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Flux creep in inhomogeneous superconductors
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We suggest a theoretical model of the Bux creep in inhomogeneous superconductors taking into
consideration the interaction between magnetic vortices. The Qux line's interaction results in changes
of the pinning potential. The pinning potential begins to depend on this interaction, which results
in an additional term in the average flux of vortices (or in the difFusion coefficient). This results
in additional terms in the diffusion equation for the vortices. Using a microscopic model, we have
found the nonlinear equation to describe the Aux line's density variations in these conditions. Using
the relevant empirical parametrization for the height of the potential barriers we have found the
numerical solutions of the difFusion equation in a one-dimensional superconductor. The Bux diff'usion
is shown to be enhanced when the intervortex interaction is signi6cant.

INTRODUCTION

There are difFerent approaches to describing a mag-
netic Aux creep in superconductors. One well known
model is the model of a one-particle Aux line. In this
model the independent motion of every vortex caused
by the efFect of the transport current is considered, but
the intervortex interactions are neglected. In the other
limit a superconductor is supposed to be rather regular
and the magnetic vortex struc'ure is that of a regular
lattice. Moreover, the pinning potential is considered to
be a perturbation. In the latest papers superconductors
are considered to have small inhomogeneities and the in-
tervortex interactions are supposed to be stronger than
the interactions of vortices with the pinning potential.

In space-inhomogeneous high-temperature supercon-
ductors (HTSC's) in magnetic fields H ) H, i (where H, i
is the first critical field) a periodic vortex lattice does not
occur since the pinning potential can be rather deep and
nonperiodic (see also Ref. 4). The location of vortices in
these conditions is caused by their interactions with the
space-inhomogeneous pinning potential.

In the general case the pinning potential is not small
and it cannot be regarded as a perturbation, but at the
same time the intervortex interaction must not be ne-
glected. The present communication deals with just such
a situation. We suggest a microscopic model to describe
Aux creep motion in type-II superconductors. We will
suppose the potential pinning to be strong enough so
the magnetic vortex motion is connected with jumps of
vortices from one potential well to another. However,
in contrast with the one-particle Aux creep model we
will take into consideration the fact that more than one
vortex can fit in every potential well. The interaction be-
tween vortices changes their average energy and, hence,
the probability to jump to the neighboring wells. We
show that the interaction of vortices pinned in the po-
tential wells can drastically enhance their difFusion. This

results in changes of the Aux line kinetics even at low Aux
density.

MICROSCOPIC MODEL

Let us consider magnetic field values H ) H, q. The
kinetics of the vortices is determined by the interactions
between the vortices and the interactions of vortices with
both an electric current and a pinning potential. For the
vortex concentration n we have the equation

t9A

Bt
=-div (q)

(B = nP„where B is the magnetic induction, and P, is
the elementary quantum of magnetic flux), where ( q )
is the average Aux of vortices.

To find ( q ) let us consider the following simple model
(see Fig. 1). There is a pinning potential caused by the
crystalline lattice inhomogeneities; the average depth of
the potential wells is Fo. Suppose there is some distri-
bution of concentration n(x, y, t) on the Oxy plane. We
will consider variations of both the vortex concentration
and the pinning potential on much longer characteristic
scales than the average jump scale of a pinned vortex, l.

Let suppose a vortex concentration gradient Vn exists.
Since mutual repulsion increases the average vortex en-
ergy (see also Ref. 1), the latter rises together with the
vortex concentration in the pinning well. So the pinning
potential decreases below that of the lattice, Eo, by the
amount of the interaction energy

E(n) = I'p —( e;„i(n) ),

where ( e;„i(n) ) is the average interaction energy calcu-
lated for one vortex.

Suppose that the vortex concentration is not high, so
the intervortex interaction is greatest inside every pin-
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q (rp) = nv'" ~ = nvt = —nvl cos p,

q„(rp) = nv'" ~ = nvt„= —nvt sincp, (4)

/ L„

1

A

/

Il

/

where v~" I' = v/~ and v~" I' = vl„are the x and y com-
ponents of the jumping rate. The angle p between the
direction of the jump and the axis Ox can be absolutely
arbitrary. Therefore, for calculation of the average vor-
tex flux connected with jumps in the positive direction
of the Ox axis, one has to integrate over the angle p in
the limits from —vr/2 to vr/2:

q (p)dp = nvl;

by analogy,

FIG. 1. Scheme of microscopic model illustrating calcula-
tion of the average Hux of vortices ( q ). (a) The pinning
potential caused by the lattice inhomogeneities. The average
energy level of vortex in every well ( s(n) ) is shown. The
average length of jumps l is the distance between the wells.

(b) Regions of the potential wells 1 and 2 on the Ozy plane.

qv(p)dp = nvl.

Note that the flux caused by jumping out of well 1 in
the direction opposite to the Ox axis on average is just
the same, q = q+, but it has the opposite direction.
Therefore the average flux connected with jumping out
of one well (1, for instance) is

ning potential well. Let us consider two neighboring wells
1 and 2 (see Fig. 1). The frequency for a vortex to jump
from the well in any direction on the Oxy plane is

v = v, exp( F/T), —

where v, is the typical oscillation frequency for the
pinned vortex, and E is the pinning energy barrier. The
average height of the barrier Eo formed by the lattice
inhomogeneities in any direction is just the same. But
an average Hux ( q ) P 0 exists when a concentration
gradient V'n exists. Suppose that nq ) n2, where n~~2~
is the concentration of vortices in the first (second) well.
Then in accordance with Eq. (2) Fi ( F2, where Fi(2)
is the height of the energy barrier for vortices from the
first (second) well. Therefore vi ) v2, where vi(2) is the
frequency of jumps determined in accordance with Eq.
(3). The average energy levels for one vortex in the wells
1 and 2 are depicted schematically in Fig. 1. The energy
level in well 1 is higher than in well 2, so a vortex can
jump more easily from well 1 than from well 2. Therefore,
jumps from well 1 into well 2 will occur more often than
from well 2 into well 1, which accounts for the existence
of some average lux motion.

For calculation of the average flux of vortices in some
direction (Ox, for example) one has to consider two
neighboring wells (1 and 2) and to calculate the average
flux over the cross section between them. Let us consider
the vortex in well 1 first and set the origin of coordinates
Oxy at the well [see Fig. 1(b)]. Suppose the vortex is
jumping into some point A situated on the circle with
radius l/2. Then a flux with the following components
is connected with the jump:

( qi ) = q i —q i = nivil —nivil = 0.+

So if the concentration gradient is absent and nj ——n2,
vi ——v2 and ( q ) = 0. But in the case shown in Fig.
1(a) nivi ) n2v2 and ( q ) ) 0 is directed along the Ox
axis.

We denote the concentration nq ——n and the energy
barrier value Eq ——E for the first well. We believe the
characteristic scales of the concentration variations to be
much larger than the average length of jumps, 1. That
is why one can represent both the concentration and the
average energy barrier for the second well in the form of
Taylor-series expansions:

Onn2-n, +
Ox X—K1

OnLx = n+l
Ox

OE On On (OF )
F2 —Fi + Ax = F +l

On Ox Ox i, On) (8)

where E is the average value of the energy barrier.
Substituting Eq. (7) and Eq. (8) into Eq. (6) and

calculating the average flux of vortices along the Ox axis
in first-order terms over the concentration gradient (for
On/Ox here), we have

For calculation of the flux along the Ox axis one has to
find the difference between the "positive" flux from the
first well q+i [see Fig. 1(a)] and the "negative" 8ux from
the second weH q 2.

( q ) = q+i(ni, Fi) —q 2(n2, F2) = nivit —n2v2 . (6)
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( q )= l (ni i ] —n2V2)

( Fi1 ( F2't
ni v, exp ———n2v, expT) 4 T)

( Fl nOF Bn= —l v, exp~ ——
~

1 ——
T) T Bn Bx

All directions are equivalent on the Oxy plane; therefore,
by analogy with Eq. (9),

( E) n OE Bn
(q„) = —l v, exp~ ——

~

1 ——
T) T Bn By

(10)

Finally we get the following expression for the average
Hux of vortices in the linear approximation over V n:

(&)=(&*)e +(& )
( F) nBF= —l i, exp~ ——

~

1 —— V'n.
T) TBn

Note that BE/On ( 0 as follows from Eq. (2) for the
repulsive interaction of vortices.

We get for the vortex concentration from Eq. (1) and
Eq. (11)

On, ( nBFI=I'e, V
~

1 ——
~
exp( —F/TI'Ve.

) .
Bt ' ( T Bn) (12)

Note that we did not suppose the term (n/T)(BE/Bn) to
be small compared with unity when deriving Eq. (12).
So the additional terms that we have obtained in Eq.
(12) are not an expansion of exp( —E/T) over the inter-
action energy value. The nonlinear Eq. (12) describes
the magnetic Aux creep kinetics.

The inHuence of the discussed mechanism increases
with increasing

~

BE'/Bn ~. The greatest influence should
take place for superconductors when the inhomogeneity
size Lz A, where A is the vortex size. At this condition
the vortices are localized in the pinning potential wells

(when L„(( A the vortex cannot flt in the well). The
spatial structure of HTSC's can be quite suitable for the
proposed model (see, e.g. , Ref. 5, where the scale of inho-
mogeneities I„(1 pm). Thus L„A,where A~ is the
scale of the Abrikosov vortex, so intervortex interaction
is significant.

The modern experimental research on HTSC's shows
an important role of large-scale inhomogeneities for the
transport properties of the superconductors. The inho-
mogeneity scale L„d 1000 A. was found to be sig-
nificant for the transport properties. This is just the
same order of scale as the scale AL. Note that the typical
scales of inhomogeneities can be even larger in polycrys-
talline HTSC samples. Thus it was shown in Refs. 7 and
8 that the spatial structure of polycrystalline samples of
Y-Ba-Cu-0 type contains a wide spectrum of character-
istic inhomogeneity scales L„1—10 pm.

The changes of the kinetic equation that we have ob-
tained lead to changes in the magnetic Hux creep. To
illustrate this fact we consider the magnetic field pene-
tration in a one-dimensional superconductor. We use the
following phenomenological formula for the E = E(n)
dependence (see, e.g. , Ref. 9):

&(T) (1 —TIT.)'E —F n — oc n~ (13)

introducing the dimensionless variables x/l —+ x, vot

~ t, and n(T/G(T)) ~ —+ n we get

0 Bn
t9x E

(1 + n/n ) exp( —1/n ) Bx

The nonlinear difFusion coefficient in Eq. (14)

D(n) = (1 + n/n ) exp( —1/n )

(14)

(15)

consists of two parts. Di ——exp( —1/n ) corresponds to
diffusion without interaction between vortices. The sec-
ond part in the preexponential multiplier (15) n/n oc

(n/T)
~

OE/Bn
~

corresponds to the interaction between
vortices. When n ) 1 D(n) is a nonmonotonic function.
The dependences Di(n) (curves 1) and D(n) (curves 2)
for n = 1 (a) and ci = 3 (b) are plotted in Fig. 2.
From formula (15) and Fig. 2 one can see that the inter-
action between vortices essentially enhances their diffu-
sion in the entire interval of concentration where jump-
ing creep is important [0 ( n ( 1, since there is no
localization of vortices on pinning centers when n )) 1
and exp( —E/T) 1]. At large vortex concentration
(n/T)

~

BF/On
~

-+ 0 (at ci ) 0) and D(n) = Di(n).
This physically means a shallow depth of wells in high
magnetic fields, which results in easy vortex jumps Gut
of the wells, and, hence, negligible inHuence of intervor-
tex interaction on diffusion.

The important inHuence of interaction between vor-
tices on the magnetic Aux creep can be understood under
these conditions from the following qualitative consider-
ations, taking into account formula (3) for the frequency
of jumps v(F). The interaction between vortices results
in changes of the energy barrier E. Under strong local-
ization of vortices (F/T &) 1) the dependence v(E) is an

where p and o. are some parameters (n —1—3). The
singularity at n = 0 is connected with the choice of ap-
proximation (13) only. Really F is a finite value at n = 0.

Although the real dependence E(n) can diff'er from Eq.
(13) the changes in Eq. (12) that we have obtained are
important even from the viewpoint of the simple model
of the dependence E = E(n) oc 1/n . This parametriza-
tion (13) for the height of the potential barriers is ein-
pirical. We have used it because it describes some ex-
perirnental data rather well. So one can believe that the
parametrization is connected with reality in some way.
It is important to note that the choice of the dependence
(13) does not influence the inain result of our work, the
form of Eq. (12) for the flux creep where intervortex in-
teraction is taken into account. The dependence is used
only for illustration of the importance of consideration of
the interaction of vortices in the localized states. To in-
vestigate the exact dependence E = E(n, T) is indeed an
interesting problem for both theory and experiment. The
real dependence is obviously connected with the type of
lattice inhomogeneities and it cannot be general in this
sense.

ONE-DIMENSIONAL MODEL
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2
erf(z) = exp(-y )dy (21) n(z, t)

n2 -0.6

is the error function. The solution (20) for the linear
equation (19) is shown in Fig. 5. For both the cases (a)
without interactions of vortices and (b) where the inter-
actions are taken into account the picture is analogous to
Fig. 3 where the solutions of the nonlinear equation are
displayed (note that the curves in Fig. 5 are displayed for
the same time values as in Fig. 3). The two figures (Fig.
3 and Fig. 5) difFer from each other in the form of the
curves. Moreover, the scale over the Ox axis in Fig. 5 is
ten times smaller than in Fig. 3 where the solutions of
the nonlinear equation are displayed. So the diffusion for
the linear equation is much smaller. Therefore consid-
eration of the nonlinear equation (12) can be important
for the problem of magnetic flux diffusion in supercon-
ductors. The nonlinear diffusion results in changes of the
spatial profile of the magnetic induction. It is well known
that the linearized difFusion equation has often been used
when considering the dynamics of flux in superconduc-
tors. But it should be pointed out that even estimation of
the characteristic diffusion time can be made only rather
approximately because of the sharp exponential depen-
dence of the difFusion coefficient D = D(n). Moreover,
the spatial distribution of the concentration of vortices
in the nonlinear case is quite different from the linear so-
lutions. That is why one should take into account the
nonlinearity of the diffusion equation for magnetic flux.
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n2 -0.6
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FIG. 5. Solutions (20) of the linear diffusion equation (19):
(a) without interaction of vortices; (b) the interaction is taken
into account. Parameters are just the same as for solutions
of the nonlinear equation depicted in Fig. 3 (n = 2). Curves
are given for just the same time values t = 0.1, 0.5, 1, 2, 4,
6, 8, 11, 14, 17, and 20.

Finally, we have offered a generalization of the well
known Kim-Anderson model ' for inhomogeneous su-
perconductors with large-scale inhomogeneities. We have
shown that in these conditions one must take into con-
sideration the intervortex repulsion in the potential wells
of the pinning potential.
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