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Josephson-vortex Cherenkov radiation
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We predict the Josephson-vortex Cherenkov radiation of an electromagnetic wave. We treat a long
one-dimensional Josephson junction. We consider the wavelength of the radiated electromagnetic
wave to be much less than the Josephson penetration depth. We use for calculations the nonlocal
Josephson electrodynamics. We Gnd the expression for the radiated power and for the radiation
friction force acting on a Josephson vortex and arising due to the Cherenkov radiation. We calculate
the relation between the density of the bias current and the Josephson-vortex velocity.

I. INTRODUCTION

The Josephson vortex is a well-known and an im-
portant example of a sine-Gordon soliton in solid state
physics. This soliton is a propagating nonlinear wave de-
scribing the phase difference y(r, t) between two weakly
coupled superconductors and the dynamics of a fluxon
residing in this contact. Results concerning the general
features of the motion of a Josephson vortex are interest-
ing for diH'erent systems in solid state physics where the
sine-Gordon soliton exists.

Detailed knowledge of the Josephson-vortex dynam-
ics is important for the flux dynamics and related phe-
nomena in superconductors, e.g. , flux creep, flux flow,
magnetization relaxation, current-voltage characteristics,
etc. Specific features of Josephson-vortex motion are
currently under thorough experimental and theoretical
study. In particular, very fast moving Josephson vor-
tices are observed and treated in annular Josephson tun-
nel junctions. ~'3

Josephson-vortex dynamics is very important in the
layered high-temperature superconductors due to their
crystalline structure In partic. ular, the most prominent
Bi and Tl based copper oxide compounds consist of a
periodic stack of weakly coupled two-dimensional CuO
layers where the superconductivity presumably resides.
In this case a variety of linear crystalline structure defects
result &om the crossing of the superconducting layers
with planar crystalline structure defects, e.g. , the grain
boundaries, twins, etc. These linear crystalline structure
defects can be treated as Josephson junctions.

The critical current density for Josephson junctions in
superconducting layers is relatively high, especially for
coherent crystalline structure defects, e.g. , for low-angle
grain boundaries and twins. ' The Josephson penetra-
tion length A J is decreasing if the Josephson critical cur-
rent density j is increasing. If the value of AJ is of the
order of or less than the London penetration depth A then
the Josephson electrodynamics is nonlocal. '

Let us consider a sup ere onducting plate with an
infinitely long superconductor-insulator-superconductor-
(SIS) type Josephson junction parallel to the x axis as

shown in Fig. 1. The dynamics of a Josephson vortex in
this tunnel contact is described by the sine-Gordon equa-
tion for the space and time dependent phase difference
Ip(x, t). Taking into account the damping resulting Rom
the resistance of the junction it reads

(prr —(pe( + gpr + Sin (p = P.

The subscripts 7 and ( are to denote the derivatives over
the dimensionless time r = ter~ and coordinate ( = z/A J,

2ej,
hC

is the Josephson plasma &equency, C is the specific ca-
pacitance of the junction, j is the critical current density
of the Josephson junction,

cCp
16+2Aj,

is the Josephson penetration length, Cp is the flux quan-
tum, A is the London penetration depth,

1
rl =

(dJBC

is the damping constant, B is the speci6c resistance of
the junction, and P = j/j, is the dimensionless density
of the bias current across the junction.

The well-known solution of Eq. (1)

FIG. 1. A superconducting plate with a Josephson junction
(thick line).
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x —vt
po(x, t) = 4tan exp

-Ag 1 —v2/c2-
(5)

2

v, /c,

describes the uniform motion of a Josephson vortex with
a certain velocity v in the case of zero dissipation and zero
driving force (p = P = 0). It follows from Eq. (5) that
in a long Josephson junction a Josephson vortex moves
similar to a relativistic particle with the highest possible
velocity c, = A~~~ (Swihart velocity).

An electromagnetic wave with a specific dispersion
relation exists in a long one-dimensional Josephs on
junction. io The solution of Eq. (1) in the form of a plane
wave with a small amplitude y,

(p(x, t) = (p exp( —i(et+ ikx), IV-I «1 (6) 1 2 4 5
kkJ

describes this electromagnetic wave. Let us consider the
case of zero dissipation (rl = 0). Then, the relation be-
tween the &equency u and the wave vector k is given by
the formula

FIG. 2. The dependence of the phase velocity v~ on the
wave vector k. The solid line represents a plot using Eq. (8);
the dashed line represents a plot using Eq. (11).

1+A2k2 (7)

We can determine the phase difference p(x, t) in the
&amework of the local Josephson electrodynamics, i.e. ,

by the sine-Gordon equation, as long as A && l~, where l~
is the characteristic space scale of p(x, t). In particular,
Eqs. (5) and (7) are valid if A « Ag and kA (( 1.

The phase velocity v~ of an electromagnetic wave in a
long Josephson junction is equal to

QJ
cs

k k2P2J
(8)

in the &amework of the local Josephson electrodynamics.
We show the dependence v~(k) calculated by means of
Eq. (8) by the solid line in Fig. 2. The function v~(k)
monotonically decreases with the increase of the wave
vector. It follows from Eq. (8) that for kA « 1 the value
of v~(k) is higher than c, .

Cherenkov radiation can exist if the radiating parti-
cle or quasiparticle can move with the phase velocity of
the radiated wave. Since c, is the highest possible ve-
locity of a Josephson vortex it means that there is no
Josephson-vortex Cherenkov radiation of an electromag-
netic wave in the &amework of the local Josephson elec-
trodynamics.

Josephson-vortex electromagnetic wave radiation has
been considered for discrete sine-Gordon systems and
Josephson-junction arrays. It has been shown that
under certain conditions the discreteness of the system
results in electromagnetic wave radiation by a moving
soliton. ' Small amplitude wave excitation by a moving
Josephson vortex has been found in a two-dimensional
Josephson-junction array by both semiquantitative mod-
els and numerical simulations.

In this paper we study analytically the Josephson-
vortex Cherenkov radiation of an electromagnetic wave in
a long one-dimensional Josephson junction. We consider
the wavelength of the radiated electromagnetic wave to
be much less than the Josephson penetration depth, i.e.,

we treat the case of nonlocal Josephson electrodynam-
ics. We find the amplitude and power of the radiated
wave and the radiation &iction force acting on a Joseph-
son vortex and arising due to the Cherenkov radiation.
We calculate the relation between the density of the bias
current across the Josephson junction and the station-
ary Josephson-vortex velocity. We consider the case of
SIS-type Josephson junction with a very high electrical
resistivity, i.e., with a very low damping constant.

The paper is organized in the following way. In Sec.
II, we consider qualitatively the conditions of Josephson-
vortex Cherenkov radiation. We show that the wave vec-
tor of the radiated electromagnetic wave, k, is &om a
certain region k ) k and we find the value of k, . In
Sec. III, we use perturbation theory to calculate the am-
plitude of the radiated electromagnetic wave. We find
the radiation &iction force acting on a Josephson vortex
moving with a constant velocity. We show that dissipa-
tion due to this &iction force is particularly efFective if
the Josephson-vortex velocity is approaching the Swihart
velocity. In Sec. IV, we summarize the overall conclu-
sions.

II. QUALITATIVE CONSIDERATION

Let us now consider the dispersion relation ~(k) for
an electromagnetic wave propagating along a Josephson
junction in the general case, when the only restriction
for the length scale l~ is given by the inequality ( && l~,
where ( is the correlation length. The relation between /~
and A is then arbitrary and we have to take into account
the nonlocality of the dependence of the phase difFerence
p(x, t) on the current and magnetic field. As a result in
the general case the distribution of p(x, t) is determined
by the integro-difFerential equation

&~x —u~& a'&
p~~+gp~ =

~
+0 2 du

~A Ou2

—sing+ p,
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where Kp(x) is the zero order modified Bessel function.
If the space variation of y(x, t) is slow, i.e. , if A (& l~,
then Eq. (9) takes the form of the sine-Gordon equation.

Using Eqs. (6) and (9) we find the dispersion relation
ur(k) for an electromagnetic wave in a long Josephson
junction in the &amework of nonlocal Josephson electro-
dynamics. In the case of zero dissipation ()7 = 0) it has
the form

k2A21+
Ql + k2A2

(10)

and thus the phase velocity of this electromagnetic wave
is equal to

V(p — —Cs
k

1 1

+1 + k2$2 k2$2+

The formulas given by Eqs. (8) and (11) for v~ coincide
if kA (( 1, i.e., in the range of validity of local Josephson
electrodynamics.

It follows &om Eq. (11) that the electromagnetic wave
phase velocity v& is a monotonically decreasing function
of k and the value of v~ tends to zero when the wave
vector k tends to in6nity. In particular, in the limiting
case kA )) 1 we have

while considering the Josephson-vortex Cherenkov radi-
ation of an electromagnetic wave.

In order to And the amplitude of the radiated wave we
look for a solution of Eq. (9) with g = 0 and P = 0 in
the form

where yp(x —vt) is the phase diff'erence given by Eq. (5)
for a single uniformly moving Josephson vortex. We as-
sume that

~ f(x, t)
~
(( 1 and we consider the relation be-

tween the values of ~yp(x, t)
~

and
~ f(x, t)

~

to be arbitrary.
The function f (x, t) is described by the linearized equa-

tion, Eq. (9), that reads

v2 v2—f"+ 1 —— cos yp fc2 c2s s

f"

= —~'p + z v p(&') Itp
&

I( —&'I «' (»)

where the prime is to denote the derivative over the di-
mensionless variable ( = (x —vt)/A~ and the character-
istic space scale A J is determined as

cs
v~ (( c~)

kA
kA)) 1. Ag = Ag Ql —v2/c2 (16)

We show the dependence v~(k) given by Eq. (11) by the
dashed line in Fig. 2. We use for this plot the value
AJ ——5A, i.e. , AJ )) A.

Thus there exists a certain wave vector region k
k, where the phase velocity of an electromagnetic wave
in a long Josephson junction is lower than the highest
possible velocity of a Josephson vortex. We have the
equation v~(k, ) = c, to find the value of k, . In the case
when A (& Ap the solution of this equation is given by an
approximate formula,

1
k, =

AJ

The existence of an electromagnetic wave with the
phase velocity lower than c, results in Josephson-vortex
Cherenkov radiation. This dissipation mechanism is es-
pecially effective when the Josephson-vortex velocity is
approaching the highest possible velocity c, .

4
II 2d (ppf, —cosV p fi ———n (17)

where the dimensionless parameter o. is equal to

We present now the dependence f (() as a sum of two
terms, i.e. , f(() = fi(() + f2((). The function fi(()
describes the Josephson-vortex deformation due to the
nonlocality of the Josephson electrodynamics. It has the
characteristic scale li 1 and decays at ( ~ +oo, i.e. ,

fi(+oo) = 0. The function f2(() describes the electro-
magnetic wave radiated by a moving Josephson vortex.
It has the characteristic variation scale l2 1/keg « 1.
We use the relation l2 (( lq to determine the dependen-
cies fi(() and fq(() independently of one another. In
other words, we develop a two-scale perturbation theory,
which holds with an accuracy of l2/li &( 1.

The equation determining the function fi(() follows
&om Eq. (15) and has the form

III. RADIATION FRICTION FORCE )f2') () —v'fv*)
(18)

The Josephson-vortex Cherenkov radiation results, in
particular, in a friction force acting on the radiating vor-
tex. In order to Gnd this radiation &iction force we solve
the following problem.

Let us consider the uniform motion of a Josephson vor-
tex in a long Josephson junction. We treat the velocity
of this motion v as a given constant value. We use for
calculations the perturbation theory, i.e., we neglect the
dissipation arising due to the resistance of the junction

We use the relation

f(&') Itp

=fN)+-(- ) f (()+" )»)"1 A

AJ

to derive Eq. (17). The formula given by Eq. (19) is valid
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for a function f (() with the characteristic variation scale
of the order of unity in the case when A « AJ.

An exact solution of Eq. (17) that satisfies the bound-
ary conditions fi(+oo) = 0 is given by the expression

(2o)

f2 (() = f cos q( («0, (21)

where

8mc4 mq

v2(V2+ c2) 2
exp

Ag QC8 —V

A V2

1 c, gv2+ c2 1

v 2V2

(22)

(23)

The function f2(() given by Eq. (21) describes an elec-
tromagnetic wave radiated by a Josephson vortex moving
with a constant velocity v. This wave exists only behind
the radiating Josephson vortex. The amplitude of this ra-
diated electromagnetic wave f is mainly determined by
the exponential factor exp( 7rq/2) —& exp( —vr/2o. ) « 1
and, therefore, the value of

~
f, (() ~

&& 1.
The function f2(() = f2(x, t) takes the form

f2(x, t) = f cos(A;„x —
cdirt), x«vt, (24)

in the x, t space. The wave vector k~ and the &equency
u„of the radiated electromagnetic wave are equal to

q 1 Qc4 —v4
kp ——

A v2

Ag Qc4 —v4
(d& = COJ

A vc,

(25)

(26)

With the accuracy of the perturbation theory approach,
i.e. , for n (& 1, the values of k„and cd„given by Eqs. (25)
and (26) are equal to the values determined by the
Cherenkov radiation conditions

Cd (k„)
kp

Cd& = Cd(k&),

where the dispersion relation cd(k) is given by Eq. (10).
Note that we use the nonlocal Josephson electrodynamics
that is valid if the wavelength is larger than the coherence
lenth. It restricts the applicability of this approach to
the domain v )) c, /~ic, where v is the Ginzburg-Landau
parameter, i.e., the velocity v has to be above a certain
threshold given by this inequality.

The amplitude of the radiated electromagnetic wave in-

It follows &om Eq. (20) that the value of ~fi(()~ && 1 if
n « 1, i.e. , if A/Ag « 1 —v /c, . The inequality n « 1
is therefore the necessary and suKcient condition for the
applicability of the perturbation theory approach.

We use now Eq. (15) to calculate the f2((). The func-
tion f2@') has the characteristic scale I2 « 1 and, there-
fore, with an accuracy of /2 « 1 we can neglect the sec-
ond term in the left part of Eq. (15). We solve then the
reduced Eq. (15) by means of a Fourier transformation.
As a result we find that in the region ( &( 0 the function

f2(() takes the form

creases when the velocity of the Josephson vortex tends
to the highest possible velocity c, . If the value of the
velocity v is close to the value of e, we can simplify
Eqs. (22), (25), and (26) and in the interval A/Ag
1 —v/c, (& 1 the expressions for f, k~, and cd„ take the
forms

~AJ vf = 4vr exp —sr&2 1 ——'
A

« 1, (28)

2k„= —Ql —v/c„

AJ
Cd& 2Cdg gl —V/C~,

A

1 1«k„« —,
J

4)„))Cd J.

(29)

(30)

Let us now find the radiation &iction force f, acting
on a unit length of a uniformly moving Josephson vor-
tex. The radiation energy increase rate is equal to the
product E v, where E is the wave energy per unit area
of the junction. This value is a sum of two terms. The
R.rst one is determined by the power of the &iction force
and is equal to f,v The. second one is determined by
the energy Aux due to the radiated electromagnetic wave
propagation. This term is equal to E v~, where

(31)

is the group velocity of the wave. As a result, we find for
the radiation &iction force f, the formula

V —Vgf
V

(32)

The values of E and vg are given by the expressions

1

S

(33)

with the accuracy of n (& 1. Using Eqs. (2), (3), (22),
and (26) we find that

C2 6
V

f, = —' 1 —— exp( —vrq).2' A v c (36)

If the value of the Josephson-vortex velocity v is close
to the value of c, we can simplify Eq. (36) and in the
interval A/Ag « 1 —v/c, « 1 the expression for f, takes
the form

240 V AJ vf.=,,'( ——
) -.—W-,'( ——

)
Let us now consider a uniform motion of a Josephson

vortex in a Josephson junction with a bias current. In
this case the vortex is subjected to the Lorentz fr. and
the radiation &iction f forces. The value of fr, acting

cs ]. —v2/c2' exp( —vrq).
vrA v 1+ v c,

Thus the Josephson-vortex Cherenkov radiation of an
electromagnetic wave results in a radiation &iction force
f„ that is given by the formula
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per unit length of the vortex is equal to Oo j/c. Equating
fl, and f„we obtain the following relation between the
bias current density j and the velocity of uniform motion
of the Josephson vortex, v:

0.3—

A2 c6 v2= 8n —' 1 —— exp( —vrq).J
j, A2 v6 c2 (38) 0.2—

If the value of the Josephson-vortex velocity v is close
to the value of c, we can simplify Eq. (38) and in the
interval A/Ag « 1 —v/c, « 1 it takes the form

A v AJ v= 32vr 1 —— exp —2h 1 —— . (39)
A2 c, A c,

A relation analogous to the one given by Eq. (38) and
taking into account only the damping due to the resis-
tance of the junction reads

t
I I I I I I I I I

]

I I I I I I I I I

[

I I I I I I I I I

[

I I I I I

0.0 0.2 0.4 0.6 0.8 1.0
V/C

4 gv

j. ~ gc,' —v' (4o)

The dependence j(v) given by Eq. (40) is shown in Fig. 3
by the solid line. We use for this plot the value g = 0.05.

Let us consider the Josephson-vortex Cherenkov radi-
ation for rl g 0. It follows from the energy conservation
law that for rl (( 1 the dependence j(v) is a sum of the
two dependencies given by Eqs. (38) and (40), i.e. ,

j AJc, v 4 gv= 8vr —' 1 —— exp( —vrq) + — . (41)j A2 v6 c2
=y C —VS 8

If the value of the Josephson-vortex velocity v is close
to the value of c, we can simplify Eq. (41) and in the
interval A/Ag « 1 —v/c, (& 1 it takes the form

A v AJ v= 32m 1 —— exp —2 2' 1 ——
j A2 c, A c,

+ 4 gv
(42)

c2 v2

v 1 A

c. 2~2vr Az
(43)

It follows from Eq. (43) that a noticeable difFerence

The dependence j(v) given by Eq. (41) is shown in
Fig. 3 by the dashed line. We use for this plot the values

g = 0.05 and AJ ——5A. It is seen kom Fig. 3 that at
j j, the value of v can be significantly less than c,.

The Josephson-vortex velocity tends to a certain max-
imum, v, when the current density tends to the critical
current density. Using Eq. (42) we can estimate v as

FIG. 3. The dependence of the bias current density j on
the Josephson-vortex velocity v. The solid line represents a
plot using Eq. (40); the dashed line represents a plot using
Eq. (41).

between v and c, can be observed even if AJ & A.

Note that, when the Josephson-vortex velocity tend. s
to its maximum value v, the energy dissipation in the
Josephson junction is mainly due to the Josephson-vortex
Cherenkov radiation, i.e. , the power release happens in
the form of electromagnetic radiation.

IV. SUMMARY

To summarize, we calculate the Josephson-vortex
Cherenkov radiation of an electromagnetic wave in a long
Josephson junction. This dissipation mechanism results
in a radiation friction force and is especially efFective if
the velocity of the Josephson vortex is approaching the
highest possible velocity c, (Swihart velocity). We find
the relation between the density of the bias current across
the junction and. the Josephson-vortex velocity.
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