagrams can be viewed

as an efFective interaction between two fermions medi-
ated by the exchange of a spin wave. The spin-wave
propagators are i(Teq(t)et(0)) = (Aq —w —ih) ~ and

i(Tet(t)eq(0)) = (Aq + w —ib), where et(eq) are the
boson creation (annihilation) operators, subscript u im-
plies Fourier transform, and the momentum q runs over
the whole Brillouin zone. A simple experimentation then
shows that the forms of the two susceptibilities are re-
produced if one chooses the following Hamiltonian for
the interaction between the original fermionic operators
and the magnons:

~el-mag = ) ) [a ~yaip, k+qe 4aa(k& q) + b
A, b;p k+qe cps(k, q)

k q

+Q' yb p fp+qe C' &q(k, p) + b, &a@ &+qeq4& (k, p) + Hc] b p.

Here and below a prime indicates that the summation is
over the reduced Brillouin zone. To leading order in t/U,
the vertex functions are given by

We are now in a position to proceed systematically
with the diagrammatic formulation of the two-magnon
Raman scattering.

gb(k, q) = [+(ey + ey+q) gq

+(eA: —ea+q)e, ] 2S
1e....(k, ~) = 2Z [&, ~&,] 2S

(28)

III. NONRESONANT SCATTERING

A. Raman matrix element

We start with the situation when the photon &equen-
cies are much smaller than the gap, L SU. In this
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case, it has been been shown that the Loudon-Fleury
Hamiltionian gives a proper description of magnetic
Raman scattering. We first show how this Hamilt o-
nian can be reproduced. in our momentum-space dia-
grammatic formalism. The key points in the derivation
are the following: (i) to leading order in t/U the current
operator necessarily transforms a valence ferrnion int o a
conduction one and vice versa; (ii) the vertex strength
for magnon emission accompanied by fermion scattering
from the valence to conduction band (and vice versa) is
of order U, while for fermion scattering within either the
valence or conduction band, the vertex is of order t, i.e. ,
much smaller [see Eq. (28)]; (iii) for incoming/outgoing
photon &equencies smaller than the gap, all the denom-
inators in the diagrams are of the order of U. We can
then identify three simple diagrams contributing towards
the matrix elemen™R of Eq. (10) to leading order in
t/U 'They. are shown in Fig. 4. Notice that, while the
diagrams of Figs. 4(a) arid 4(b) have a superficial resem-
blance to those encountered in the theory of two-phonon

MR = —4Vq&q ) I

. e'
l l ey I

{1} ~ (Bek l &Otk

» ') &»
t 4A 8b, (4A' + 0') )x

i(4'' —0' (4b, ' —0')' )
(29)

for the diagram in Fig. 4(b),

{2} ) I (0&k „l /0&k „„~ 8+(4+ + (l )» *) yak ) (4A2 —0 )

for the diagram in Fig. 4(c), and

(30)

Raman scattering in semiconductors, the diagram of
Fig. 4(c) looks rather different. We will see shortly that
the extra diagram is needed for the answer to have cor-
rect symmetry properties.

Performing internal &equency integration in these
three diagrams, we obtain

g

k-q $

(Bk ')
(Bek q, l ( 4A» 'il li4~' - n')

for the diagram in Fig. 4(a). In these three expressions
0 is a frequency equal to ~, or wf . Specifying it more
precisely at this stage is devoid of meaning since we would
then have to take into account subleading diagrams in the
t/U expansion. We also defined

k-q $ Pq + 1

(32)

fq 1 1

(b)

These are related to gq and g via

AP,, = il, + i}„~2&,= (q, —g, ).

Adding up the above expressions, and taking into ac-
count that

rr
~~~ + ~eP

FIG. 4. The diagrams for two-magnon emission which con-
tribute to the Loudon-Fleury Hamiltonian at small incident
frequencies. Each fermion can belong to either the valence
(dashed line) or conduction (solid line) band. The emitted
magnons are denoted by the solid wavy lines, and the incom-
ing (~,) and outgoing (ury) photons by the dash-dotted lines
at the ends of the diagrams. Additional graphs are obtained
from each diagram by fermion Bow reversal and/or flipping
all the spin labels.

) i

k
i

~

k q

q» ') q»
I= ) (—2t) ([xsink + ysink„] e,)

x ([xsin(k —q ) + y sin(k„—q„)] e&)
2 e,~ef cos q~ + e,„efy cos gy

we obtain for the Raman matrix element

2L
R = 8t [(e—e& + e ze& )2pqAq

(e; ef co—sq + e

beefs

cosq„)(p,'+ A', )).
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We now demonstrate that this equation coincides with the Loudon-Fleury vertex. For this, we 6rst rewrite the
Loudon-Fleury Hamiltonian of Eq. (1) in terms of Holstein-Primakoff operators to leading order in 1/S:

Hi, F = a ) (e; p)(e~ p)S S„+p

0.'= —) y~ '~ ~ ( ~+s+ „s)+ y„e'sS~. ( ~+v+, y)

I= 2Sn ) (e& e; [cos q (aqa q + a a ) + 2a aq] + e&„e;&[cosq„(aqa q + a a ) + 2a aq]}. (36)

We then apply the Bogolyubov transformation to the ac-
tual magnon operators that diagonalize the Heisenberg
model to first order in 1/S. This transformation involves
the same factors Aq and pq that we had introduced earlier
[in Eq. (32)] and has the form

tG = PqCq —Aqe q,

fq~q.

At T = 0 the only relevant terms in the Loudon-Fleury
Hamiltonian are those containing two magnon creation
operators, and restricting ourselves to those, we obtain
the matrix element from the Loudon-Fleury Hamiltonian
in the form

the diagram of Fig. 4(c) can be seen as effectively con-
taining a single two-magnon —fermion vertex. The partial
cancellation due to this diagram restores the spin rota-
tion invariance of the Loudon-Fleury Hamiltonian. It is
then reasonable to assume that some cancellations may
occur in higher orders in t/U, though we did not check
this in explicit calculations.

Despite the agreement obtained between the two ap-
proaches, we are not done yet. We have so far been
performing an expansion in t/U, and there exist other
graphs which are of the same order in t/U as the ones
retained. Examples are given in Fig. 5. However, it is
not difBcult to observe that all these extra diagrams have
a smallness in 1/S. Indeed, each fermion-magnon vertex

MR ——2nS(e& e; [cosq (A + p ) —2pqAq)

+e~ e ycosqy('A + p ) 2pqAq (38)

Comparing the two expressions for the Raman vertex,
Eqs. (35) and (38), we observe that they coincide if one
chooses o. = 16t2E/[2S(4E2 —&u2)]. Apart &om the fac-
tor 2S (= 1 for S = 1/2), this is exactly the expression
which Shastry and Shraiman obtained in their derivation
of the Loudon-Fleury vertex for the Hubbard model.

Further, an examination of our diagrammatic deriva-
tion shows that the terms in Eq. (35) containing cos q
and cos q„correspond to the S+S terms in the Loudon-
Fleury Hamltonian, while the rest of the terms come from
the S'S' part. Going back to Eqs. (29), (30), and (31)
and the diagrams they correspond to, we can see that the
S+S terms come &om the diagram of Fig. 4(a), which
emits one magnon from the hole line and the other &om
the electron line. The S S terms come from the dia-
grams of Figs. 4(b) and 4(c), which emit both inagnons
from either the electron or the hole side of the fermionic
bubble. Notice that the "unusual" diagram of Fig. 4(c)
canceled one of the terms in the one of Fig. 4(b). Without
that cancellation we would not have obtained the correct
Loudon-Fleury expression for the S S term. This in
particular would have resulted in a violation of the selec-
tion rule prohibiting Aqg scattering.

There is an interesting parallel between this cancella-
tion and one that occurs in the theory of two-phonon Ra-
man scattering in semiconductors. In that case, there
is a large cancellation between the two-phonon terms ob-
tained by the iteration of a single-phonon —electron ver-
tex, and the diagrams containing a single two-phonon-
electron vertex. The cancellation in the phonon case is a
consequence of the translational symmetry. In our case,

'&v'
O~ ~O

O~ ~Ooo ~Oe+~+a e~e&~eel+»~

(a)

~ ~
~ ~

~ 4
~ ~ 4 ~ 0 ~ j g ~0 ~ ~ ~ 0

FIG. 5. Additional graphs which are of the same order of
magnitude in t/U as those of Fig. 3, but have extra smallness
in 1/S. The four-fermion vertex is the Hubbard interaction
term U. Graph (a) is obtained from Fig. 3(c) by the insertion
of a particle-hole bubble in place of a single four-fermion in-
teraction. A sequence of such bubbles sums up to an internal
magnon line; an example is given in (b).
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has an overall factor of 1//2S [see Eq. (28)]. Associated
with each internal magnon line, we have two such ver-
tices, and no additional summation over the orbitals in
the internal fermionic loop. Altogether, inclusion of an
internal magnon line results in an extra factor of 1/2S.
This completes our demonstration of the equivalence of
our formalism to that of Shastry and Shraiman in the
nonresonant region.

i i I
I

i I I I i i
I

i

B. Tmo-magnon peak

In the preceding subsection, we calculated the Raman
matrix element M~ for the emission of two magnons.
Here we consider the location and shape of the two-
magnon peak. We first observe from Eq (38.) that within
the Loudon-Fleury picture the scattering in the A~g ge-

ometry (e; = +", ey = +") vanishes because the Ra-
man vertex M~ is equal to zero. This result can be ex-
pected because at half filling (and at large U) the Hub-
bard model is equivalent to the Heisenberg model, and
in the Az~ geometry the Loudon-Fleury and Heisenberg
Hamiltonians commute with each other. In contrast, in
the Big scattering geometry (e; = ~", ey = ~") the
Raman vertex, as obtained from Eq. (38), is finite:

0—
I I I I I I

0.5
I i I I i I I I

1.5

FIG. 6. The profile of the scattering cross section in the
Hzg geometry without the final-state magnon-magnon inter-
actions (dashed line) and with final-state interaction (solid
and dotted line). The solid and dashed lines were obtained,
correspondingly, by using the full expression for I(&u) in Eq.
(A5) below and its expansion near the top of magnon band
which is in line with 1/S expansion. Notice that while the po-
sition of the two-magnon peak is the same in both cases, the
expansion near the top of magnon band yields much broader
two-magnon peak.

MR' (p + A )(cosq —cosy„) = cos g~ —cos QtI

1-7'

Substituting this into the expression for Raman inten-
sity, Eq. (9), we obtain

RH ( ) ) ( ~ 6) $( 2Q ) (40)

where u = cu; —~y. This expression has a diver-
gence near ~ = 8JS, since the magnon spectrum is flat
and the density of states infinite at the Brillouin zone
boundary. It is well known, however, that this result
changes qualitatively when one takes into account the
effect of the magnon-magnon interactions in the 6nal
state. This was Grst explained by Elliott et al. and
experimentally verified by Fleury for RbMnF3, which
has a cubic structure. The calculations were further ex-
tended by Elliott and Thorpe. They were performed
for the two-dimensional case by Parkinson, and then
veri6ed for K2NiF4 by Fleury and Guggenheim. Since
a rather up-to-date treatment of the role of the magnon-
magnon interactions is available in the literature, ' we
merely sketch the relevant calculations in Appendix A
with an emphasis on the 1/S expansion, which treats
the magnon-magnon interactions in a systematic way
and which, to our knowledge, has not been discussed
before in this context. The key output of these calcu-
lations is that the Raman intensity does not diverge at
~ = 8JS, but instead has a narrow peak at smaller &e-
quency. We found that for S = 1/2 the peak position is
at ur = 2.78J,ir 3.22J, where J,ir = J(1+0.16/2S) in-
cludes the spin-wave velocity renormalization factor. The

profile of the two-magnon intensity for S = 1/2 is plotted
in Fig. 6.

Experimentally, the two-magnon peak has been ob-
served in La2Cu04 at 3000 cm (see Ref. 9), which
for u 2.78J g yields J 0.116 eV, which is roughly
consistent with J 0.125 eV as inferred &om the neu-
tron scattering and NMR data. The Parkinson re-
sult corrected by the spin-wave velocity renormalization
(iii = 2.7J,g 3.13J) gives somewhat better agreement
with the neutron data, but the difference between the
two values of u is rather small and practically irrelevant
to subsequent analysis. In the rest of the paper, we will
simply refer to 2.8J g for the two-magnon peak position.

We now proceed to the central topic of our paper,
which is the discussion of Raman scattering in the reso-
nant regime.

IV. RESONANT SCATTERING

A. Raman matrix element

In the section on nonresonant scattering we proceeded
systematically in filtering out the diagrams that were
small in t/U or 1/S. Our very first step was to observe
that the magnon-fermion vertex was of order U when
the fermion scattered between. the valence and conduc-
tion bands, and of order t when it scattered within either
the valence or conduction band [see Eq. (28)]. As the
terms in the denominators obtained upon the internal
&equency integration were always of order U, all the dia-
grams with intraband scattering at any magnon-fermion
vertex were small by powers of t/U

It turns out that this property of the denominators is
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no longer true in the resonant region, where the photon
frequencies cu; and uf differ from the gap 2A by quan-
tities of order JS. As a result, some previously omitted
diagrams become, as we will see, not only important, but
actually dominant.

Let us 6rst consider the form of the Raman spectrum
without the 6nal state interactions. Then we have

&(~) ~ ):IMRI'~(~; —~f —»,). (4z)

Consider now the graphs with only the intraband scat-
tering at the fermion-magnon vertices, Fig. 7. With all
the multiplicity factors included, the internal frequency
integration results in

4 I (~ax a ) ( ~e~ ei) ]&qea q
—

%qadi]
M~ ———8i)

k
(ur ' 2Eg + ib) ((u' Oq EI, Eg q + i b) (~f 2EI, q+ i—h)

(42)

for the graph of Fig. 7(a), and

( ~z e;) ( ~'„" . e&) ]yeEg —q Aeea]]ye~a &e~a—a]
M~( ———8i) - (~; —2Eg + ib) (~; —A~ —Es —Es ~ + ih) (~f —2Eg + ib)

for the graph of Fig. 7(b). The relation u; —20~ = urf is
to be remembered here.

Without performing the integrals, the naive order of
magnitude estimate is obtained in the resonant region
by assuming that the resonant terms in the denomina-
tors are of the order of the bandwidth, i.e. , 0(JS). Then
the two diagrams above are of order t /(JS) The d. ia-
grams that were dominant in the nonresonant region have
fewer resonant denominators. Going back to Eq. (35)
for the previously considered graphs, we 6nd that they
are of order t2/(2E —u) t2/JS. We see that in the

I

resonant regime the new diagrams are larger by a fac-
tor (t/JS) U/J. However, this estimate, while cor-
rect for the large-S case, can be somewhat misleading at
the physically relevant value of S = 1/2, as it does not
take into account strong self-energy and vertex correc-
tions which are relevant at u —2L, even though we are
considering the situation exactly at half 6lling. For exam-
ple, the leading order vertex correction to the magnon-
fermion vertex, shown in Fig. 8(a), is of order t (U/ JS),
whereas the bare vertex is of order t. Simultaneously,

k-

~ ~o rS] - ~.- f0&

-q

k-q

~ ~o
SI Q)f

%~~~~~e8

FIG. 7. Diagrams which become important at resonance.
All three denominators in the diagram (a) can vanish simulta-
neously, which is known as a triple resonance. This diagram
is dominant in the resonance region. Additional relevant di-
agrams are generated by the spin label reversal [in both (a)
and (b)] and/or the emission of two magnons from the valence
band fermion line [in the diagram (b)].

FIG. 8. The lowest order vertex (a) and self-energy (b)
corrections to the mean-6eld theory.
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the self-energy correction in Fig. 8(b) contributes an ex-
tra factor of (U/JS). Both corrections are small only
if we require that U/JS (( 1, which we indeed do not
expect to be satisfied for S = 1/2.

The form of the low-energy theory at U/JS )) 1, has
been discussed by a number of authors. For our consid-
erations, it is essential that both numerical and varia-
tional studies have found that the resulting quasipar-
ticle Green's function G(k, &u) has a quasiparticle pole
at low energies, and that the k-space dispersion of that
quasiparticle has a width of order JS. Self-consistent
calculations ' ' also demonstrated that the product of
the quasiparticle residue Z and the effective (renormal-
ized) interaction between fermions from the same band
and magnons, t,fr, scales as t,frZ J (without correc-
tions Z = 1, t,~ = t, and this product was equal to t).
In this situation, the relative factor between the new and
the old diagrams is (t,~Z) /J2 = O(l). The order of
magnitude estimates therefore only point to the new di-
agrams as being comparable in importance at resonance
to those that fully dominated away &om the resonance.

Fortunately, this naive order of magnitude estimate is
not the whole story. When the integrals are actually per-
formed, they may (and as we will see they do) yield singu-
lar answers for some photon and/or magnon frequencies.
In that case, the most singular integral will dominate.
Notice that, because the singularity comes only from the
coherent part of the quasiparticle spectral weight A(k, w),
we do not need to consider the incoherent part of A(k, u),
which by itself can be substantial and spread over an en-
ergy scale exceeding J [some studies predict that A(k, ~)
spreads over the scale of the order J (&), where p is a
number & 1].

We now consider in detail the singular behavior of var-
ious diagrams. The diagrams which contribute to the
Loudon-Fleury Hamiltonian have only singly resonant
denominators that lead to singularity in M~ when either
the incoming or the outgoing photon &equency coincides
either with the gap 2L or with the top of the band.
Near the gap, the integration over the intermediate mo-
menta yields M~ ~u, y

—2A~ ~ for the mean-field
form of the quasiparticle dispersion, or an even weaker
logarithmic singularity MR ln1/~w; y

—2A~ for the
renormalized quasiparticle spectrum, which has minima
at (km/2, her/2) and a parabolic dispersion around the
minima. This last form of the fermionic spectrum was ob-
tained in numerical, variational, and perturbative studies
of the Hubbard model beyond the mean-field level.
Near the top of the band (k = 0), the would-be logarith-
mic singularity due to the vanishing of the denominator
is in fact absent because & in the numerator of M~ also
vanishes at k = O.

Consider next the diagram in Fig. 7(a). Its analyti-
cal expression is given by Eq. (42). The denominator in
Eq. (42) has three terms, one of which is half of the sum
of the other two

~; —&, —E~ —E~+, = —.
' [(~' —2EA. ) + (~~ —2Ei+.) l .

(44)

Therefore, if we And k and q such that m; = 2EA, and

coy = 2Ei,+~, all three of the denominators in (42) van-
ish simultaneously. This is known as triple resonance,
which is a particular case of the more general notion
of multiple resonance known in Raman scattering.
Clearly, a necessary condition for a triple resonance is
that the fermionic bandwidth be larger than the magnon
bandwidth. This condition is satisfied in the mean-Beld
theory, where the magnon bandwidth is 4JS, while the
fermionic bandwidth, found from

Ei, 4 + 2JS(cos k + cos k„), (45)

is equal to 8JS. The bandwidths of "dressed" Fermi and
Bose quasiparticles are indeed somewhat different, but
we assume that the fermionic bandwidth is still larger
than the magnon bandwidth.

We will present a detailed study of the momentum in-
tegration near the triple resonance in the next subsection,
and here merely note that, unlike its single counterpart,
the triple resonance is not tied to the minimum of either
Ep or Ep+q. Thus, unlike for the Loudon-Fleury terms,
for triple resonance the difference between the mean-Geld
and the renormalized forms of the quasiparticle spectrum
does not yield qualitatively different answers for the sin-
gularities. For this reason, we will keep working with the
mean-Geld form of Ey. In the next subsection we will
find that triple resonance does indeed yield the strongest
divergence of the Raman scattering cross section.

Finally, in the diagram of Fig. 7(b), we have a product
of (u; —2Ei, ), (~y —2Ei, ), and their half sum in the
denominator. Since uf ——u; —20q, only one of the three
terms can vanish at any time, and this diagram is clearly
less singular than the one with the triple resonance.

In fact, there are also higher-order diagrams which
have internal magnon lines or contain four-fermion ver-
tices in low orders. They may formally be even more
singular than the ones above. However, just as in the
nonresonant section, we can omit them if we assume the
large-S limit, which was implicit in the considerations
just outlined.

B. Triple resonance

In this subsection, we perform a detailed analysis of
the diagram of Fig. 7(a), which gives rise to a triple res-
onance. The analytical expression for the diagram was
given in Eq. (42).

It may be useful to start with a remark on the related
calculations of the two-phonon spectra in semiconduc-
tors. In that case the energy scale of the phonons is
quite small compared to the bandwidth in semiconduc-
tors. Therefore an expansion of electronic band struc-
ture to quadratic order near the minima is a priori war-
ranted, and the resulting integrals can often be done
analytically.

In our case, however, the wave vectors of the magnons
contributing to the two-magnon peak are of the same or-
der as the Brillouin zone itself, and their energy is com-
parable to the fermionic bandwidth. Thus we are forced
to deal with a full spin-density-wave band structure with-



RESONANT TWO-MAGNON RAMAN SCATTERING IN PARENT. . . 9771

out necessarily being able to expand it near some point.
This complicates the integration considerably, although
we will eventually find that some analytical results are
still possible.

We now turn to the general analysis of the possible
singularities in Eq. (42).

As we mentioned earlier, the three denominators in
Eq. (42) vanish simultaneously when the following two
conditions hold:

~i = 2Ek) cup ——u), —20q ——2EI,+q. (46)

Let us call kp and u,' ' the values of k and u,. that solve
the above equations, for a particular value of g, and ex-
pand the denominators to linear order about kp. To
study the conditions for a resonance, we set the numera-
tor to a constant and obtain

[2vg, k —ih][(vg, + vg, q) . k —i8][2vt„q . k —ib]

where vi„= &&' ~i„and v~, ~ = &&' ~i,, ~ are the veloc-
ities at the two points in the momentum space where the
denominators vanish.

However, the resonance conditions under which (48) is
valid in fact contain one extra equation. Indeed, one can
immediately make sure that the integral in (47) vanishes
unless the two velocities are strictly antiparallel to each
other. Indeed. , let vy, be in the z d.irection. Then the first
term in the denominator only depends on k . If vI„q has
a y component, then only the second and third terms in
the denominator will contain ky, and both with the same
sign. In that case, if we do the ky integration first, the
integral will vanish since the poles &om both terms will
lie in the same half plane.

Suppose now that all the resonance conditions are met.
What we really want to know is the type of singularity
one obtains for u; close to the resonant frequency ~,'.",
for a given magnon momentum q. To do so, we have
to introduce into each factor of the denominator a term
that is quadratic in the component of k perpendicular
to the velocities (this makes the integral convergent), as
well as retain the now nonzero u; —u,' ' terms. The
power counting of the resulting integral implies a power
law singularity,

M(4)
R (~. ~res)s/2 ' (48)

More detailed calculations later in the paper confirm this
result.

Let us now count the variables in our equations for the
resonance. For fixed w,. and wy we have two resonance
conditions, an additional condition that the two velocities
be antiparallel, and also the energy conservation condi-
tion 20q ——u = co, —uy. Thus we have four equations for
four unknown components of kp and q. However, at a
fixed u; this system of four equations does not necessarily
have a solution for an arbitrary wy. For example, for the
rotationally invariant magnon spectrum and parabolic
fermionic bands, elementary considerations show that the
two conditions in Eq. (46) plus the energy conservation
condition fully deterinine ~ko (, ~q~, and the angle between
them, so for a fixed u; the condition on velocities has a
solution only at a single uy, and for that one uy all of the
magnons are at resonance at once. In the general case,
the magnon spectrum is not rotationally invariant, but

the triple resonance will still occur only in some range
of the final photon energies wry (and thus only for some
magnon energies A~). We will find that this range is
numerically rather narrow in most cases of interest.

We now study the general solution for triple reso-
nance. Consider first the mean-field (S = oo) forms of
the fermion and magnon dispersions. We expand 2EI, ——

2gA2+ 4t2(cosk + cosk„)~ 2A + 4JS(cosk +
cos k„) and introduce the reduced variables

—2L
4JS

~y —2L
f 4Jgl (49)

sin 0 sin/„—sin/ sin ky —0, (51)

provided that if k is in the first quadrant then / is in the
third (this makes the velocities antiparal/el).

Finally, the condition EI, —E~ ——20', ~ takes the form

1
2 1 ——[cos(k —l ) + cos(k& —l&)]2 = A; —Ay. (52)

4

These four coupled nonlinear equations form the set to
deal with. There exists no general method for solving
systems of nonlinear equations. However, in our particu-
lar case, much information can be obtained analytically
by studying two high-symmetry directions, which we do
next.

Let us first consider the case where q = qy. It is easy
to check that for such q the solution for the resonance
has the general form k = k„(0 & k & m/2) and l = l„
(—m/2 & I & 0). The antiparallel velocities condition
is automatically satisfied, and the remaining conditions
yield

QAg
cos k = ', cos l

2 ' 2

2+1 —cos2(k —l ) = 2 sin(k —l ) = A, —Ay. (53)

which count the photon energies from the band edge.
Then Eq. (46) becomes

cos k + cos k„= ~A, , cos l + cos l„= gAy, (50)

where k = kp, and where we introduced l = k —q and
also restricted ourselves to the reduced Brillouin zone.

The condition that the velocities &" and &' be an-
tiparallel is
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These three equations trivially lead to

(54)

where as before Oq
——4&'& is the reduced magnon &e-

quency.
By definition, the upper limit on A; is equal to 4. The

lower limit is found by locating the point where Af ——

A; —20q becomes zero, since at that point one of the
velocities vanishes, and after that we have parallel rather
than antiparallel velocities and thus no contribution from
the triple resonance to the Raman vertex. Solving A; =
20~ together with Eq. (54) we find the lower boundary
is at O~ = 1/2, A; = 1. Eq. (54) is graphically presented
in Fig. 9.

Another symmetry direction for which the condition on
the velocities is satisfied automatically is that for which

q is along the x or y axis. In this case we can set k& ——

l„=q„= 0, and obtain a set of equations

A; = (1+cosk ), A/ = (1+cosl )

1
A; —A/ = 2 1 ——[1+cos(k —l )]2.

4
(55)

It actually does lead to an analytic answer, but as it is
rather cumbersome, we re&ain &om presenting it and
consider instead only two special points. The first one is
where the magnon energy is maximal, i.e., A,. —Af ——2.
This implies k —I = 7r, and hence A; = 9/4. The second
special point is one at which Af ——0, i.e., the termination
point on the lower end. At that point l = —m, and we
easily obtain &om Eq. (55) that

A;(A;+ 1) = 16, (56)
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FIG. 9. The triple resonance region (shaded) in the
(~, , (~; —uf)/4JS) plane. Dashed line: solution for a
triple resonance for magnon momentum q = q„; solid
line: solution for q = 0 or q„= 0. The horizontal
line corresponds to the position of the two-magnon peak at
((u; —cu/)/4 JS = 2u = 1.4.

with the solution A; 1.9.
The whole curveso uv = f(A;) for q = 0 is plotted in

Fig. 9.

Another part that is worth deriving analytically is the
locus of the lower and upper termination points of the
curves for different directions of q. It is easy to demon-
strate that for the largest possible A, = 4 the solution for
any direction is Af ——3, so that the curves for all direc-
tions of g meet at a single point when A; = 4. To see this,
note that A, = 4 implies k = A:&

——0. After substituting
this into Eqs. (50), (51), and (52), we obtain the claimed
result.

The lower termination point is Ay
——0, because the

triple resonance clearly requires both the initial and final
photon frequencies to lie above the gap. This condition
corresponds to a straight line given by A; = 2u = (w;—
u/)/4JS in the (A, , tu) plane (recall that at resonance

Oz). This by itself would allow 0 ( A; ( 2. A
more detailed study shows, however, that the solution
only exists for A,. & 1. Notice that curves for different
magnon directions terminate at different points on the
line A; = 2~, and near A, = 1 only a small fraction
of magnon directions, namely, q —q&, allow a triple
resonance there (see Fig. 9). At the other end of this
boundary (at A; = 2), the numerator in (42) vanishes.
For all these reasons, the Raman intensity is expected to
be small in the region of low A, , and it will not play any
role in our subsequent analysis.

Finally, we can also locate the region where our set of
equations has a solution for the largest possible magnon
frequency u = As = l. An inspection of Eqs. (50), (51),
and (52) shows that the solution exists for 2 ( A; ( 3.

Combining all these analytical results, we obtain the
allowed region of triple resonances in the (A;, 2~) plane.
This region is shaded in Fig. 9. Notice that, although
for 2 ( A; ( 3 the solid line in the figure (the solution
for q = 0) practically coincides with the horizontal line
2u = 20q ——2, this solid line is actually located below
the maximum two-magnon &equency everywhere except
A, = 9/4. As an independent check, we also solved our
equations numerically for a number of directions of q and
found that the solutions were within the shaded region.

The above solution for the triple resonance was ob-
tained for the mean-field forms of fermionic and magnon
dispersions. As we already discussed, quantum correc-
tions will certainly change the overall scales in the dis-
persions and thus modify the resonance conditions. How-
ever, we do not expect these modifications to be substan-
tial especially near the upper termination point A, = 4
as still at maximum A; we have k = k„= 0, and hence
curves with different directions of q will terminate at the
same A;. This region near maximum A; will play a central
role in our subsequent analysis.

Finally, it is worth noticing that the divergence we
have found in the Raman matrix element is an artifact
of neglecting the damping of quasiparticles. If the damp-
ing was included, the divergence would be gone, and we
would obtain instead only the enhancement of M~ in the
shaded region in Fig. 9. For this reason, later in the
paper we will refer to an enhancement rather than to a
singularity in M~. It is important, however, that up to
some damping levels the enhancement of M~ is going to
be substantial, and the singularity analysis is a useful
guide to the actual physics.
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C. Two-magnon scattering

So far we have considered the behavior of the Raman
matrix element as a function of incoming &equency, ne-
glecting Gnite state interactions, and selected the dia-
gram which gives rise to a strong enhancement of MR in
some range of outgoing photon frequencies for a given u;.
At the same time, as we discussed in Sec. IIIB, the den-
sity of states is divergent at the magnetic zone boundary,
and in the absence of finite state interactions this natu-
rally gives rise to a divergence of B at w = 8JS even if we
completely neglect the frequency dependence of MR. For
S = 1/2, which we will assume below, this divergence is
at cu = 4J.

If we now switch on the magnon-magnon interactions,
the divergence at 4J will be gone, and we should obtain
instead the maximum of R at some smaller &equency.
Diagrammatically, this means that the most singular res-
onant diagram of Fig. 7(a) should be augmented to a
series with the two outgoing magnon lines repeatedly in-
teracting with each other, just as in Fig. 10 for the non-
resonant case. In principle, the resulting two-magnon
peak &equency and the peak profile should be difFer-
ent &om those obtained in Sec. IIIB, since the momen-
tum and &equency independent Loudon-Fleury vertex in
Fig. 10 is now replaced by the fermionic bubble diagram
of Fig. 7(a). This diagram is given by Eq. (42), and
has a complex dependence on magnon momentum and
&equency. As a result the terms in the series including
magnon-magnon interactions can no longer be factorized
in the manner of nonresonant theory. On the other hand,
the momentum and &equency dependences of MR are
mostly relevant near the region of triple resonance. For a
wide range of incident &equencies, this resonance occurs
at transferred &equencies near 4J which are higher by
J than the 3J position of the two-magnon peak in the
Loudon-Fleury theory. Moreover, the width of the two-
magnon peak in the Loudon-Fleury theory is smaller than
J which in turn implies that the dominant contribution
to the two-magnon peak comes from magnons in a nar-
row frequency range, where MR is not sharply peaked. In
this situation, it is reasonable to assume that, to first ap-
proximation, the momentum and &equency dependence
of MR can be neglected in the calculations of the two-
magnon peak. If so, then the peak should be still located
at about 3J even in the resonant regime, and have the
same shape as in the Loudon-Fleury theory; however,
the overall magnitude of the peak and its shape do in-
deed strongly depend on how close we are to the triple
resonance region. This consideration is indeed an ap-

FIG. 10. A series of diagrams with the final-state
magnon-magnon interactions. The black dot is the
Loudon-Fleury vertex for the photon-magnon interaction.

proximate one, but it is consistent with the numerical
datas'is' and with the experiments i 's which show
that, when one changes the incident photon &equency,
the peak position does not move unless one comes close
enough to the crossing point between the triple resonance
region and the two-magnon peak position, at which point
its shape may also change.

There will also be a feedback efFect &om the magnon-
magnon scattering on the location of the triple resonance
region. However, this feedback efFect will be small in
the semiclassical (large-S) approximation, which, as we
discussed in Sec. IIIB, is likely to work well even for
S = 1/2.

For all these reasons, for the rest of our discussion we
adopt a semiphenomenological approach and assume that
at any given ur; the Raman spectrum R(ur) measured as
a function of the transferred frequency has two indepen-
dent peaks: one peak comes from the diagram with no
Anal state interaction and is due to the triple resonance in
M~, while the other peak (which for definiteness we as-
sume to be at u = 2.8J,~) is a conventional two-magnon
peak due to the magnon-magnon scattering. This pic-
ture is indeed valid away &om the immediate vicinity of
the crossing point where both peaks occur at the same
transferred &equency. In this situation, the decoupling
into two independent peaks is impossible, and we would
end up with a single "two-magnon" peak, whose shape
would be distorted from that of the two-magnon profile
away &om the crossing point.

Without considering in detail the eKects of damping,
we cannot conclude which of the two peaks is stronger.
The experiments seem to indicate that away &om the
crossing point the peak at 2.8J g is stronger, and the
enhancement of the Raman matrix element can only be
responsible for the asymmetric "shoulderlike" behavior
of the two-magnon profile (see the discussion in Sec. V).
At the same time, if we Gx u at 2.8J,H, as in Fig. 2, and
consider the variation of the two-magnon peak intensity
as a function of the incident photon frequency u; (or
A;), this intensity will clearly have a maximum where
an cu = 2.8J,g line intersects the region of the triple
resonance.

To see where the maximum occurs, we neglect for sim-
plicity the renormalization of J due to quantum Huctua-
tions and draw a horizontal line in Fig. 9 at the reduced
frequency 2 = 0.7. (Actually, we have checked that the
results below are practically insensitive to whether we use
J or J g in the magnon spectrum; however, if we used
J,a. , we would also have to consider the 1/S renormal-
ization for the fermionic spectrum, which does not lead
to new physics but substantially complicates the calcu-
lations. ) We see from the figure that the line at u = 0.7
intersects the region of triple resonances in two places.
One occurs at A, very close to 4, i.e., when the incident
photon is near the top of the fermionic band. The other
occurs for A; close to 1, i.e., not far &om the bottom, of
the fermionic band. We know &om the discussion given
above that the region 1 ( A; ( 2, especially for A; close
to 1, is rather "esoteric" in that only a small &action of
magnon directions allow for a triple resonance there (see
Fig. 9). On the other hand, for A; close to 4, we will
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encounter no such problem, and we thus expect a much
larger enhancement there. Thus we focus entirely on the
latter value of A; = 4.

We now consider how the two-magnon peak amplitude
increases as u, approaches the critical value where the
triple resonance and the magnon-magnon peak occur at
the same value of u. First, since we are close to the top of
the fermionic band, we can perform a quadratic expan-
sion of the band structure near the maximum. Second,
we see from Fig. 9 that near A, = 4 the triple resonance
region is very narrow, so that to Brst approximation we
can consider that the triple resonance occurs only along
a single line in the (A;, u) plane. As we discussed in
Sec. IVB, this would have been the case if the magnon
spectrum were rotationally invariant, and one can easily
check that it approximately is for Oq 0.7. Accordingly,
we expect it to be a good approximation if we linearize
the magnon spectrum around q = 0,

gq—

The integral for the triple resonance can now be done
analytically. The details of the calculations are presented
in Appendix B.Here we quote the results. The resonance
is allowed at the line

A; = 4 —(u ——,')',

which, in accordance with Fig. 9, terminates at A; = 4
for ug = 1/2, and intersects the two-magnon peak posi-
tion (2 = 0.7) at A; = A;."= 3.96. The maxiinum of the
two-magnon peak amplitude thus corresponds to the in-
coming photon frequency ~; that puts the particle-hole
pair members very close to the tops of their respective
bands.

I et us now Bx the two-magnon frequency at the two-
magnon peak position and vary A; (as in Fig. 2). From
the results in Appendix 8, the Raman matrix element is
then

(A —A'-+ib) ~'

R - [A; —A'.-+ ih']
—' (62)

It is important to note that the usual single (Loudon-
Fleury) resonance in 2D can at best give an inverse linear
singularity of B for the spin-density-wave band structure,
and only at the mean-Beld level, due to the degeneracy
of Ei, ——gA~+ F& Once the mean-field degeneracy is
broken by a better approximation, the single resonance
is further reduced to a logarithmic singularity. Therefore
the triple resonance singularity is expected to be at least
as strong and most likely stronger than any at the lower
band edge.

This is to be contrasted with the behavior of the opti-
cal conductivity o (u) [see Eq. (22) above and Fig. 11(a)].
Unlike the Raman cross section, it vanishes at the upper
band edge A; = 4. Most of the optical weight in cr(A;) is
concentrated towards the lower band edge A; = 0, where
it has a singularity in the absence of fermionic damping.
Therefore the optical conductivity resonates at the lower
band edge while the Raman cross section is strongest at
the upper band edge of the coherent quasiparticle spec-
trum.

Notice also that while the Raman intensity is symmet-
ric with respect to the sign of A, —A,

' the expression
(59) for M~, which includes only the leading singularity,
is, strictly speaking, valid only in some region around
A, '. Away from this region, there are no reasons to ex-
pect the Raman intensity to be symmetric. On general
grounds, we expect that the intensity above A;- ' must de-
crease faster than for the same deviation from A; ' but at
A, ( A,-" simply because no triple resonance is possible
for A,. ) 4.

The sum total of those arguments is that the Raman
intensity has at least an inverse linear singularity from
triple resonance,

4 —A,

(A —A"' + i8)'~' (59)

1
MR

[A —A"' + i8]'~' (60)

In practice, however, the damping of fermions prevents
the true singularity at A; = A,. ', and the increase of MR
can be measured at some distance away from A, '. In
this situation, the difference between A'. ' and 4 can be
neglected, and we obtain &om (59)

The factor in the numerator comes from the vanishing
of the term && in the numerator of Eq. (42) at k = 0,
which is the value of k of the resonant particle-hole pair
created by the incoming photon for A; = 4, and is also
due to the fact that A; = 4 corresponds to Oq —

2
= 0

in which case the overall factor (1 —~) = (1 —
& ) in

Eq. (B22) in Appendix B vanishes.
For A, very close to A,- ', the term in the numerator

can be considered as a constant, and we obtain

I I I 1
)

I I I I
i

1 I I I
]

I I I I

A
10—

M
Q

b

0 —
i

R(fd&)

(a)

FIG. 11. (a) The plot of Eq. (22) for the optical conduc-
tivity, in the limit t (( U. It has a square root divergence at
the lower band edge, and vanishes at the upper band edge.
The divergence will be washed out in practice, but we can
still expect most prominent features to be located towards
the bottom of the SDW quasiparticle band. (b) A schematic
illustration of the relative location of the strongest Raman
and optical features as a function of the incident photon fre-
quency. Their relative position is a key result of this work.
The two solid lines represent the fermion dispersion curves in
the conduction and valence bands.
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We now discuss in more detail how these (and other)
results are related to experiment.

V. DISCUSSION

We first summarize the main results of our work.
We developed a general diagrammatic approach to Ra-

man scattering in antiferromagnetic insulators. For pho-
ton &equencies small compared to the gap between con-
duction and valence band, we rederived diagrammati-
cally the Loudon-Fleury Hamiltonian, which had been
earlier derived &om the Hubbard model by Shastry and
Shraiman in a difFerent formalism. We also considered
the location and shape of the two-magnon peak by study-
ing the magnon-magnon scattering in a systematic 1jS
expansion. The results of this study are consistent with
the earlier considerations by Canali and Girvin. i

We studied the two-magnon Raman scattering in the
so-called resonant regime when the incident and final
photon &equencies are only O(J) apart from the Hub-
bard gap. In this situation, the diagrams which are sub-
leading in the nonresonant region become dominant. We
identified the diagram which gave a dominant contribu-
tion to the Raman vertex in the resonant regime, and
found the region in the (w, , w, —w~) plane where the
Raman vertex is divergent, unless one includes into con-
sideration the damping of quasiparticles. The divergence
is due to the simultaneous vanishing of all three denom-
inators in the expression for the Raman matrix element.
This phenomenon is called triple resonance. In the pres-
ence of moderate quasiparticle damping, the divergence
in the Raman vertex is gone, but the enhancement due
to the triple resonance can indeed survive.

Based on the experimental data, we then assumed that
the location of the two-magnon peak in the resonant
regime remains practically in the same place as at small
photon &equencies, i.e., at ~;—~y 3J. For nearly all in-
coming photon &equencies w; falling within the Hubbard
bands (i.e. , corresponding to the features in the optical
absorption spectrum), this magnon &equency is located
below the region where our calculations show a triple res-
onance is allowed [see Fig. (9)]. Based on these facts, we
formulated an "efFective" Loudon-Fleury-like theory in
which the position and shape of the Raman profile in the
two-magnon peak area of 3000 cm (but not at higher
magnon &equencies) are solely due to the final state
magnon-magnon interactions, while the triple resonance
in the Raman vertex at larger u 4000 cm leads to
"shoulderlike" behavior in the magnon profile. When the
incident photon &equency approaches ~; = 2A + 8J,
which corresponds to the particle and the hole being ex-
cited to nearly the tops of their respective bands, the
triple resonance region allowed at a given u; shifts down
to lower transferred &equencies, and finally intersects the
value of u where the two-magnon peak is located. We
found that this happens when u;/2 is very close to the
top of the quasiparticle band, u; = w,' ' u; . Right
at the crossing point, the intensity of the two-magnon
peak amplitude diverges (in the absence of quasiparticle
damping).

As u, approaches this critical value from below, the Ra-
man intensity increases as B (w,

'"—ur;) at some dis-
tance away from the resonance, and as A (w,

'"—u;)
in the immediate vicinity of the resonance. In a real situ-
ation, the true divergence will be gone due to damping of
quasiparticles, and the two-magnon peak intensity as a
function of u, will instead have a maximum at u,' '. We
therefore do not expect to see cubic dependence, but an
inverse linear increase of B should be observable.

We now analyze how these results are related to the
experimental measurements in Fig. 1 and Fig. 2. In the
Introduction we listed the key experimental features that
required explanation. Here we list them again and com-
ment on each of them.

In Fig. 1 we needed to explain the following.
(a) Asymmetry of the taboo-magnon peak profile. Our

theory predicts that for u smaller than w,' ' the two-
magnon peak profile should be asymmetric with a "shoul-
derlike" behavior at frequencies close to u = 4J, due
to the triple resonance in the Raman vertex. This is
consistent with experimental observations. In particu-
lar, the experimentally measured two-magnon profile in
Pr2Cu04 was analyzed and found to contain two peaks,
a two-magnon peak at 3000 cm and a smaller one at
4000 cm, which is precisely as expected from our cal-
culations. Notice, however, that the calculation of the
relative intensity of the peaks is beyond the scope of the
present approach.

(b) Selection rules The lea. ding diagram in the reso
nance regime contributes to scattering in both Rig and
Ai~ geometries. Signals in both geometries have been
observed in the experiments. Recall that the Loudon-
Fleury theory predicts scattering only in the B'i~ geom-
etry.

(c) Stability of the taboo-magnon peak profile Away.
from the resonance, the stability of the two-magnon peak
profile is consistent with our theory, as the enhancement
of the Raman vertex for 2 & A, ( 3.5 occurs near u = 4J.
As u; approaches u,' ', the situation becomes more com-
plex, as one cannot separately consider the peak due to
magnon-magnon interaction and the enhancement of the
Raman vertex due to the triple resonance. The experi-
mental data seem to indicate that the two-magnon peak
profile changes little as u; sweeps through the resonance.
This is not entirely consistent with our scenario, as the
triple resonance region shifts to lower magnon energies
cu as the photon frequency ~, approaches u,'- '. How-
ever, the magnon profile itself in the resonant region can
only be obtained by solving coupled equations for the en-
hancements due to the triple resonance and the final state
magnon-magnon interactions. We have not yet been able
to accomplish that, and we leave it for future work. We
regard this as the most important unresolved issue of all
that remain. Notice also that the observed distortion of
the Raman profile at higher photon &equencies is qualita-
tively consistent with our main conclusion that, once the
photon &equency passes the top of the coherent quasi-
particle band, one must consider a qualitatively difFer-
ent set of electronic states. Our speculation at present is
that at such &equences the dominant contribution to Ra-
man scattering comes &om an incoherent, di8'usive hole
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motion, which can more easily couple to multimagnon
excitations.

In Fig. 2, the following observations needed explana-
tion.

(a) A single peak. Our theory predicts a single max-
imum in the two-magnon peak intensity measured as
a function of the incident photon frequency. On the
contrary, on the basis of general considerations in Ra-
rnan scattering, we might have expected two peaks,
one at u; = 2A and the other at coy

——2L. These
are the so-called incoming and outgoing resonances. In
the more traditional area of phonon Raman scattering
in semiconductors, ' ' the two peaks are not always
separately resolved. However, given the large magnon
energy scale in the cuprates, we might have expected
them to be resolvable. An additional bit of evidence that
triple resonance is a plausible explanation is that, exper-
imentally, the two-magnon peak is seen in the interval of
incoming photon frequencies about 4000 cm in width,
which for J 1000 cm is of the same width as the
interval 2 ( A, ( 4 in our theory, where the triple res-
onance is possible for all directions of the magnon mo-
menta q.

(b) Peak location. Our theory predicts the maximum
of the two-magnon peak intensity, measured as a func-
tion of w;, right near the upper edge of the quasiparticle
fermionic band. At the same time, the coherent quasi-
particle contribution to the optical conductivity 0 (~)
was shown to have most of its weight located near the
lower band edge and vanish at the upper band edge [as
schematically illustrated in Fig. 11(b)j. This is consis-
tent with the experimental Fig. 2 which shows that Ra-
man scattering is strongest right at the upper end of
those features in the optical data that can be interpreted
as particle-hole excitations between the lower and upper
Hubbard bands. The location of the Raman maximum
versus the features in cr(u) has been one of the great-
est experimental puzzles in this area, and its solution in
our approach serves as a partial verification of the SDW
dispersion relation for the carriers which, despite much
theoretical work, has not been well established experi-
mentally in these materials.

In Fig. 12 we fit the data of a recent experiment on
the peak intensity in YB~Cu306 z at T = 5 K by our
Eq. (62). We see that a fit to the predicted inverse linear
dependence is quite good. The inverse linear dependence
starts from ~; 2.5 eV and extends nearly up to the res-
onance &equency u,' ' 3.1 eV. The eKects of fermionic
damping are relevant only at u; 3 eV, i.e., in the im-
mediate vicinity of the resonance. These recent experi-
ments had also reexamined the earlier data, which were
obtained at room temperature. (Those earlier data are
reproduced in our Fig. 2.) It turned out that the res-
onance at room temperature occurs at a slightly higher
&equency than was believed earlier, and the intensity at

2.9 eV (last point to the right on the plat) is in
fact larger than at w; 2.8 eV, unlike what one sees in
Fig. 2. These new findings are consistent with our analy-
sis of the inverse linear fit to the room temperature data
of Fig. 2. We have found the the best inverse linear fit to
all of the data points in that figure in fact puts the reso-
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nance &equency at u,'" 2.9 eV, rather than at 2.8 eV.
Keeping in mind that optical studies in LaqCu04 have
shown that the optical absorption peak shifts to higher
frequencies by about 0.1 eV between room temperature
and 122 K, and one can therefore expect the peak in Ra-
man intensity to shift by about the same amount, the two
estimates of u, , are in fact consistent with each other.

Notice that our theory also predicts that the Raman
intensity should have an additional, smaller, peak at

2A 1.7 eV due to the Loudon-Fleury mecha-
nism. There is no evidence for the peak at u, = 2L in
the room temperature data on Fig 2. Preliminary re-
sults of recent low-temperature experiments indicate a
possibility that there is in fact a second, smaller peak at
cu; 1.6 eV which is consistent with our prediction.

There are, however, several experimental results which
are beyond the scope of our approach. First is the width
of the two-magnon peak, which exceeds the prediction
of the spin-wave theory even if we take into account the
resonance in the Raman vertex. As we already remarked
above, simply invoking quantum fluctuations for spin 1/2
is unlikely to improve the spin-wave theory, since direct
numerical calculations of the Raman spectrum on finite
clusters also predict a narrow peak in this case. An-
other experimental fact is the existence of a considerable
Raman signal R(u) above the maximum possible two-
magnon energy (i.e. , above 4J,~). Canali and Girvin
performed a very detailed study of the eKects of four-
magnon scattering within the context of the Heisenberg
model for spins and the Loudon-Fleury coupling of spins
to light. They found that this scattering can give rise to
the Raman cross section above 4J,~, but the intensity
of the Raman signal was found to be too small to fully
account for the experimental data. Thus one apparently
has to go beyond the minimal model.

In the approach put forward by Singh and co-
workers, ' further neighbor terms in the effective
Hamiltonian for coupling of light to spins are postulated,
and the coefBcients adjusted so that the moments of the

FIC. 12. A fit of the experimental dependence of the in-

verse two-magnon peak intensity in YB&Cu306 to the theo-
retical 1j(u,'" —u, ) dependence, Eq. (62). Data courtesy of
G. Blumberg and M.V. Klein (Ref. 65). The value of ur,'"
from the fit is 3.1 eV.
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Raman spectrum evaluated by the series expansion agree
with observations. Such next-nearest-neighbor terms
broaden the two-magnon peak and also automatically
break the selection rule for the Loudon-Fleury Hamilto-
nian which disallows scattering in the Aq~ configuration.
Of course, the question then arises of the origin of such
terms and their relative strength. Notice that the further
neighbor terms are in fact also effectively present in our
momentum-space description, as clearly follows &om the
Shraiman-Shastry formulation of the problem in which
the non-Loudon-Fleury terms in the Raman vertex cor-
respond to the effective spin interactions between further
neighbors.

In the bulk of the paper we "factorized" the problem
by setting the Raman vertex to its Loudon-Fleury form
in the calculations of two-magnon profiles right near the
peak. This, however, is only an approximation, and in
view of Singh's results we can expect some broadening
of the two-magnon peak in the more sophisticated calcu-
lations along our lines, which would treat the resonance
and the final state interactions together. Simultaneously,
we might also expect a shift of the two-magnon peak posi-
tion &om 2.8J,g. In the bulk of the paper we used 2.8J ~
because of the agreement with neutron experiments. We
note, however, that the only observations to date of the
two-magnon peak in cuprates were made at or near the
resonant &equencies, which are in the visible light region
in cuprates. In that sense, we may not even know what
the "true, " i.e., nonresonant peak shape and location are.

The scattering in Bq~ and Aq~ geometries in the SDW
technique has been studied by Kampf and Brenig.
They, however, focused on high transferred frequencies,
comparable to the Matt-Hubbard gap, and did not in-
clude collective spin fluctuation modes (i.e., xnagnons) in
their theory. In view of this, a comparison of our results
with theirs is not possible.

In a rather different spirit, it was observed in a paper
by Weber and Ford that even a rather small magnon
damping introduced phenomenologically into the equa-
tions broadens the Parkinson peak considerably. More
recently, it was argued that phonons may be the
source of that damping. Should the electron-phonon in-
teraction prove relevant to the problem, this will only
lend credence to the key phenomenological assumption of
this work, namely, that on a "first pass" at the resonant
scattering problem it is best not to try to deal simulta-
neously with the two quite possibly distinct issues of the
two-magnon peak shape and its strength variation with
the incoming photon &equency.

Finally, an experimental fact which needs answering is
the existence of the Raman signal at very high incident
and transferred &equencies, of the order of 3.5 eV and
1 eV, respectively. The largest intensity at such high
&equencies was obtained in the "chiral" A2g channel.
Khveshchenko and Wiegmann recently performed an el-
egant study of the contribution to the Raman vertex in
this &equency range &om chiral spin Quctuations in the
magnetically ordered phase. For our considerations, it
is essential that at such high &equencies the incoming
photon is above the coherent quasiparticle band (where
our theory applies) and the motion of the carriers that

subsequently couple to the magnons is itself incoherent in
character. This and other interesting issues require fur-
ther experimental data as well as an improved theoretical
understanding.
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APPENDIX A

The standard way to treat the effects of multiple
magnon-magnon scattering in the Raman problem is
to write the Heisenberg Hamiltonian in terms of the
Holstein-Primakoff bosons, diagonalize it, and keep only
the interaction term n&P &P xax, which is responsi-
ble for multiple scattering of two magnons in the vac-
uum (Fig. 10). This is the procedure which Parkinsonso
and others used to derive the two-magnon Raman in-
tensity. We note, however, that for arbitrary S the re-
striction to only a single interaction term is not justified,
as after the diagonalization of the quartic term in the
Holstein-Primakoff bosons, one also obtains processes of
the form, say, at&P x,Pt &nxt, which also contribute to the
Raman intensity. The way to avoid this complication
is, again, to study the large-S limit. The key point is
that at infinite S the Raman intensity is divergent at
u = 20~ = 8JS, which is the maximum possible two-
magnon &equency. It is achieved when both magnons
are right at the Brillouin zone boundary. At this bound-
ary px, = (cos k + cos k„)/2 = 0, and the anoxnalous
term in the bosonic quadratic form in the Heisenberg
antiferromagnet vanishes. In other words, the antiferro-
magnetic magnons right at the Brillouin zone boundary
behave as &ee particles. Now, if S is large, the shift in the
two-magnon Raman peak position due to the magnon-
magnon interactions is small, so that one can still con-
sider magnons as &ee particles and neglect the anomalous
part in the quadratic form. In this situation, the only
interaction term has two creation and two annihilation
operators. Moreover, in the Raman problem the total
momentum of two magnons is zero, and we can therefore
write the interaction term in the truncated form
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(Al) Ql —u' ln(l —u')
ln (1 —u2) + ~2[1 —(S+ 1)(1—ur)]2

The prime stands for summation over the magnetic Bril-
louin zone. We can further decompose

pk —l —+pl + pk 7l + Yy li + 71 7l ~

where the different symmetry factors are

(A2)

1
pI, = —(cos k + cos kz),

2
1

pj, ———(sin k~ + sink„),
2

1
pA, = —(cos k —cos k„),

2
1

pA,
———(sin k —sin k„).

2

(A3)

For the Bi~ scattering geometry, M~ oc pq, and hence
only pI, p~ survives at each vertex. The remaining calcu-
lation of the series is straightforward, and we obtain for
the Raman intensity

(A4)

where

1 ) r (cos q —cos q„)
—O~+ ib

and we introduced the reduced frequencies w = w/8JS
and O~ = Oq/4 JS.

The imaginary part of Eq. (A5) can be expressed in
terms of complete elliptic integrals,

Im I =—

One can then express I via a dispersion relation,

8 ' v (2 —v')K(v) —2E(v)
I(u) = —, dv

o Ql —v2 (u —v+ ib)
(A7)

Substituting this into Eq. (A4) we obtain after simple
manipulations

This one-dimensional integral is particularly convenient
for a numerical evaluation of I.

For S = oo the denominator in Eq. (A4) is irrelevant,
and this expression reduces to (40), with the only differ-
ence in that we have set pz ~ 0 in the M~ of Eq. (39),
in order to be consistent with the approximations made
in the derivation of the magnon-magnon interactions.

For large but finite S, the peak in the Raman intensity
is located close to but not exactly at u = 1. Expanding
the integral in Eq. (A5) in 1 —u, we obtain I = 4 +iB
where

We see that when the magnon-magnon interaction is in-
cluded B~„(u) no longer diverges but rather has a max-

imum at gl —~2 = 2ln(S+ 1)/[vr(S+ 1)]. Moreover,
right at the zone boundary the Raman intensity turns
to zero. If we formally set S = 1/2 in our 1/S expres-
sion for the Raman intensity, Eq. (A9), we obtain a peak
centered at ~ = 0.696 (or u = 2.78J). The peak posi-
tion is close to the ~ = 2.92J result obtained by Canali
and Girvin. They used the same expression for I as
we did and restricted themselves to the same sequence
of bubble diagrams, but they did not make a formal as-
sumption of large S in their calculations of intensity and
therefore did not expand I in 1—w and set pz

——1 in (40).
The agreement between our results and theirs shows that
the two-magnon peak position is rather robust. On the
other hand, the profile of the two-magnon peak depends
strongly on at which stage in the calculations one extends
a formal 1/S expansion to S = 1/2. We found that the
use of the 1/S expansion results for A and B yields a
much broader peak than one obtains using the exact ex-
pression for I. This last form of the two-magnon profile
is consistent with the results of numerical calculations
and we therefore believe that it is closer to reality. The
profile of the two-magnon intensity is plotted in Fig. 6.

Canali and Girvin also considered the efFect of includ-
ing the spin-wave velocity renormalization factor into
the magnon propagator. To order in 1/S, this renor-
malization factor efI'ectively shifts the value of J to
J ff = J(1 + 0.16/2S). The same renormalization is in-
deed present in our approach, so the position of the peak
in our theory is at w = 2.78J,~ ——3.22J.

The peculiar features of the two-magnon profile were
first reported by Elliot and Thorpe and Parkinson,
who performed the random-phase approximation (RPA)
summation without referring to the 1/S expansion, ne-
glected spin-wave velocity renormalization, and also kept
the interaction terms with four creation and annihilation
operators, which were assumed to have the same overall
factor as in Eq. (Al). For S = 1/2, a numerical solu-
tion of their equations yields a narrow peak at ~ = 0.675
(i.e. , ur = 2.7J), which is not far Rom both our result
and that of Canali and Girvin, though we believe that
the restriction to a single interaction term is better justi-
fied as long as the virtual magnons are located near the
Brillouin zone boundary.

APPENDIX B

In this Appendix, we obtain Eq. (59) for the Raman
matrix element near the intersection between u = 2.8J,g,
where the two-magnon peak occurs, and a (narrow) re-
gion in the (A;, g) plane where triple resonance is allowed.
For simplicity, we will neglect the difference between J
and J ~. We see f'rom Fig. 9 that this intersection occurs
very close to the top of the quasiparticle fermionic band
Er, = [A + 4t (cosk + cosk„) ] r, i.e. , near k = 0.
Once this is established for this band structure, we can
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get a good approximation for the integrals by expanding the energies to quadratic order around k = 0.
The integral of interest is Eq. (42) for the diagram in Fig. 7(a):

(~'„" e;) ( ~„' ej, ) [p.,er, q
—

aqua, t'
M~ = —Si) - ((u; —2Eg + ih) (~g —2EI, q + ib) (~; —Oq —El, —EI, q + ih)

II..
(B1)

We have upon expanding

f k'l
ei, ———2t(cosh" + cos A:„) 4t

~

—1 ——
4) (B2)

and (we consider S = 1/2)

k'l
A2+ e2„A+ 4J

~

1 ——
~

.

We will expand both Ep and EA.+q which implies that we also assume that the typical magnon momenta are not too
large. This, as we discuss in the bulk of the paper, is consistent with our explicit result that the width of the region
where triple resonance is allowed is very narrow, nearly a single line. To the same accuracy we can also linearize the
magnon spectrum, Oz ——~2Jq. However, we found it convenient to keep using the general form Oz for the magnon
frequency in some of the formulas.

To study the singular behavior, we first set the numerator to a constant. Expanding in powers of k in (B3) and
introducing, as before, the reduced variables A, = (u; —2E)/2J, At = (~f —2b, /)2J, and O~ = O~/2J, we obtain the
following integral:

I= dk
[A, —4+ 2k + ib] [Af —4+ 2(k —q) + ib] A; —O~ —4+ k + (k —g)2+i' (B4)

Somewhat similar integrals appear in the three-dimensional problem of two-phonon resonant Raman scattering,
where the incoming photon frequency is tuned to match the critical points in the semiconductor band structure. The
case when the hole band has an infinite mass was done analytically by Martin. The case of equal effective masses
in two dimensions has not, to our knowledge, been studied analytically before, and we present the derivation in some
detail.

We first observe that one of the terms in the denominator of the integrand is half the sum of two others. The
integrand can thus be put in the form

(1
AB (~+a) (~+~)' gA B)

We now recall the Feynman identity familiar from quantum electrodynamics,

1
P2Q

2x
[xP ~ (1 —x)Q]

Using this identity and completing the squares containing k, as necessary, we obtain

I= d k d2:
(A —4+ ib —xA~ —(*2' —x)q2 + 2(k —

2 g)2)

+
(A; —4+ ib —(2 —x)O~ —( —,

' —x)q2+ 2[k —(1 —$)g]2)s
(B7)

Shifting the variables of integration and using the integral

f d k (S+ 2k')' 4S' '

we obtain

A, —4+ ib —(2 —x)A, —(—*,' —x)q'j
(B9)
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Completing further the squares with respect to the variable of integration x, we rewrite the right-hand side (RHS)
of (B9) as I = Iq + I2, where

7r
1 x

Ig ——— dx 2 7

+ 2
— +

1 x
I2 ——— dx

2 - — -22
A; —4+~ 1 — +i —~ z — 1+~

(B10)

At this stage, we have reduced I to two integrals of the
general type

in Iz and I2, respectively.
We now rewrite J as

1 xJ= dz
[C —F'(& —D) ']'

In both Iq and I2, we have the same

(Bl1)
1 x —DJ= dx

o [C —F2 (x —D) 2]

OC o C —F2(x —D)' ' (B15)

(B12)

and E2 = ~z. However, the D's are not the same. We
have

Performing the integrations and partial differentiation
with respect to the parameter, we obtain

1 1 D x —D
2F2 [C —F2(x —D)2] o 2C [C —F2(x —D)']+

and

(B13)
D 1 (F(x —D)+~C~, ln4F C- I,F'(~ —D) —~C )

(B16)

A, &D2= 11+
& )

(B14) The integral I is a sum of two such integrals and is
thus

1 1 1 1
4 2F2 [C F2(z D&)2] 2F2 [C —F2(~ —D2)2]

1 1
Dg x —Dg D2 x —D2+ +2C [C —F2(x —Dg)2] 2C [C —F2(x —D2) ]

Dg 1 (F(z —Dg) + ~C~ D2 1 (F(z —D2) + ~C), ln
~ + , ln4F C~ (F(& Dl) MC) o 4F C' (F(& —D2) ~C) 0

(B17)

It turns out that the first four terms inside the braces add up to zero. To see this, we observe that the definitions
of Dq and D2 given above imply that

(1 —D, ) = —(1 —D, ),

which in turn implies that (1 —Dq) = (1 —D2), and

Dg + D2 +1=0.
2(1 —D~) 2(l —D2)

We also use the identity

1 1 ( 1 ll 1

C(C —P) (C —P Cy P

(B18)

(B19)

(B20)

whenever terms of this type occur. Using all these identities, we can easily show by a direct calculation the cancellation
claimed above.

We now have a compact result
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1 Dg r F(x —Dg) + ~c~ D2 r F(x —D2) + ~c)I = —, ln ln
4 Ck 4F I,F(z D, ) ~C~, 4F I F(z D, ) ~C~

(821)

Substituting the full expressions for Dq, D2, and E, we obtain

I=- ln
4 C

[
2~2' (1 ~~ ~c)

r
1—

—ln

1+~ 1 —~~" C
(822)

The vanishing of C corresponds to the triple resonance. Near this point, I behaves as I C 2 .
The expression above is incomplete until we specify the branches of the logarithms and the square roots. A careful

examination of the derivation shows that we must choose the square root branch which is positive for C ) 0 and the
branch of the logarithms which tends to zero when its argument goes to unity. The answer for other real values of C
is obtained by setting C —+ C + ib and then analytically continuing C along the real axis.

We now turn to the form factor in the numerator of Eq. (81). Clearly, for any A;" ( 4, this form factor can be
considered constant in the immediate vicinity of A, '. At the same time, since the form factor vanishes at the top
of the quasiparticle band, it will contribute a small factor to the Raman intensity for A; ' 4. This will efFectively
change the singularity of the Raman matrix element at some distance away from the triple resonance, since for A;
away &om 4 the difference between A,

' being exactly 4 or merely close to it is not noticeable.
Near A;" = 4, we set (p~eI, ~

—A~eg) = const, linearize &'& ~ k and '&&' k —q, expand the numerator terms
to quadratic order, and obtain

I [k. e;][(k —q) . ef]M~ -
[A; —4+ 2k'+iS] [Az —4+ 2(k —q)'+ ih] A; —0, —4+ k'+ (k —q)'+ih

in place of Eq. (84) above. Then we proceed using the
Feynman parametric representation as in the case with a
constant numerator above. The two shifted k variables
in Eq. (87) were k' = k —2q and k" = k —(1 —2) q.
We can alternately express the numerator in the integral
above in terms of these as

[k e;][(k —q) . e)]

k'+-q -e,- k' — 1 —— q -e,*, B24

and

[k . e;][(k —q) e&]

k" + 1 —— q . e; k" ——q ef . B25

When we now integrate over k' and k" in the Bq~ scat-
tering geometry, the angular integrals will only leave the
terms —

2 (1 —
2 ) (q e;) (q . e&) in the numerator. Thus

we obtain the same integrals as in Eq. (810) above, ex-
cept that instead of x in the numerators we will have
—

2 (1 —2). The angular factor involving magnon mo-
menta, (q. e;)(q. e&), when computed in the Bqs geom-
etry, is just an expansion of the Loudon-Fleury vertex

1 X2

[4C —~2]2 ' (826)

with C = A, —4+ ib.
Performing an elementary integration, and omitting an

irrelevant nonsingular term, we obtain

I

M& of Eq. (39) to quadratic order in q, which is consis-
tent with the linearization of the form factor done in the
beginning of this calculation.

The integrals over the parametric variable 2; can now
be done by elementary means similar to those employed
above for the constant numerator case. The resulting
expressions are, however, too lengthy to be worth pre-
senting here. At the same time, as we discussed above,
what is of real interest to us is the modification of the sin-
gular behavior of M~ at the values of A; at which one can
neglect the difFerence between A; —A,-

' and A; —4. The
simplest way to proceed is to consider the case A; ' = 4,
when we also have Oq ——2. In that case Dq ——0 in
Eq. (813), and D2 ——2 in Eq. (814). Thus, of the two
integrals like the one of Eq. (Bll) above, but now with
—

2 (1 —2) instead of 2: in the numerator, only the one
with Dq is singular for small C. The singularity is, fur-
thermore, picked up near x = 0, so that we can also omit
the factor (1 —2) in the numerator. We end up with
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(B27)

which has a leading square root singularity ~. This

is the result needed in the main text. Combining now
Eqs. (B22) and (B27) and restricting ourselves to only
a leading singularity, we obtain the result quoted in
Eq. (59) in the main text.
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