
PHYSICAL REVIEW 8 VOLUME 52, NUMBER 2 1 JULY 1995-II

Static, dynamic, and electronic properties of
liquid gallium studied by first-principles simulation

J. M. Holender and M. J. Gillan
Physics Department, Keele University, Keele, Staffordshire ST55BG, United Kingdom

M. C. Payne
Cavendish Laboratory, Cambridge University, Cambridge CB8 OHE, United Kingdom

A. D. Simpson
Edinburgh Parallel Computing Centre, Edinburgh University, Edinburgh EII9 8JZ, United Kingdom

(Received 21 February 1995)

First-principles molecular-dynamics simulations having a duration of 8 ps have been used to
study the static, dynamic, and electronic properties of liquid Ga at the temperatures 702 and 982 K.
The simulations use the density-functional pseudopotential method and the system is maintained on
the Born-Oppenheimer surface by conjugate gradients relaxation. The static structure factor and
radial distribution function of the simulated system agree very closely with experimental data, but
the diffusion coeKcient is noticeably lower than measured values. The long simulations allow us to
calculate the dynamical structure factor S(q, u). A sound-wave peak is clearly visible in S(q, &u) at
small wave vectors, and we present results for the dispersion curve and hence the sound velocity,
which is close to the experimental value. The electronic density of states is very close to the free-
electron form. Values of the electrical conductivity calculated from the Kubo-Greenwood formula
are in satisfactory accord with measured data.

I. INTRODUCTION

Liquid gallium has been widely studied by a variety of
experimental, and theoretical methods. The struc-
ture of the liquid is now well established over a wide
range of temperatures but the knowledge of its dynam-
ical properties, and particularly of its collective dynam-
ics, is in a much less satisfactory state. There is also
a need for a more detailed investigation of its electronic
structure. In the present work, we have undertaken first-
principles molecular-dynamics (MD) simulations of I. Ga-
at two temperatures. These simulations are consid. erably
longer than another erst-principles simulation, and this
has allowed us to investigate the structure and electronic
properties with greater statistical accuracy. More im-
portantly, it has allowed us to iDvestigate the dynamical
structure factor, which describes the dynamics of density
fIuctuations.

Collective fluctuations have previously been studied in
a variety of metallic and insulating liquids. Neutron-
scattering experiments have shown that short-wavelength
sound waves are readily observable in several liquid met-
als including Rb, Cs, and Pb. In general, oscillatory
fIuctuations can be observed for wave vectors up to over
half the wave vector of the first peak in the static struc-
ture factor. On the other hand, in some other liquids
such as Ne, sound waves are found to be strongly over-
damped in this region of wave vectors. Classical simula-
tions of liquid rare gases and metals have revealed the
same qualitative difI'erence of behavior between the two
types of liquids. This difI'erence has been traced to the

fact that the short-range interatomic repulsion in simple
metals is much softer than in rare gases. There also
seems to be a correlation with the ratio of specific heats
p, which is generally close to unity in liquid metals, but
is considerably greater than unity in liquid rare gases.
In this context, the behavior of E-Ga is puzzling. Very
recent inelastic neutron-scattering measurements just
above the melting point have failed to find oscillating
density fluctuations, even though p for 1-Ga has one of
the lowest values among liquid metals. Here, we report
first-principles simulations only at high temperatures, so
that a direct comparison with the recent inelastic data
cannot yet be made, but we shall show that density oscil-
lations are clearly visible in our system. We shall suggest
reasons for this apparent disagreement.

Since the work of Car and Parrinello, first-principles
MD simulation has become increasingly important in the
study of liquids. The basic idea of the method is to cal-
culate the total energy and the forces for any arrange-
ment of atoms by solving the equations of density func-
tional theory to determine the electronic ground state.
The great advantages of this approach are that it com-
pletely avoids ad hoc assumptions about the interactions
between the atoms, and that it allows the electronic prop-
erties of the liquid to be calculated within a united IIrame-
work. Simulations on Z-Si, E-GaAs, Z-Ga, E-CsPb,
Z-Ge, E-NaSn, and a number of other systems have
been reported, and the structure of the simulated sys-
tems generally agrees closely with experimental data.

Another first-principle study of f-Ga has been
reported. This was a rather short simulation at the sin-
gle temperature of 1000 K, but was valuable in a number
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of ways. It showed that the simulated system reproduces
the known structure of 8-Ga rather well. It also allowed
an investigation of the role of covalent bonds in the liq-
uid. Last, it gave useful insight into the electronic struc-
ture, and showed that the deep minimum in the density
of states at the Fermi level known to exist in crystalline
n-Ga (Ref. 7) disappears in the liquid.

The simulation technique we use diBers in important
ways &om the one originally proposed by Car and Par-
rinello. We do not treat the electronic degrees of &ee-
dom as fake dynamical variables, but instead we relax
the electrons to the Born-Oppenheimer surface at each
time step by conjugate-gradient minimization. ' This
has the advantages of allowing us to use much larger
time steps and also of avoiding the rather artificial use of
thermostats needed for metals in the conventional Car-
Parrinello technique. We also use Fermi level smoothing,
treating the occupation numbers as dynamical variables,
as has been done by a number of other workers.

The main technical features of our simulations are ex-
plained in Sec. II. Our results for the structural, dy-
namical and electronic properties of E-Ga are presented
in Sec. III. A discussion of our findings is given in Sec.
IV, and our conclusions are summarized in Sec. V.

II. TECHNIQUES

A. Method

Kohn-Sham states can cross the Fermi level, so that their
occupation number passes discontinuously between zero
and unity. This implies that the wave-functions of oc-
cupied states can change discontinuously and that the
forces on the ions can do the same. Both kinds of discon-
tinuity can wreak havoc with the numerical implementa-
tion of the equations of motion. The second problem is
that the Fermi discontinuity leads to the need for exten-
sive (and expensive) sampling over the Brillouin zone.

It has been recognized that both these problems can
be solved at the same time by smearing out the Fermi
discontinuity so that the occupation numbers pass con-
tinuously from unity to zero over a specified energy in-
terval. It was also shown ' ' that this idea can be
formulated as a variational principle in which the quan-
tity to be minimized has the form of a thermodynamic
free energy, which depends both on the Kohn-Sham or-
bitals and their occupation numbers. This formulation
is closely related to the Mermin density functional the-
ory for electron systems at finite temperature. The idea
of working with variable occupation numbers in a free-
energy framework has been expounded by a number of
authors, ' ' and all that is needed here is a note of
some technical features peculiar to the present work.

In general, the free-energy functional can be repre-
sented as

&[8') (&1k (f')) = E[(&') (&1k (Wl —~Q((f'))
(1)

We first summarize briefly the aspects of our simu-
lation technique that are standard, before describing
in more detail the less familiar features. As usual in
first-principles MD simulations, only valence electrons
are explicitly represented, and it is assumed that the
core states are identical to those in the &ee atom. In
the present case, the Ga 4s and 4p electrons are counted
as valence electrons, and all more tightly bound elec-
trons are counted as part of the core. The interaction
between valence electrons and the atomic cores is rep-
resented by a norm-conserving nonlocal pseudopotential,
which is constructed ab initio via calculations on the free
atom (see below for details). The calculations are per-
formed in periodic boundary conditions, with the elec-
tronic orbitals expanded in plane waves. In this expan-
sion, all plane waves are included whose wave vector G'
satisfies 5 G /2m, (E,„t where E,„q is referred to as the
plane-wave cutoff energy. The calculations can (and in
principle should) be taken to convergence with respect to
the size of the basis set by systematically increasing E,„t.
The exchange-correlation term in the density-functional
expression for the total energy is represented by the lo-
cal density approximation (LDA). A simulation is per-
formed by making the ions follow classical trajectories
determined by the forces acting on them, while the elec-
tronic subsystem remains in the ground state at each
instant (the Born-Oppenheimer principle). All these fea-
tures are entirely standard.

There are two well-known problems in the first-
principles MD simulation of metals. The first is that

where E is the total-energy functional, which depends on
the Kohn-Sham orbitals g;, their occupation numbers f;,
and the ionic positions Rl, the quantity Q plays the role
of an entropy, and o. specifies the smearing width. In
general, Q can be taken to have the form

(2)

If n is chosen to be k~T and ((f) has the form

((f) = —f ln f —(1 —f) ln(l —f);
then minimization with respect to the f, at constant elec-
tron number yields the usual Fermi-Dirac distribution

f; = 1/(exp[(e, —p)/k~T] + 1), (4)

2' exp[ —(x+ 2 '~2)2] if x ) 0,
1 —

2 ~e exp[ —(x —2 '~2) 2] if x ( 0,

where e; are the Kohn-Sham eigenvalues and p, is the
chemical potential. However, it has been pointed out that
many other choices of Q and hence many other equilib-
rium distributions for f, are possible. ' A disadvantage
of the Fermi-Dirac distribution is that for a given energy
width the occupation numbers f; approach their asymp-
totic values of 0 and 1 rather slowly. Because of this,
we prefer a distribution that approaches its asymptotic
values in a Gaussian manner rather than exponentially.
This is easily achieved by taking the dependence of f on
e to be given by
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where

It is readily shown that this equilibrium distribution is
obtained if ( is chosen to be

1
Q(x) = —~e(x( exp[ —((x(+ 2 '/')']

2
1+—gyre erfc(~x~ + 2 ),

where

' [ln(e'/'/2f)]'/' —2-~/' if f (-2,
(8)

21/2 (in[el/2/2(l —f)])l/2 ig f ) 1

f = f'+w(f' —f') .

The free energy A is bound to decrease for some positive
value of p. This change is made simultaneously with the
standard conjugate-gradient step and is followed by sub-
space rotation. This cycle is repeated until the change
in the free energy during one cycle is smaller than some
tolerance.

Special attention has to be paid to bands above the
Fermi level, which have low occupation numbers. These
inHuence the total energy in two ways: directly and in-

In the original Car-Parrinello method, the plane-wave
coeKcients were treated as fake dynamical variables. For
metals, this method leads to serious problems because of
the rapid transfer of energy from the ions to the electronic
degrees of freedom. Because of this, we prefer to use the
conjugate-gradient approach, ' in which the electronic
subsystem is brought to the ground state at every step.
This also has the advantage of allowing one to use a much
larger time step than in the standard method.

As has been stressed before, with fractional occupa-
tion numbers the free energy is minimized only when the
orbitals are eigenstates of the Kohn-Sham (KS) Hamil-
tonian. This is to be contrasted with the situation for
insulators, where it sufBces that the orbitals span the
occupied subspace. Because of this, it is essential to per-
form explicit subspace rotation so as to make the orbitals
eigenstates. The procedure we use for this is essentially
the same as that of Gillan, which is closely related
to the methods described subsequently by Grumbach et
al. and Kresse and Hafner.

BrieHy, the above features of our technique are imple-
mented by the following strategy which is based on Ref.
24. The occupation numbers and wave-function coeK-
cients are varied together and we minimize all bands si-
multaneously. We apply the standard conjugate-gradient
technique to the wave-function coeKcients. For occupa-
tion numbers we apply a simpler method. At a given iter-
ation we have occupation numbers (f,). These are used
to calculate the "electronic forces" and the KS Hamilto-
nian. From the diagonal elements of the KS Hamiltonian
we calculate new occupation numbers (f;). The changes
in the occupation numbers are made according to

directly. The direct inHuence comes from the explicit
appearance of wave functions of weakly occupied bands
in the total energy. The indirect inHuence arises from
projection of forces and subspace rotation. Weakly oc-
cupied bands should not be allowed to vary in an un-
controlled manner and it is highly desirable that they
should be close to the KS eigenstates. There are al-
ways a few bands with very small occupation number
and their direct contribution to the total free-energy is
almost negligible. Since our algorithm is based on free en-
ergy minimization, normal conjugate gradients will have
great difhculty in bringing these bands close to KS eigen-
functions. To achieve this, we must use preconditioning.
We work with scaled wave-function coeKcients. We find
that scaling of all wave-function coeKcients by the factor

f, so.lves problems with weakly occupied bands.1/2

The calculations have been done partly with the
cASTEP code on the Fujitsu VPX240 at Manchester,
and partly with its parallel version CETEP (Ref. 34) on
the CRAY T3D at Edinburgh. The codes have been ex-
tensively rewritten, partly to allow all-bands operation,
in which all bands are updated simultaneously during the
conjugate-gradient search, and partly to introduce the
variable occupation number technique described above.

B. Computational details

The norm-conserving pseudopotential for Ga was con-
structed using the standard Kerker method, the s and
p components being generated from the neutral 4s 4p
configuration and the d component from the ionized
4s 4d configuration. In the practical calculations,
the pseudopotential is represented in the Kleinman-
Bylander separa, ble form with the s wave being treated
as local, and the nonlocal parts of the pseudopotential
being treated in real space. In the construction of the
pseudopotential and in the simulations, the exchange-
correlation energy is represented in the Ceperley-Alder
form

We have tested the pseudopotential by calculat;ions on
the o. phase of crystalline Ga. This is the stable crys-
tal structure under ambient conditions, and has a based-
centered orthorhombic Bravais lattice with eight atoms
in the unit cell. In order t;o achieve high accuracy, we
have used the rather large plane-wave cutoff of 250eV
and a set of 32 k points. The calculated values of lattice
parameters were 4.37k, 4.38 A. , 7.42 4, and the internal
parameters were 0.07 and 0.16. The corresponding ex-
perimental values are 4.511A. , 4.517 A. , 7.645 A. and 0.078
and 0.1525. The main deficiency of the calculations is
clearly the error of ca. 3' in the lattice parameters. Es-
sentially the same error was reported by Gong et al.
and we believe it arises from the LDA approximation.
In all our calculations for the liquid we accept that we
are bound to make this error and all distances are scaled
accordingly when comparison with experimental data is
made.

Our calculations on Z-Ga were all performed on a sys-
tem of 64 Ga atoms using a cubic repeating cell, with the
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density equal to the experimental value at each tempera-
ture with the above-mentioned scaling of distances. The
plane-wave cutoff for the liquid simulations was taken to
be 125 eV, and I'-point sampling was used in the calcula-
tion of the (free) energy and the forces at each time step.
The Verlet algorithm was used to integrate the equations
of motion for the atomic positions and velocities, with a
time step Lt of 3 fs. As explained above, the number of
bands has to be taken greater than half the number of
valence electrons, in order to allow for partial occupation.
We worked with 102 bands, which is 6 more than would
be needed for the 192 valence electrons if all bands were
fully occupied. The smearing width [the parameter n in
Eq. (6)] was equal to 0.2 eV.

We initiated the system at 1000 K. We equilibrated our
system for about 10ps at this temperature and then we
collected data over 8 ps. The average temperature was
982K. Then the system was slowly cooled at the rate
40Kps until the temperature of 700K was reached.
This was followed by a further run of 8ps at 700K, the
average temperature in this run being 702 K.

2K

Q

2K

Q van~

0
q[A ]

10

FIG. 1. The static structure factor S(q) of 8-Ga at 702 and
982 K. Solid line and circles connected by dotted line represent
simulation and experimental values (Ref. 1), respectively.

III. JESUITS

A. Structural properties

The structure of the simulated liquid can be compared
directly with that of the real system through the static
structure factor S(q), which is measured in diffraction
experiments. This quantity is a measure of the intensity
of density fluctuations as a function of wave vector q,
and is defined by

on the wave-vector resolution of our results, and this is
partly responsible for their spiky form in the region of the
first peak. This feature is also present in previous first-
principles simulations of liquids (see, e.g. , Refs. 9, 19, 20).
Allowing for this, the agreement between the simulated
and experimental structure factors is close, particularly
away &om the first peak. The period, amplitude, and
phase of the oscillations beyond ca. 4A. are very well
reproduced.

It is also interesting to consider the low-q limit of S(q),
which is related to the bulk isothermal compressibility y~
by the relation

Here the dynamical variable p(q) representing the Fourier
component of the atomic density at wave vector q is given
by

where v; is the position of atom i and N is the number of
atoms in the system. The angular brackets in Eq. (10)
denote the thermal average, which in practice is evalu-
ated as the time average over the duration of the simu-
lation. In practical calculations of S(q), we also average
over q vectors having the same magnitude.

Our results for S(q) at 702K and 982K are compared
in Fig. 1 with the neutron-diffraction data of Bellissent-
Funel et a/. We note that the latter data differ substan-
tially from the other results cited in the compilation by
Waseda, which appear to be much less reliable. The
measurements in Ref. 1 were performed only at 329K
and 956K. Our results at 982K are compared directly
with the experimental data at 956K, but to make com-
parison at 702K we have used a linear interpolation of
the experimental values at 329 and 956 K. The small size
of our simulated system places a rather strong limitation

S(q + 0) = nk~Ty~, (12)

where n is the number density. Prom an extrapolation of
our low-q results at 702 K, we obtain the estimate S(q +

0) 0.012, which gives y~ = 2.4 x 10 ii m2 N i. This
agrees fairly closely with the experimental value for the
adiabatic compressibility Xswhich is 2.2 x 10 ii m2N
As gz /yg = Cz/C„= p and for /-Ga this value is 1.1
the above comparison of the isothermal and adiabatic
compressibilities is well justified. We shall return to the
elastic properties of the liquid when we discuss sound
waves in Sec. IIIB.

The structure of the liquid can be seen more clearly
&om the radial distribution function g(r), and we com-
pare simulated and experimental results at 702K and
982K in Fig. 2. As before, the "experimental" curve is
obtained by interpolation. The close agreement between
simulation and experiment in the region of the first peak
reflects the closeness of the structure factors beyond ca.
4A. . There are, however, slight discrepancies between
the g(r) values beyond the first peak, and the reality
of these discrepancies is confirmed by the fact that they
have the same form at 702 K and 982 K. Since this region
of r is associated with the first peak of the structure fac-
tor, where we have suggested an effect of system size, it
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FIG. 3. Time-dependent mean square displacement
(Ar(t) ) for t-Ga calculated from simulations at 702 K (solid
line) and 982 K (dotted line).

0
2 4
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FIG. 2. The radial distribution function g(r) of t-Ga at
702 and 982 K. Solid line and circles represent simulation and
experimental results (Ref. 1), respectively.

may well be that the small size of the system is respon-
sible for the discrepancies.

We have calculated the average coordination number
defined in the usual way as the average number of atoms
within a distance r of a given atom, where r is the
distance at which g(r) has its first minimum. Our cal-
culated values at 702 K and 982 K are 8.7 and 9.1, re-
spectively. These values are essentially the same as
the value of 9 that has been deduced from experimen-
tal measurements, as would be expected from the close
agreement between the simulated and experimental g(r).
The coordination numbers in the crystalline o. and P
phases are 7 and 8, respectively, so that there is a small
but significant increase on going from solid to liquid. This
is expected &om the density increase on melting.

B. Dynamical properties

In order to study how the atoms disuse in the liquid,
we have calculated the time-dependent mean square dis-
placement (MSD) which we denote by (Ar(t) ). For a
large time interval t, the asymptotic form of the MSD is
expected to be

(Ap(t) ) M B + 6 D ~t~,

where B is a constant and D is the tracer diffusion coef-
ficient. In calculating the MSD, we average in the usual
way over all atoms in the system and over time origins.
The interval between the origins is taken as At, so that
every step serves as an origin.

Our results for the MSD at 702 K and 982 K displayed
in Fig. 3 show that the atoms are difFusing rapidly, as
expected. For example, the plots show that at 982 K the
typical time taken for an atom to travel the nearest neigh-
bor distance of 2.7A is roughly 1.5 ps. As usually hap-
pens in highly mobile liquids, the MSD rapidly reaches
its asymptotic linear behavior, the transient time being

roughly 0.1 ps. From the asymptotic slope of the MSD
we obtain values for the diffusion coefFicient of 3.3 x 10
and 6.5 x 10 5cm s at 702 and 982K, respectively.
These are considerably smaller than the rather old ex-
perimental values of 9 x 10 and 1.3 x 10 cm s at
these temperatures. We discuss later the significance of
these discrepancies.

The MSD is a single-particle correlation function. It
is also of considerable interest to examine the collective
dynamics of density fluctuations in the liquid, charac-
terized by the intermediate scattering function I(q, t),
and its Fourier transform, the dynamical structure factor
S(q, u). The latter quantity is important because it can
be measured rather directly by inelastic neutron scatter-
ing, and such measurements have recently been reported
for 8-Ga. The intermediate scattering function is defined
as

~(q, ~) = (i(q, &) i(—q "))
where p(q) is the Fourier component of the density, as
before. Note that I(q, t) is a real quantity which in an
isotropic liquid depends only on the magnitude of q.

We have calculated I(q, t) directly from its definition,
averaging both over time origins and over the orienta-
tion of q. The interval between time origins was taken
to be Lt. Our results for a range of wave vectors at 702
and 982K are shown in Fig. 4. The very similar form
of the plots for the two temperatures confirms that the
simulation runs are long enough to be statistically reli-
able. Note that at t = 0, I(q, t) becomes identical to
the static structure factor S(q), so that the systematic
difference between the zero-time values at the two tem-
peratures simply reflects the temperature dependence of
S(q), which we have already noted in Fig. 1. The most
significant feature of I(q, t) is the pronounced oscillations
observed at low q, which rapidly become overdamped for
q ) 1.8 A. i. These oscillations represent sound waves,
as we shall see immediately.

The power spectrum of density fluctuations is de-
scribed by the dynamical structure factor defined by

1
S(q, (u) = — cos((ut) I(q, t) dt .

O

We have performed the transformation using the Welch
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FIG. 4. The intermediate scattering function I(q, t) for
l-Ga calculated at 702 K (solid line) and 982 K (dotted line)
for six difFerent wave vectors q.

window function cutting ofF at maximum time 1ps.
Our results for S(q, ur) shown in Fig. 5 reveal two main
features: a peak centered at zero frequency representing
decaying fluctuations and a finite-frequency peak repre-
senting oscillations. These features have been observed
many times before both in classical MD simulations of
liquids and in inelastic scattering experiments. At small
wave vectors, the central peak is associated with heat
diffusion, but at the wave vectors we are dealing with
here its interpretation becomes more complicated. As
we have already seen from I(q, t), the oscillatory fluctua-
tions survive only for wave vectors up to 1.8 A, beyond
which we are left only with the central peak.

Our results for S(q, w) can be used to construct a dis-
persion curve for sound waves in the range of q for which
they can be observed. To do this, for each q we have

taken the frequency w at which the sound-wave peak
in S(q, w) has its maximum. Figure 6 shows plots of w

against q, on which we have superimposed straight lines
whose slope is equal to the experimental adiabatic sound
velocity in 8-Ga. We note that the shape of our dis-
persion curve is very similar to experimental dispersion
curves found for Rb, Cs, and Pb.

Note that a linear dispersion curve is expected only in
the asymptotic region of small q where the wavelength is
greater than all other relevant lengths. The form of our
dispersion curve indicates that the lowest two of the wave
vectors available to us are within this region to suKcient
accuracy, so that we are justified in making a comparison
with the measured sound velocity. It is not entirely clear
whether the dispersion curve we observe should be asso-
ciated with adiabatic or isothermal fluctuations. Strictly
speaking, sound waves are adiabatic only at wave vec-
tors for which the sound-wave frequency is much greater
than the width of the Rayleigh peak, and this is not
obviously true in the present case. However, we have
already pointed that the isothermal and adiabatic com-
pressibilities should not differ more than 10% in E-Ga,
and this suggests a difFerence of the isothermal and adia-
batic sound velocities of only 5%. Our conclusion is that
the good agreement of our dispersion curve with the mea-
sured sound velocity is genuine. Close agreement is, of
course, not unexpected, since we saw in Sec. IIIA that
the compressibility of the simulated system accords well
with the known value.

C. Electronic properties

One of the important questions about E-Ga is the ex-
tent to which it can be considered a free-electron metal.
The most direct way of studying this question is through
the electronic density of states (DOS), since deviations
of this quantity from the free-electron form are imme-
diately apparent. It is well established that the DOS

0.4
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Q Q
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FIG. 5. The dynamical structure factor S(q, cu) for /-Ga
calculated at 702 K (solid line) and 982 K (dotted line) for six
difFerent wave vectors q.

0L
0.0 0.5 1.0

q[A ]

1.5 2.0

FIG. 6. The dispersion curve for sound waves in 8-Ga at
702 and 982K. Circles represent frequencies u at which
S(q, cu) of the simulated system has its peak value. The
straight line represents the experimental sound-wave veloc-
ity (Ref. 4) at each temperature.
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in crystalline n-Ga shows a deep minimum at the Fermi
energy, " and it is of interest to know whether this feature
survives in the liquid. .

It is important to recognize that adequate k-point sam-
pling is essential in calculating the DOS. In the first-
principles MD simulations themselves, I'-point sampling
is used in the calculation of the total energy and the
forces, but the direct use of the Kohn-Sham eigenvalues
at the I' point would not be satisfactory for calculating
the DOS. Our procedure is to select a number of con-
figurations &om the simulation run, and for each one
we have used the Kohn-Sham Hamiltonian generated in
the simulation to calculate the electronic eigenvalues at
a set of k points. The DOS is then obtained by averag-
ing over configurations and k points. The k-point set we
have used consists of the eight points ( —,—,—), ( —,—,—),
(s, s, s), (s, s, I~) and cyclic permutations; the points
are taken with equal weights. Tests with other k points
indicate that this k-point set is perfectly adequate. We
have also tested explicitly the effect of calculating the
DOS with I'-point sampling only, and we find that this
produces large spurious minima at certain energies. We
have found that good statistical accuracy is already ob-
tained with a fairly small number of configurations, and
our results were obtained by averaging over five configu-
rations at each temperature.

We display in Fig. 7 our calculated electronic DOS at
702 and 982K together with the free-electron curve. It
is clear that deviations from the free-electron form are
very small in both cases, and there is no trace of the
deep minimum at the Fermi level characteristic of the o.-
Ga structure. This conclusion agrees with the findings
of Hafner and Jank which were based on perturbation
theory arguments, but does not agree well with the first-
principles MD results of Gong et al. , which show quite
strong d.eviations from free-electron behavior. We believe
that this discrepancy is d.ue to the inadequate k-point
sampling used by Gong et al. as we discuss later.

We have calculated. the frequency-dependent electrical
conductivity o (w) from the Kubo-Greenwood formula

40000

30000 (»
I

20000

10000—
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FIG. 8. Frequency-dependent electrical conductivity o (ur)
of I. Ga-calculated from simulations at 702 K (open diamonds
connected by solid line) and 982 K (solid diamoiids connected
by dotted line). Open and solid triangles show experimental
values of dc conductivity (Ref. 3) at the two temperatures.

where g; and Q~ are the wave-functions of states below
and. above the Fermi level, respectively, and E;,E~ are
the corresponding eigenvalues. The operator p repre-
sents the momentum of an electron in Cartesian direction
o. , and 0 is the volume of the simulation cell. This is an
approximate formula, which treats the valence electrons
as propagating independently of one another. As in the
calculations of the DOS, Brillouin-zone sampling is im-
portant, and we have used the same k-point set as for
the DOS. Averaging is performed over 5 configurations
at each temperature.

We show our calculated cr(w) in Fig. 8. Our main in-
terest is in the dc conductivity and we have included un-
occupied states only up to 1 eV above the Fermi level.
This means tha, t o(u) is correctly calculated only for
frequencies h~ & 1eV. It should be noted that the
statistical accuracy deteriorates as ~ goes to zero, but
this does not prevent us from making a reasonably re-
liable extrapolation to the dc value. Our estimates for
cr (0) at 702 K and 982 K are 2.5 x 104 0 i cm i and
2.0 x 10 0 cm . The corresponding experimental
values are 3.0 x 10 0 i cm i and 2.8 x 10 0 cm
respectively.
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FIG. 7. Electronic density of states of E-Ga calculated from
simulations at 702 K (solid line) and 982 K (dotted line) com-
pared with the free-electron form (dashed line). The vertical
line denotes the Fermi energy.

IV. DISCU SSION

Our first-principles simulations of X-Ga are consider-
ably longer than the only previous simulation reported so
far, and. we have been able to study its static, dynamic,
and electronic properties in more detail than before. Our
comparisons of the static structure factor S(q) and the
radial distribution function g(r) at 702 and 982 K with
experimental data have confirmed that the structure of
the simulated system agrees closely with that of the real
liquid. However, we have found noticeable discrepancies
which appear as spikes in S(q) at certain wave vectors
in the simulated system. This eftect is stronger at the
lower temperature, and discrepancies between the simu-
lated and experimental g(r) are also more significant at
this temperature, though it should be remembered that
the experimental g(r) at 702 K is actually obtained by a
rather large interpolation. We have suggested that the
spikes we find in S(q) are associated with the rather small
size of our system, and we note that similar efFects have
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been seen in other erst-principles simulations. It would
clearly be desirable to check this point by repeating the
simulations on larger systems, but we are not in a posi-
tion to do this at present.

Our results for the MSD (Ar(t) ) show typical liquid-
like behavior, with the asymptotic linear regime being
reached after only O. l ps. The values of the di8'usion co-
eKcient obtained from the asymptotic slope of the MSD
appear to be somewhat low compared with the rather
limited and old experimental data. The highest temper-
ature at which we can make a direct comparison is 702 K,
where our simulated value appears to be too low by a fac-
tor of 2.7. An extrapolation of the experimental values
suggests that at 980K our simulated result is too low

by a factor of 2. There are two possible explanations
for this. Either the experimental data are unreliable, or
the simulations are sufFering from a systematic error. If
one wished to take the latter point of view, one would
note that the spikes in S(q) are indicative of a spurious
ordering, which might have the effect of suppressing the
atomic diffusion. This again points to the desirability
of studies on larger systems. At the same time, we be-
lieve there would be a case for repeating the experimental
measurements, before deciding that the simulations are
at fault.

Our investigations of the collective dynamics of E-Ga
have shown that density oscillations are clearly visible
for wave vectors q ( 1.5 A, both chrectly through
the oscillations in I(q, t) and through the finite-frequency
peaks in S(q, w). We have shown that the dispersion
curves obtained from these peaks give a small-q slope
that agrees very closely with the experimental sound ve-
locity. This observation is not at all surprising, given
the mell-established density oscillations in other liquid
metals in the corresponding wave-vector range. How-
ever, it raises important questions about, the behavior
of Z-Ga, since Berrnejo et a/. failed to observe density
oscillations in E-Ga at just above the melting point (ac-
tually at 330K) using inelastic neutron scattering. We
believe that the key to this apparent disagreement lies
in the large difference of temperatures employed in the
neutron-scattering measurements and in our simulations.
It would be expected that the shear and longitudinal vis-
cosities would increase with decreasing temperature, so
that sound waves would be more heavily damped at lower
temperatures. Unfortunately, there seems to bo no ex-
perimental information on the temperature dependence
of the viscosities in E-Ga, but we note that an increase
of the viscosities with decreasing temperature would be
generally consistent with the known decrease of di8'usion
coeFicient at lower temperatures. It is plausible that such
an increase of viscosity at low temperatures would lead
to overdamping of sound waves in the wave vector range
observable by neutron scattering. We frankly admit that
this explanation is speculative. Resolution of this ques-
tion clearly requires either extension of the experiments
to higher or extension of the simulations to lower tem-
peratures.

Our calculations of the DOS demonstrate that the elec-
tronic structure is close to being &ee-electron-like at both
temperatures studied. In fact, our calculated DOS is

much closer to the &ee electron form than the DOS re-
ported by Gong et a/. There is an important technical
point here. As we have emphasized, completely erro-
neous results for the DOS are obtained if adequate sarn-
pling over the Brillouin zone is not performed, a point
which has been made before Kresse and Hafner. But
Gong et a/. report that they have calculated the DOS
using I'-point sampling only, and we believe that this
must cast serious doubt on their results. We note that
the close agreement between the electronic DOS and the
free-electron form provides strong support for Hafner's
perturbation theory approach, in which the structure
of 8-Ga and other metals has been treated by expand-
ing the total energy of the system to second order in the
pseudopotential starting from the free-electron gas. The
satisfactory agreement of our calculated dc conductivity
with experimental values —the 20% discrepancy that we
find is rather typical of what has been found in previous
first-principles work provides useful con6rmation that
the electronic structure of our simulated system is close
to that of the real l.iquid.

V. CONCLUSIONS

In conclusion, we have performed erst-principles MD
simulations of 8-Ga at two high temperatures. The static
structure of the simulated system agrees closely with that
of the real liquid, but there are slight discrepancies which
may arise from the smaIl size of the simulated system.
The di8'usion coefBcient of the simulated system appears
to be too low by somewhat over a factor of 2. Oscil-
lating density Huctuations are clearly visible, the asso-
ciated sound velocity being in excellent accordance with
the known value. The failure to observe sound waves in
earlier neutron-scattering experiments at just above the
melting point may be due to the much higher viscosity
at low temperatures. The electronic DOS is very close to
the free-electron form, and the calculated dc conductivity
is in satisfactory agreement with experiment.
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