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All copper oxide based high-T, superconductors share the common property that the c-axis coherence
length is shorter than the lattice repeat distance in the same direction. In a semi-infinite system whose
top surface is an ab plane, the superconducting properties near the surface may be drastically affected.
We report in this paper detailed analyses of the surface properties of model layered superconductors
with one and two layers in a unit cell. We have found that for the one-layer model the change in surface
electronic structure has no effect on the critical temperature T, and the order parameter A. For a two-
layer model with one superconducting (S}layer and one normal (X) layer, the order parameter of the
top S layer is generally larger that that of the bulk. The enhancement effect is particularly large when a
band of surface state exists on the top S layer. In this event, the energy gap structure measured by the
point-contact tunneling technique is expected to be very different from that measured by the junction
tunneling technique. Such differences have been reported for Bi2Sr2CaCu208+q and YBa2Cu307 z. The
existence of a surface band also adds complications to the interpretation of the photoemission measure-
ments of the superconducting energy gap, to the extent that the observed gap anisotropy may actually
re6ect the uneven distribution of the spectral weight of the surface state on the top layer. How to extend
these findings to systems with three and more layers in a unit cell will also be discussed.

I. INTRODUCTION

Recently, there has been a raging controversy regard-
ing the orbital symmetry of the superconducting order
parameter (OP) A(k) in the high transition temperature
( T, ) superconductors such as Bi2SrzCaCu20s+s (BSCCO)
and YBazCu307 s (YBCO). A number of experiments on
these materials were interpreted in terms of b, (k) having
a d» symmetry such as b.o(k„—k ), with nodes for
k =+k . Among these are the photoemission experi-
ments of Shen et al. , ' the corner superconducting quan-
tum interference device (SQUID) and Josephson junction
experiments of Wollman et al. , the tricrystal ring exper-
iments of Tsuei et al. , the YBCO/Pb square SQUID ex-
periments of Mathai et al. , and the penetration depth A,

measurements of Hardy et al. In addition, some work-
ers have interpreted the different tunneling behaviors
observed in point-contact, break junction, and junction
measurements on the same and on different sample sur-
faces as evidence for a d wave, or OP that contains nodes.

On the other hand, c-axis and grain-boundary'
Josephson tunneling experiments, plus Hlc torque rnea-
surements" were found to be consistent with an isotropic
or s-wave OP, h(k) =ho, or possibly with an anisotropic
but nodeless OP, such as s +id.

All of these experiments are interpreted in terms of the
BCS-type theory with an order parameter of s- or d-wave
symmetry. This approach is adequate for low-T, super-
conductors which have coherence lengths tens or hun-
dreds of times longer than the lattice parameters. It is
now known, on the other hand, that in copper oxide

based high-T, superconductors, the c-axis coherence
lengths are far shorter than the lattice repeat distances in
the same direction. This fact has led us to investigate in
microscopic detail the possible effects of the nonsuper-
conducting layers in these materials on their bulk super-
conducting properties. ' ' Based on a two-layer 5-W
model, we have shown that the intervening 1V layers can
change the critical temperature, the order parameter, the
temperature dependence of the penetration depths in a, b
directions, and the structure of the density-of-states curve
in ways that mimic the effects of d-wave superconductivi-
ty. In the course of this study, we discovered that the
rnodified electronic structure on and near the top ab
plane of a semi-infinite layered system may profoundly
affect its local superconducting properties, ' such that in
case a band of surface states is formed, the superconduct-
ing energy gap can be much enhanced. The effect is
much stronger than what has been discussed in literature
in terms of the Ginzburg-Landau model. ' ' The pre-
dicted gap structure can account for the observed
differences in the c-axis point-contact and junction tun-
neling results.

This paper provides details of our analyses reported in
Ref. 15 on the surface effects of semi-infinite layered su-
perconductors. In Sec. II we discuss the model with only
one S layer and no X layer in a unit cell. The result is
trivially simple, i.e., that the change of the electronic
structure at the surface has no effect on superconductivi-
ty. Yet, the analysis leading to this result is not simple.
The mathematical procedure paves the way for the non-
trivial two-layer S-X model analyzed in Sec. III, with em-
phasis on the effects of surface states on superconductivi-
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ty and related phenomena. In Sec. IV we extend our con-
sideration to more complex models with three and four
layers per unit cell so we can draw physical conclusions
about real Inaterials, which is the content of Sec. V.

II. THK ONK-LAYER MODEL

We discuss in this section the superconducting proper-
ties of the semi-infinite layered solid with one supercon-
ducting layer per unit cell. Section II A reviews the bulk
superconducting properties we have published earlier,
IIB shows how the normal-state electronic structure is
solved in the normal state, and II C carries the calcula-
tion one step further to the superconducting state.

A. Bulk superconducting properties

energy, and cr is the spin index. We use units in which
A=c =k~ =1. The pair interaction term is of the BCS
type given by

V= ——Aogs Jd'rgjt (r)fj (r)f, (r)gi (r),1

JO

(2)

G ( k, ~—~' ) = —( T [il'j ( k, ~ )i)'jt ( k, ~' ) ]),
F(k, 1- ~')=(T[y (k, 7-)it ( k, ~—'}]), (3)

etc., where k =(k, k, ), k, is the crystal momentum in the
c direction, ( ) denotes a thermal average, and

where the pair interaction strength Ao is restricted to en-

ergies within +co~i around Ez.
The quasiparticle Green's function matrix elements are

defined in the familiar way:

The bulk properties of the one-layer model have been
discussed previously. ' We assume the sample contains
identical infinitely thin superconducting layers, with c-
axis repeat distance s. The Hamiltonian is taken to be
H =Hp+ V, where

~0=+ +go(&)gj (&)gi (&)
kcr j=1

(4)

where Q is the volume of the crystal. The spin index is
suppressed in the Green's function matrix elements. We
define the order parameter 6 by

Agp yF(k, v),
k' k'v

+g[Ji)'r, (k)g +, (k)+H. c.],
J is the quasiparticle hopping integral between adjacent
layers, go(k) =k /2mo E~, k=(k—„,k ), EF is the Fermi

I

where F(k, v) is the Fourier transform of F(k, ~) in Eq.
(3), and v is the Matsubara frequency. Also, in terms of
the Fourier transforms, the inverse of the Green's func-
tion matrix is

'(k v)=
i v go—(k) 2J—cosk, s

i v+ go(k)+ 2J cosk, s

where 6 is taken to be real. The function 2J cosk, s
represents the dispersion of the tight-binding band in the
c direction.

The inversion of the Green's function matrix is
straightforward. Putting the results in Eq. (3), we deduce
the following gap equation:

Ao

P k v +(eq 2Jcosk,—s) +b,

where P= 1/T, T is the temperature, and the sum on v is
subject to the constraint ~v~ &coi. The subsequent in-
tegration over the two-dimensional bands brings in the
density of states (DOS) factor N(0) =ma/2ms:

It can be seen in Eq. (8a) that in this one-layer model the
interlayer hopping integral J has no e6'ect on the energy
gap and the critical temperature.

The DOS in the superconducting state is given by

where Gii is the first diagonal element of G and 5=0+.
It is straightforward to show that

X(co)=X(0)=
v co

(8c)

B. Normal state of semi-in6nite system

Before discussing the surface efFects on superconduc-
tivity, it is instructive to show first how the normal-state
electronic structure is solved for the semi-infinite system.
We label the layers by i =1, 2, 3, etc. where j =1 is the
top layer. The Green's functions are defined on a layer
by layer basis:

G~'(k, ~—~')= —(T[@ (k, ~)Pt (k, ~')]) .

The equations of motion of the Green's functions can be
readily written down in terms of the Fourier transforms:

Therefore, the interlayer hopping integral also has no
e6'ect on the DOS.

=1
k

(8b)
(iv g0)GJJ (k, v)=5—J~'+'JG +, 1.(k, v)

+JG, '(k, v), (10)
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for j%1,and for j=1

(iv —go)G, J ('lt, v) =5,J'+JG2 ('lt, v) .

Consider the special case j'=1. The homogeneous equa-
tions, Eq. (10), can be solved by

i(j —1)k s6 )=A)e (12)

where k, is the solution of the equation i v go—
=2J cosk, s. The coefficient A, in Eq. (12) is solved from
the inhomogeneous equation, Eq. (11):

ik s
(iv —g, )x, =1+a,Je ', (13)

sdk,
N (oi)= f NJ(k, )—m/s 277

(20d)

bulk bands, with k, being the crystal momentum in the
c-axis direction. Thus, the bulk band structure continues
to inhuence the surface electronic structure. The integral
can be carried out with the help of the transformation.

s dkz
NJ (oi}=g I sin (jk,s)5(co go

—2J—cosk, s) .
k

—m/s

(20c)

The integral over k is easily carried out, with the result,

ik s
with the result 2, =e ' /J. Thus, we find the entire first
column

where

N (k, )=N(0}2sin (jk,s) . (21}
ik (js)6. =—ej1 (14)

Now consider j'=2. One member of the equations in Eq.
(10), the one with j=1, is inhomogeneous. The rest are
solved by

The integral in Eq. (20d) is now trivial, with the result
N (co) =N (0) as expected. The quantity N (k, ) defined in
Eq. (21) may be regarded as the DOS in the neighbor-
hood of k, . It will take on added significance in systems
with more than one layer per unit cell.

i(j —2)k s6 2= A2e (15)

for j)2. The homogeneous member of Eq. (10) together
with Eq. (11) determines both G12 and 622, with the re-
sults,

sln2kzs ijk s62= . e
Jsink s

for j~2, and

2)k, s6 =—e12

C. Superconductivity near the surface

G '(lr, r r')= —( T—[f (lt, r)g' (k, r')] &,

F (k, r r')="( T[P—(k, r)f' ( —k, r')] & .

The OP of the jth layer is given by

(22)

In the superconducting state we need to define both the
diagonal and ofF-diagonal Green's functions for the layers
as follows:

The algebra becomes increasingly complex for higher
values of j'. The general results are

kp
QF J(k, v),
k, v

(23)

sinj'k, s ik (js)6'= . eJ sink, s
(18)

which can be taken to be real. We define a Green's func-
tion matrix by

for j ~ j', and

sin jk, s jk (j g)6"= . eJ sink, s
(19)

~11 ~12 ~13

~21 ~22 ~23 (24a)

sin jk,s
N~(co) =—g

m q Jsink, s '

where

(20a)

for j &j'. This completes the task of calculating the
Green s function of the semi-infinite one-layered model in
the normal state.

The diagonal elements of the Green's function matrix
allow us to calculate the density of states per spin state on
a selected layer near the surface. For the jth layer, we
have

where

G '(k, v) F -.(k, v)

Ft., (k, v) —G
(24b)

0

0

0

The inverse of the Green's function matrix has the formt„o 0

t„ t„ t„ o

C '(k, v) = 0 E23 E33 E43 0

0 E34 E44 E54

2J cosk, =o) —go .

The last relation, written with g'o on the left-hand-side,
can be readily recognized as the dispersion relation of the where the EJ& are 2 X 2 matrices defined by

(25a)
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i v —go(k) EG(i, + (i v+ go)F, '+ JF2' =0, (27d)

and

i v+$0(k)

—J 0PT~i,i+~ J+~,i 0 J

(25b)

(25c}

and two more similar equations. These equations are
solved by the same method as the normal-state case.
Considering j'=1, the linear equations in Eqs. (27a) and
(27b} are homogeneous and are solved by

=1 ik+ (js)
G &= [(i—v+go+2Jcosk+s)A+e

(iv go)G '+—b,F ' JGJ+, J
—JGJ ) i—=5ii (27a)

In the bulk system the OP depends only on the density of
states and the pair interaction in the plane, but not on the
hopping integral J. We will now show that in a semi-
infinite system the OP is independent of the layer index
because it is also unafFected by hopping. We do so by in-
voking the ansatz 5 =5 for all j and verifying that this
is consistent with the set of gap equations, Eq. (23).

As a first step toward solving the gap equation, we in-
troduce a shorthand symbol

GJJ' FJJ
(26)

JJ JJ

for the matrix elements in Eq. (24b), and 1 is a semi-
infinite unit matrix. We then write the matrix identity
G '6 = 1 in the component form. For j%1,we find

+(i v+go+2Jcosk s) A e ],
ik+ (js) ik (js)F &=A+e + +A e

where

2J cosk~s = go%—i+v +5

(28a}

(28b)

(29a)

2iJ+v +6 (29b)

The gap equation, Eq. (23},now has the form

A,ON (0) „b,d go
[e + —e ].—~ 2tJs+v +5

The coeKcients /1+ are to be determined by Eqs. (27c)
and (27d), with the results

bG '+(iv+$0)FJ'+JF)+) ~'+JF ( 1
=0,

and two more similar equations, and for j = 1

(iv g)Go—) +hF,'q —JG~' =5) ',

(27b)

(27c)

(30)

In the next step we reduce the gap equation to a more fa-
miliar form by a series of transformations. First we
transform from the sum over Matsubara frequencies to
an integral over real frequencies co. Then we write

e * = f 2J sin(k, s)e ' 5(2J cosk, s+go++co b, )sdk, —
—n/s

1 m/S . ' z
sdk,

2Jsin k, s e 'Im
2Jcos,s+ o+ co —6

(31)

The step of taking the imaginary part may be simply re-
placed by a factor —i because the real part vanishes upon
integration over go. Putting the final result into Eq. (30),
transforming back into Matsubara frequencies, and in-
tegrating over go, we obtain the gap equation —w/s 21T

(33)

helps to reduce the algebra. The final answer, after carry-
ing out the k or go integration, is

Ao /, N, (k, )b s dk,

P —m'/s Qv~+ Q~ 21T
(32)

Again, the k, integral is independent of the layer index j,
which implies that all layers have the same DOS as the
bulk superconductor.

where N&(k, ) has been defined in Eq. (21). The k, in-
tegral is readily carried out, and the resulting gap equa-
tion is identical to Eq. (8). This confirms that the top lay-
er has the same gap as the bulk.

The same calculation can be carried out for the jth lay-
er. The gap equation is found to be similar to Eq. (32) ex-
cept that the k, integral has the integrand NJ(k, ). The
result of the k, integral is independent of the layer index
j, which justifies the ansatz that all layers have the same
gap 5 for the bulk superconductor.

The DOS Ni(co) in the superconducting state is calcu-
lated from the diagonal elements 6". The same set of
transformations we have used to reduce the gap equation

III. THE TWO-LAYER MODEL

The two-layer model consists of two conducting layers,
one superconducting (S) and one normal (N), in a unit
cell. For simplicity, the two layers are assumed to have
identical two-dimensional quasiparticle band structures.
In addition, the quasiparticles in the S layer can hop into
the N layer in the same unit cell with the hopping in-
tegral J„and into the N layer in the neighboring unit cell
with Jz. In YBCO there are three conducting layers per
unit cell. The two-layer model depicts the two CuOz lay-
ers as one S layer and the CuO chain layer as an N layer.



SURFACE STATE EFFECTS IN HIGH-T, SUPERCONDUCTORS 9661

In BSCCO the two Cu02 layers are assumed to act like
one S layer while the BiO double layers comprise one X
layer. The unit cell doubling is neglected. The model,
shown schematically in Fig. 1, is an extension to J

&
AJ2

of the S-X model studied by Abrikosov. ' We find this
generalization of the hopping integrals necessary in order
to model the more complex energy band and Fermi-
surface geometry of the real materials. This section is or-
ganized parallel to Sec. II for the one-layer model. We
wi11 discuss in three subsections the superconducting
state of the infinite solid, the normal state of the semi-
infinite solid, and last the superconducting state of the
semi-infinite solid.

A. Bulk suyerconducting yroyerties

The model Hamiltonian is a straightforward generali-
zation of Eqs. (1) and (2). We write H =Ho+ V, where
the band energy term is

00

Ho=+ g g go(&)gi~„(&)$1„(&)
kcr j=1 n =1

FIG. 1. A schematic drawing of the two-layer model under
consideration.

+g[J)gj~) (&)pi2 (&)
jkcr

+J2yjpg(lr)yJ+] ](,(~)+H c ] (34)

where n =1,2 is the layer index within a unit cell. The
interaction term is present only in the S layer, which is
labeled by 1:

layer case:

G„„(k,r r') = ——( T[$„(k,~)Qt„(k,~')) ),
F„„(k,~ ~') = ( T [g„(k,~)g„(—k, ~')] &,

where

(36)

V= ——g QA, OQ ) (k)gji ( —k)
1

jcr kk'

X pi) (
—k')QJ) (lr.'), (35)

where only the S layers have the pair coupling strength
A,o, which is cut off at energies differing from Ez by co~~.

The interaction V leads to s-wave intralayer pairing, al-
though the main effect under discussion is independent of
the pairing symmetry.

The bulk properties of this model have been discussed
elsewhere. ' ' A brief summary will be given here for
completeness. The quasiparticle Green's function matrix
elements are defined as in Eq. (3) for the one-layer case:

„(k)=0' gP (k)
k

(37)

5=A, g(g, (k')g, (
—k')&= '+F„(k', ) .

k' k'v
(38)

The inverse of the Green's function matrix has the form

In the above equation s is the thickness of the unit cell in
the c direction, and d is the separation between layer 1

and layer 2 within the same cell. The separation between
adjacent layers in adjacent cells will be denoted by
d'=s —d. The spin index is suppressed in the Green's
function matrix elements. We define the order parameter
6 for the S layers by

'(k, v)=

i v $0(&) —g —(k, )

—g'(k, ) iv —go(k)

0

0

iv+$0(k) g (k, )

g (k, ) iv+$0(k)

where the quantity
d'

g (k, )=J&e ' +J2e * =e~(k, )e— (40)

J2sink, d' —J
&
sink, d

tan (k, ) =
J2cosk, d'+ J,cosk, d

(42)

with

&j (k, )=[J&
+J2 +2J,J2cosk, s]'i (41)

The functions +@~(k, ) represent the dispersions of the
two tight-binding bands in the c direction.

The inversion of the Careen's function matrix is
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straightforward. Putting the results in Eq. (38), we
deduce the following gap equation:

[v +pc(k)]h
(43)

kp

where the sum on the Matsubara frequencies v is under
the constraint that ~v~ (coII. The quantity D is the deter-
minant of the inverse Green's function matrix:

D —
( v2+ g2)2+ 2e2( v2 g2) +E4+ g2(v2+ g2) (44)

We will choose the OP to be real. The subsequent in-
tegration over the two-dimensional bands brings in the
DOS factor N(0) =mo/2ms, but e~(k, ) remains explicitly
in the gap equation. Consequently, the c-axis dispersion
of the quasiparticle bands enters the superconducting
properties in a number of ways to be discussed later.

The critical temperature T, is solved from the linear-
ized version of Eq. (43), which is

tion are in Ref. 13. In Fig. 2 we show N, (ro) for the S
layer in the top panel and Nz(ro) for the N layer in the
bottom panel for the set of model parameters
J, /T, o=0.5 and J2/T, c= 1. Shown in Fig. 3 is the total
DOS N, (ro)=Nt(ro)+N2(ro) A. ll three curves have the
double peak structure observed in many layered super-
conductors, including YBCO, BSCCO, and the layered
organic superconductor a-(BEDT-TTF)zCu(NCS)z which
has T, =11 K. The structure originates from two types
of pairing states, intraband pairing, which gives rise to
the inner peaks, and interband pairing which gives the
outer peaks. The relative weights of the two sets of peaks
are different in different layers. The S layer shows
stronger interband peaks, while the X layer has stronger
intraband peaks. The signi6cance of this result will be
discussed further in connection with tunneling experi-
ments. The DOS curves in all cases vanish inside the
threshold values +co", where

1=—,'A,oN(0) f tanh d(o
ro" =

—,'[+4(J,—J~) +b, —b, ] . (49)

X
m/'s s dkz 1 Q)+—((.ts 2m' co ro~ —p~(k )

The system is gapless if J& =J2. The intraband pairing
peaks appear at +cop where

oN (0)a,
II

( T,o) = 1, (46)

where a II(T) =in(2yroII/m T), and y = 1.78. We use T,o to
set the energy scale in our numerical analysis. With in-
creasing hopping, T, is lowered steadily from the zero
hopping limit T,p. In the limit of strong hopping, i.e.,
J],J2 »m~t, the critical temperature is solved from

(45)

where P, =1/T, . It is seen that the c-axis band disper-
sion enters the T, equation as a pair breaker. This effect
has been discussed previously by the present authors for a
general two-layer model. ' ' In the limit of zero hop-
ping the critical temperature is solved from

25~ ~

CD

1.5z
1

R
0.5

J /T =G5, J /T =l

~(0)aII(T,„)=1 (47)
I I I

I
I I I I

I
I 1 I I

I
I I5 1 I

I
I I ( (

-3 -2 -1 0 1 2 3 4
I I

I
I 1 ( I

N„(ro) =—Qlmo„„(k, v)
~

=1
kn

(48)

where n =1 or 2, and 5=0+. The details of this calcula-

It can be seen that T, (T,p. In the intermediate hop-
ping regime, T, falls monotonically with increasing J's
for a fixed ratio of J& /Jz.

The OP 6 at zero temperature depends also on the
hopping strengths. In the zero hopping limit, Eq. (45)
reduces to the BCS gap equation for the S layer alone.
Similar to T„h decreases steadily with increasing hop-
ping. In the in6nite hopping limit, the OP corresponds to
that of a BCS superconductor with the pair coupling con-
stant equal to —,'A,p. The temperature dependence of the
OP, b, (T), has the typical BCS behavior. '

The DOS curves in the superconducting state for the
two kinds of layers are calculated in the same way as the
one-layer case:

CD 3-z
3 2—
z"

0 I ( ( ( ( I ( ( ( ( I I ( ( ( ( I ( ( ( ( I

-3 -2 -1 0 1 2 3
co /T

cO

FIG. 2. The density of states curves in the superconducting
state for the S layer and the N layer of the two-layer model in
Fig. 1. The model parameters are J, /T p=0. 5 Jp/T p=1, and
AoN(0) =0.S. The quantity T,o is the critical temperature when
all interlayer hoppings are turned ofi; as defined in Eq. (46).
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J /T =05
ca

J
~

/ T
0

I

0 '

4 -3 0 1

(0/ T
2 3 4

FIG. 3. The total bulk DOS for the two-layer model in Fig.

2

4(Ji +J2)

1/2

The interband pairing peaks occur at +co+, where

co+= —,'[1/ 4(J, +J2) +b, +5] . (51)

Both sets of peaks are logarithmic singularities.
Another way to understand the multiple peak structure

can be obtained from an analysis of the quasiparticle
band structure. Consider the determinant D of the in-
verse Green's function in Eq. (44). After replacing the
Matsubara frequency v by ice, where ~ is the real fre-
quency, the quartic equation D(co)=0 gives four
branches of quasiparticle bands with energies

greater than 3.5T„while 2roo, which has been called the
inner gap feature, is always less than 3.5T, . '

We have chosen the hopping parameters J& and Jz to
be in the range where the double-peak structure of the
DOS is clearly demonstrated, even exaggerated compared
with experiments. The structure disappears in the ex-
treme band limit, J&,Jz))T„as shown by the present
authors in Ref. 22. While it should be possible to extract
the hopping strengths from a band calculation, there are
two practical difBculties in making a convincing estimate
this way. These are the following: (1) Both YBCO and
BSCCO have more than two layers in a unit cell, and it is
not clear how to simulate them realistically with a two-
layer model; and (2) the band splittings of real materials
vary in the k„,k» plane so that all hopping parameters
are k dependent. The values we have chosen are inter-
mediate between the strongest and the weakest hoppings
in the two-dimensional Brillouin zone. In addition, we
have shown in Ref. 16 that the hopping parameters need-
ed to fit the penetration depth of YBCO fall in the same
energy range. These parameters are J, /T, o

=3.0,
J2/T, 0=2.6, and p=5, where p is the ratio of the quasi-
particle effective masses of S and X layers. Bear in mind
that we have used an oversimplified model in which the
energy band of the normal chain layer is approximated by
an isotropic free particle band. A more realistic calcula-
tion, which treats the normal layer as tight-binding
chains, would require larger hopping parameters, closer
to those found in band calculations. Due to all of these
limitations imposed by the two-layer model, we do not
expect the same set of parameters to fit both DOS and
penetration depth results. Nonetheless, the fact that they
do agree in order of magnitude gives us confidence that
our discussion of the DOS structure is realistic.

co (k)=go(k)+@i(k, )+—,'6 +R (k),
where

R2(k) [$2(k)++2]e2(k )+ & Q4

(52)

(53)

B. Normal state of semi-in6nite system

The formulation of the semi-infinite problem follows
the same steps as the one-layer system. We define

Two of the bands with co & 0 are above the Fermi energy,
and two bands with co&0 are below the Fermi energy.
Consider the two bands above the Fermi energy. The
bottom of the lower band, "—"sign in Eq. (52), corre-
sponds to the threshold of the DOS curve, ~" in Eq. (49),
while the top of the lower band determines the position of
the inner peak, coo in Eq. (50). The bottom of the upper
band, "+"sign in Eq. (52), is the position of the inter-
band pairing peak, co+ in Eq. (51). For the chosen set of
parameters, the top of the upper band is outside the ener-

gy range of interest. Thus, the DOS of multilayer super-
conductors is intrinsically complex because it exhibits
Van Hove-like singularities of the quasiparticle bands.
The logarithmic behavior of the peaks results from the
quasiparticle band dispersion along the c axis. It is not
appropriate to interpret the structure of the DOS as evi-
dence of multiple gaps or gap anisotropy. In this connec-
tion, it should be noted that the quantity 2A at zero tem-
perature is equal to 3.5T, in a weak-coupling theory.
The quantity 2'+, which has been identified in junction
tunneling experiments as the gap feature, is always

and

(iv —go)G, '„(k,v)=5 '5,„.+J,G 2 „.(k, v)

+J2GJ & 2 1'„.(k, v), (55)

(iv —go)G 2 '„(k,v)=5 '52„.+J,G, '„(k,v)

+J2G, +i i 1'„(k,v),
for j+1. For j=1

(iv go)G() J'„(k,v—)=5,
~ 5(„+JG,2 J'„.(k, v),

and

(56)

(iv —g )G,2 '„.(k, v)=5)'52„.+J)G, ) '„.(k, v)

+J262, '„(k,v) . (57)

G „'„(k,~ ~') = —( T [g „(k,~)1i '„(k,~')]),
where n =1 is an S layer. The equations of motion of the
normal state (b.=0) Green's functions are, in terms of
the Fourier transforms,
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(iv g—o) =Ji+Jz+2J]J2cosk, s=ei(k, ) . (59}

The quantity ei( k, } was defined in Eq. (41). The
coefficients A„satisfy

iP(k )32= A1e

where P(k, ) was defined in Eq. (42). The inhomogeneous
equation, the top equation in Eq. (57), allows a complete
determination of the coefficients A„. To avoid repetition,
we will only present the results of the calculation:

(60)

and

ik s
G12, 11= e '

~

J2
(61)

All other members of 6 „11can be written down accord-
ing to the formula in Eq. (58). Similarly, for j'= l, n'=2
we find

and

ei(k, )
612, 12

1 2
(62)

611,12 612, 11

For later purposes, we need to write down the general di-
agonal elements. These are

and

J$J2$ink hei(k )

i(j —1)k s
X [J,sinjk, s+J2sin(j —1)k,s]e

ei(k, }sinjk,s

J J2sink, s

(63)

Consider j' = 1 and n ' = 1. The homogeneous equations,
Eqs. (55) and (56), are solved by

ik [(j—1)s+d(n —1)]
jn, 11 n 7

where

The relation between the energy co and the c-axis momen-
tum k, is

(a) —go) =ei(k, ) . (68)

It is interesting to work out the integral in Eq. (65) for
a few specific values of j. For instance,

2J, sin k,s s dk,
N, i(ci))=N(0) —m/s J1 +J2 +2J,J2coskzs 2

(69)

The result of the integral is 1 if J
&

& J2 and J
& /J2 if

J, &J2. This indicates that in the latter case, some elec-
tron states are missing. A close examination reveals that,
under the condition J1 &J2, a band of surface states is
formed with k,s =n+i~, where «= in(J2/J, ). This
surface band has ei(k, )=0. Recall that the quasiparticle
band energies in the infinite system are given by
go(k)+ei(k, ), and the Fermi surfaces form two corrugat-
ed cylindrical sheets. Thus the surface band intersects
the Fermi energy on a circular cylinder in the middle of
the two sheets. They contribute to N»(k, ) as a 5 func-
tion at ei( k, ) =0 with the weight 1 —r, where r =J, /J2.
Similarly, in the S layer of the jth cell the weight of the
surface band is (r) J(r 1). On t—he other hand, the in-
tegral in ¹~2is always equal to 1. This means that the
surface states have no weight in all X layers of the sys-
tem. The wave function of the surface band is sketched
in Fig. 4. The surface states do not form under the oppo-
site condition, i.e., J1 J2. We will show that the ex-
istence of this surface band has a strong inhuence on the
superconducting properties near the surface.

It is worth emphasizing here that the complex wave
vector k, and the wave function of the surface state are
entirely determined by the bulk band structure. In real
materials the surface may undergo relaxation and/or
reconstruction so that the hopping parameters near the
top layer may be modified from those of the bulk. In this
event, only the relative weight of the surface state versus
the bulk state would be changed. As long as J1 &J2 near
the top layer, the surface state exists and its physical
properties, such as its decay length and its vanishing

The density of states in the layers are calculated like
the one-layer case. We employ the same procedure
which led from Eq. (20a) to Eq. (20d) to transform the re-
sult into

05
V

J /T =05, J /T =1
1 co ' 2 co

N „(co)= J N „(k,) (65)

where

2[J
&
sin jk,s +J2sin( j—1)k,s]

N, (k, ) =N(0)
ei(k, )

(66) -0.5
lr

S N S N S N S N

and

NJ2( k, }=N (0)2 sin (jk,s) . (67)

FIG. 4. The wave function of the surface band for the model
in Fig. 1 with J&/J2=0. 5, plotted versus the layer index. The
wave function vanishes on all normal layers.
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weight on even layers, remain intact. We will return to
this point in our discussion of three- and four-layer mod-
els.

C. Superconductivity near the surface

The quasiparticle Green's function matrix elements are
defined in the familiar way:

expanded into components yields the following set of
equations for the Green's functions:

(iV g—o)Gji j n +5»F»1»n. —J1Gj2 j.n —J2Gj

jj' 1n' &

5jGj 1 j n + ( i V +$0)Fj 1 j.n. +J1Fj2 j.n. +J2Fj 1 2 j n
=0,

(76)

Gj„j„(k,~—~') = —( T[fjn~(k, ~)gj „(k,~')] &,

,„,„.(k, ~—~ ) = & T [yj„.(k, ~)yj,„, .( —k, ~ )]&,
(70)

(&V go)Gjgj'n' J1Gj l,j'n' J2Gj+1, 1 j'n'=&jj'&2n' ~

(iv+ gP)F»2 j n +J1Fji j n +J2Fj+11j'n'=0,

which can be taken as
function matrix has the

~11 ~21

'(k, v) = 0

0 0

real. The inverse of the Green's
form

0 0 0

E32 0 0

t43 0

f34 f44 E54

(72)

where the Ej' Are 4X4 matrices defined by

'iv go(k)—
—J1

—J1

iv —go(k) 0

0

0

where the spin indices are suppressed. The indices j and
n label the unit cells and layers within each cell respec-
tively, n =1 being the S layer and n =2 the X layer. We
define the jth S layer order parameter 6 by

Aro gF 1 1(k,v), (71)
kv

for j%1 and for j=n =1

CO)G1 1 j' '+~1Fll j' ' J1G12,j' ' ~lj'~1
(77)

61G11 j.„.+ (i v+ $0)F1, '„+J1F12 '„.=0 .

The matrix inversion problem in the superconducting
state is hampered by the fact that the hj's are expected to
vary with j. To render the calculation tractable, we make
a 1ocal approximation such that we approximate a11 OP's
by 6 in deriving the gap equation for the jth cell. The
rationale of this procedure is that the OP of each layer is
affected mainly by the electronic structure of that layer
and less so by the two adjacent X layers. The approxima-
tion treats the "immediate environment of the S layer ex-
actly, while the much reduced efFects of the more distant
S layers are handled approximately.

We summarize very briefly the algebraic procedure for
solving the equations for the Green's functions. Consider
the case j' =n

' = 1. We replace b, in the homogeneous
equations in Eq. (76) by 51. The equations are then cast
into a matrix diagonalization problem, with the following
eigenvectors:

and

0

iv+ go(k ) J1

J, iv+ go(k)

(73)

i (j —1)k+ s i(j —1)k s
Gjn11 gn +e +gn —e

i (j —1)k+ s i(j —1)k s
Fjn» f„,e ——'+fn e

where k+ satisfy the equations

0 —J 0 0 (k )=g — k2'[ g +—'6 (g + )]' (79)

T 0 0t, ,+1=k, „= 0

0 0

0 0
0 J2
0 0

(74)

The evaluation of the Green's function matrix elements
follows the same procedure as that for the one-layer sys-
tem. We define a Green's function matrix by Eq. (24a)
except that every matrix element Gjj is a 4X4 matrix of
the form

T- (iv —go)e
[(iv+$0)2 ei(kg )], —

The coefficients g and f are determined within a common
factor from Eq. (76), and are completely determined by
the inhomogeneous equations in Eq. (77). The important
ones are

f,~ = ' [v'+0', ],
D~Gjl, j'1

GJ»,'1

F)1,j'1

F) 2) ~ FJ»J 2

GJ 1,,'2
GJ»,'2

J»J &

FJ1 ).2

J») 2

(75)where
D+ =4iJ2(J1+J2e * )[v go+ —,'51($0+v )]' (81)

Gj» j'1Fj»)1

where, as for the one-layer problem in the last sec-
tion, F„„.(k, v) =F"„'„.(k, v) and G „„.(k, v)
= —Gj„'„.(k, —v). The matrix identity C '0 = 1, when

We use these results to set up the gap equation for 5, and
calculate the DOS for the top layer. Similarly, by ap-
proximating all 6's by 6), we determine GJ, J, and FJ-, J,
for the S layer of the jth unit cell.
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A generalization of the integral transformation intro-
duced in Eq. (31) allows a significant simplification of the
results. The gap equation for the jth layer is

Of, tanh de f dgo f N, (k, )

[~2 g2]g

Dj

where, in analogy with Eq. (81),

(~2 g2)2 2e2(~2+ g2)+E4 Q2(~2 g2)

(82)

(83)

X r J(r 1)—

2 2 2a) —
go

—b,
(84)

and NJ i(k, ) is the nornial-state DOS of the S layer in the
jth unit cell in the neighborhood of k, defined in Eq. (66).
Recall that, in case J& &J2, a surface state exists in the
band gap and NJ i(k, ) has a 5 function term at
k, s =n+ia. This gives rise to an additional term on the
right-hand side of Eq. (82), namely,

The OP 52 of the S layer in the next cell is not very
different from b, . Beyond the second unit cell, the surface
effect is negligible. The fact that 6, is larger than 6 is
consistent with the top layer having a higher transition
temperature T„ than the bulk T„a result which we ob-
tain from Eqs. (82) and (84) without the local approxima-
tion. This effect has negligible consequences in bulk mea-
surements on bulk samples, but may affect results on thin
samples or surface-sensitive measurements on bulk ma-
terials.

The DOS of the nth layer in the jth unit cell at T =0 is
calculated from Gj„„.The formula for the top S layer,¹j] j&

is very complicated, but it has the same structure
as the right-hand side of the gap equation, namely, that
there is an additional BCS-like contribution from the sur-
face band with 6& as the energy gap. Since 6, & 5, which
is the bulk OP, and the fact that the main peak in the
bulk DOS falls at nearly one-half of 6, the surface DOS
would exhibit gap features at nearly twice the energy as
the bulk DOS. In Fig. 6 we compare the top layer DOS
with that of the bulk superconductor. Panel (B) shows
the bulk DOS in Fig. 3, which is the limit of
N~i(co)+N/2(co) for j~ 00. Panel (A) is the DOS of the
top layer, N»(co), which has only one set of peaks at a
much larger gap value. There is only a hint of the bulk
DOS in the background, indicating that the top layer is

where r =Ji/J2. The added term in Eq. (84) does not
contain the pair breaker e~ in the T, equation for the
bulk, Eq. (45). The reason for this is that the surface
state has no weight in the normal layer, with the result
that its contribution to superconductivity is not diluted
by the normal layers. This causes the gap 5 near the
surface to be higher than that of the bulk.

The integral over go in Eq. (82) can be performed
analytically. The resulting gap equations have been
solved at T=0 and the results are shown in Fig. 5 for a
range of J's while holding Ji /J2 =0.5. The top S layer
OP, denoted by 5„ is signi6cantly larger than the bulk
OP b, when the hopping strengths are comparable to T, .
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FIG. 5. The OP of the top two S layers 5& and h~ and that of
the bulk 6 for the two-layer model in Fig. 1 plotted as functions
of J, for a fj.xed ratio Jl/ J2=0.5.

FIG. 6. The DOS curve in the superconducting state for the
top S layer (A) compared with that of the bulk (B) for the model
in Fig. 1.
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efFectively isolated from the rest of the system, and justi-
fying the local approximation. We also performed simi-
lar calculations for J, ~ J2, for which there is no surface
band, and found that 6& is only slightly enhanced and the
DOS is indistinguishable from that of a bulk supercon-
ductor. Further discussion of the physical consequences
of our findings will be the subject of Sec. V.

Equally interesting is the case where the top layer of
the semi-infinite solid is nonsuperconducting but carries a
surface state. The gap equation for the S layer in the jth
unit cell is similar to Eq. (82) except that the factor
NJ, (k, ) is replaced by N&2 in Eq. (67). Numerical calcula-
tions show that even the energy gap 6& of the S layer
closest to the surface has essentially the bulk value. The
DOS curve of the top N layer, shown in Fig. 7, exhibits
the surface state contribution in the form of a uniform
background of the value N(0)(1 —r ). The physical
significance of this result will also be discussed in Sec. V.

IV. THE THREE- AND FOUR-LAYER MODELS

The one- and two-layer models are oversimplifications
of most real high-T, materials. The most important ma-
terials, YBCO and BSCCO, both have two superconduct-
ing Cu02 layers in a unit cell. In addition, YBCO has a
conducting CuO chain layer and BSCCO has two BaO
layers in a unit cell which are either conducting or semi-
conducting. Therefore, we need to extend our findings of
surface state effects to models with more than two layers
in a unit cell. A schematic diagram of a three-layer mod-
el is shown in Fig. 8. It has two S layers and one N layer
in a unit cell. Inversion symmetry of the crystal demands
that the two hopping integrals between the N layer and
its two adjacent S layers be equal, i.e., J2=J3 in Fig. 8.
In addition, the N layer has a distinct electronic structure
from the S layers, and we simulate this by offsetting the
two-dimensional energy band of the N layer by an
amount eo from that of the S layers. The c-axis repeat
distance is denoted by s.

The present authors have reported detailed analyses of
the superconducting properties of three-layer and four-

FIG. 8. The unit cell of a three-layer model. Inversion sym-
metry requires that certain hopping integrals be equal, e.g.,
J2 =J3 in this example.

layer models in the strong hopping limit. It was found
that in general the DOS curves possess structures inside
the main peaks due to the band dispersion in the c-axis
direction. The formulation of the general hopping prob-
lem is rather complicated, but by analogy with the two-
1ayer problem, we conclude that there should be addition-
al peaks in the DOS curves due to interband pairing. For
instance, there are three bands in the three-layer model
with three distinct interband pairing possibilities. Conse-
quently, the DOS curve is expected to have considerably
more complex structure than that of the two-layer model.
Figure 9 shows a typical DOS curve for the three-layer
model. The curve has been folded with a resolution func-
tion whose width is approximately 0.05T,O to simulate ac-

SSN Model J = J =4J
2 3 1

1.6

o 12z

0.88
z

/T =1

CO

z 3-
s
z" 2-

J /T =05.
1 c0

0.4 -4 -3 -2 -1 0 1 2 3 4
CA/T

-3 -2 -1 0 1

(0/ T
2 3 4

FIG. 7. The DOS curve of the top N layer of a semi-infinite
system whose top layer is nonsuperconducting but carries a sur-
face state.

FIG. 9. The bulk DOS curve in the superconducting state for
a three-layer model with two S layers and one N layer per unit
cell. The model parameters are J& =J2 =2T,p, J3 =0.5T,p, and
Ep =0, where T,p is the critical temperature with all hopping
turned ofF. The gap features are artificially broadened by
6=0.05T,p to simulate experimental resolution.
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tual experiments. The shoulders inside the inner peaks
have been seen in the junction tunneling data of Gurvitch
et al. and Valles et al.

It is too tedious to solve the surface superconductivity
problem in detail. We can, nevertheless, take advantage
of what we have learned from our previous analyses of
the simpler models to draw definitive conclusions about
possible surface effects. It was shown that the energy gap
on the top S layer is enhanced provided that (1) a surface
band exists whose charge density is concentrated in the
top layer, and (2} the energy of the surface band does not

I

contain the c-axis band energy which causes depairing.
We will apply these two criteria on two models depicted
in Fig. 10. The model (A) has an S layer on the top fol-
lowed by an N layer. The third layer in the unit cell is an
S layer below the N layer. The model (8) has an N layer
on the top followed by two S layers.

We begin our discussion of surface state effects by ex-
amining the bulk bands because, as shown in Sec. III 8,
the band structure determines the important physical
properties of the surface states. The band Hamiltonian
for model (A} is

~0 g g I. CO(~Wj 1Aj lrr+(40(~)+eOWj 2rrfj2o +CO(~Wj3rrfj3rrl
ko j=1

+~~ l&Jl~~J2~+ 2~i2~~/3~+ 3~J3~&i+»~+
jko

'(k, co)=
CO

—$0(k)

J)
ik s

J3e

J(
OJ

—$0(k) —
eO

—ik s
J3e

Inversion symmetry requires that the hopping integrals
satisfy the relation J&=J2 ~ The first step in the search
for surface bands is to determine the bulk band structure.
This is done by solving for the zeros of the inverse of the
bulk Green's function in the normal state, given by

I

The problem reduces to the solution of a cubic equation;
the resulting energy bands are

Q„(k)=go(k)+co„(k, ),
for n =1,2, 3. The c-axis part co„(k, ) forms three bulk
energy bands shown in Fig. 11, with band gaps at k, =0
and k, =n/s Surf.ace. states may exist in one or both of
the band gaps.

The solution of the surface problem is similar to but
much more complex than the two-layer model problem.
We will give the results of this calculation without show-
ing algebraic details. For sufficiently large and positive
eo, the most likely location for a surface band is in the
gap at k, =0. The energy of this band is

Q, (k) =$0(k)+MOJO,

/s 1 2 3 c0' 0 0

/s 2.5

/N
1.5

]

0.5

/s
/s
/N

(B)
92

0 a~Q)
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-0.5

0.2 0.4
k s/m

0.6 0.8

FIG. 10. A schematic drawing of two semi-infinite three-
layer models under consideration. The model (A) has an S layer
on top followed by one N layer and one S layer. Symmetry re-
quires that Jz= J&. The model (B) has an N layer on top fol-
lowed by two Slayers, with J3=J& by symmetry.

FIG. 11. The c-axis part co„(k, ) of the normal-state bulk
band structure of the three-layer model in Fig. 8. The model
parameters are J& =J2 =J3 =0.5T,o and e0=2T,O. The point coo

marks the energy and momentum position of the surface state of
model (A) in Fig. 10, and coo is the position of the surface state
of model (B)~
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FIG. 12. The wave function of the surface band for the mod-
el in Fig. 10A plotted versus the layer index. The model param-
eters are shown in the graph. The wave function is relatively
small but nonvanishing on the normal layers.

where the c-axis part of the band energy is

CO0
—

2 [QE0+J( 60] (88)

FIG. 13. A schematic drawing of a semi-infinite four-layer
model whose two topmost layers are S followed by two 1V layers.
Inversion symmetry of the crystal demands that the hopping in-
tegrals satisfy the relation J& =J4.

It can be seen that cop can be quite small if 6p is
sufficiently greater than J„as depicted in Fig. 11. The
wave function of this surface state is sketched in Fig. 12.
Its spectral weight on the top S layer is

r 2
COp COp

P11= 1+ (89)
3 1

For the next N layer,

COp

P12 P11J1
(9O)

The third S layer has P13=0. While this band of surface
states does not completely avoid the N layer as the two-
layer case, its spectral density can be sufficiently small to
cause little depairing. Under this circumstance, the sur-
face superconductivity is expected to be enhanced. The
surface band crosses the Fermi level in a surface between
the two sheets of Fermi surfaces of the S layers, as was
simulated in the two-layer model discussed in the last sec-
tion. Unlike the two-layer model, the forination of this
surface band depends sensitively on the N layer band
offset ep, rather than on the hopping parameters. This re-
quirement seems to be physically more realistic.

Similarly, we find that model (B) yields a surface state
at the point cop in Fig. 11,where

cop 2 [QE0+J~ +e ]' (91)

This surface state does not enhance superconductivity be-
cause its wave function is concentrated mainly in the N
layer. Unlike the two-layer model, where we have found
it necessary to break the inversion symmetry, i.e., J&

AJ2,
in order to find a surface state, both models (A) and (B)
are symmetric under inversion and have surface states.

We have also examined a possible model that has two S
layers on top of the N layer. No surface state has been
found. If the band ofFset ep is negative, the surface state
030 for model (A) occurs at k, =m /s and cop for model (B)
occurs at k, =0. The surface state effects remain the
same in both cases.

The four-layer model contains too many parameters to
be algebraically tractable. To keep the discussion on the
accessible level, we consider a model which contains two
S layers and two N layers in a unit cell, as shown in Fig.
13. We also ignore the normal layer band offset so that
the band Hamiltonian is relatively simple:

oo 4

0 2 X 2 4 (k0) Pjno4jnrr+ X [J14jlrrfj2rr+ J2 Pj2rr Pj 3cr+J3fj3cr Pj4rr+ J4 Pj4afj+ 1, lcr+H' (92)
ko j=1 n =1 j kyar

Inversion symmetry imposes the constraint Jz =J4 on the
model parameters. The bulk bands are given by

Q„(k)=gp(k) +co„(k,),

where

and

A =—,'(J, +J2+J3+J4), (95)

for n = 1 —4. The c-axis part co„(k, ) is given by B =J1J~ +J3J4 +2J1JpJ3J4cos z (96)

~ (k ) ~[~~~~2 (94) The c-axis part of the bulk bands, plotted in Fig. 14, has
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J = T, J = J = 2T, J = 1.5T
l eo ' 2 4 co ' 3 cO

-(0
0

0.2 0.4

ksl~
0.6 0.8

one band gap at k, =0 and two gaps at k, =m/s. Surface
states may be stable inside these band gaps.

Under the condition J2J4& J,J3, we find a surface
state with energy coo=0 at k,s =i ~ where e'

J2Jg /J ]J3 The wave function of this state, sketched
in Fig. 15, is concentrated on the top S layer. It enhances
superconductivity on the surface layer according to the
criteria discussed earlier in this section. Two other sur-
face states with energies +coo, where coo= QJ

&
+J2, are

stable under the condition J& & J3. We will not discuss
these states further because they do not enhance surface
superconductivity. Again, it is not necessary to break the
inversion symmetry in order to find surface states in the
four-layer model.

Our discussion of surface state effects has been based
on simple tight-binding models whose model parameters
remain the same on the surface. In reality, the model pa-
rameters often change due to surface relaxation and sur-
face reconstruction. The proper way to locate the surface

C
0.5

O

1
' 2 co

J /T =1.5, J /T =2

-0.5

Layer Number

13

FIG. 15. The wave function of the surface state at mo in Fig.
14. The spectral density of this state is concentrated in the top
S layer.

FIG. 14. The c-axis part co„(k, ) of the normal-state bulk
band structure of the four-layer model in Fig. 13. The model
parameters are shown in the 6gure. The points mo and +coo in-

dicate possible positions of surface states.

states on a real solid surface is to perform ab initio band
calculations, such as that done by Lindroos and Bansil
for Nd2, Ce„Cu04 (NCCO). They find su.rface states on
two Nd terminated surfaces. The energetic position and
k dispersion of one of these states are consistent with ex-

isting photoemission data. This lends support to our
contention that photoemission signals are often dominat-
ed by surface state contributions, ' a point which will be
expanded further in the next section. Furthermore, they
show that the surface states couple almost exclusively
with p-polarized photons, such that a simple test su%ces
to determine whether a photoemission signal comes from
bulk or surface states. They also report that no surface
state has been found on YBCO surfaces, a result which
explains why, in spite of repeated efforts, the supercon-
ducting gap has not been observed by photoemission on
this material.

V. DISCUSSIGN

In this final section we discuss the physical conse-
quences of our findings concerning the effects of surface
bands on the observed superconducting properties of lay-
ered superconductors. Of particular significance are two
surface-sensitive experiments, namely, tunneling and pho-
toemj. ssion.

The presence of surface states can affect the outcome
of tunneling measurements of the gap, depending upon
the type of junction and the tunneling surface geometry.
With point-contact tunneling along the a, b axes, tunnel-
ing into the bulk 5 and X layers leads to a fairly accurate
measurement of the bulk tunneling DOS, as pictured in
panel (B) of Fig. 6. For point-contact tunneling with the
tip along the c axis, different results are expected due to
surface effects. Such differences are most pronounced
when the tip is near a crystal growth seam the height of
one c-axis unit cell. In this case, it is likely that the tun-
neling current comes predominantly from within the top
S layer (perpendicular to the c axis). Since the electronic
structure of this layer is dominated by surface state
effects, the resulting DOS curve is expected to resemble
that in panel (A) of Fig. 6, or with that in Fig. 7, depend-
ing on whether the top layer is an S or an N layer, respec-
tively. With junction tunneling along the c axis, the bar-
rier often reacts chemically with the top surfaces (e.g., re-
moving oxygen), destroying the surface state, although an
interface state, which has the same physical properties as
a surface state, can be formed. Thus, junction tunneling
along both the a, b and c-axis directions should give simi-
lar (although not necessarily identical) bulklike DOS re-
sults, provided that good junctions can be prepared and
the tunneling current penetrates more than a unit cell
depth. Break junction results along the c axis ~ould be
sensitive to surface states, whereas those along the a, b
axes would not.

Both point-contact and junction tunneling experiments
have been reported for BSCCO in the c direction. The
junction tunneling results of Tao et al. reveal a gap at
approximately 40 meV, in agreement with the a, b plane
tunneling result, 35 meV reported by Chen and Ng.
Both papers show tunneling characteristics with Y-
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shaped bottoms. The point-contact result reported by
Hasegawa et al. shows tunneling curves with fiat bot-
toms and gap values in excess of 50 meV, close to the
value of 55 meV obtained by Mandrus et al. for an a, b-
axis break junction. Those authors did not observe any
c-axis break junction gap structure, but that may be a
feature of the cleaved Bi-0 surface layer on each junction
half. Two recent reports on point-contact tunneling mea-
surements along the c axis of BSCCO lend support to
published data. Murakami and Aoki examined a region
of the (001) surface of a BSCCO single crystal, in which
the cleave resulted in a step the overall height of one-half
of a c-axis unit cell. On the top and bottom portions of
the step, the Bi-0 surface was exposed and the step ex-
hibited a semiconducting gap of about 100 meV when the
tip was far from the surface. As the tip approached (and
may have crashed) the Bi-0 surface, this semiconducting
gap evolved into a superconducting gaplike structure,
with a V-shaped bottom and rather sharp peaks at 40
meV. On the other hand, when the tip was placed above
the intermediate step region (roughly halfway between
the Bi-0 surfaces), the tunneling characteristics were
very different. In these cases, the tunneling current did
not depend upon the tip position, either on its height or
its location above this step, and showed peaks at +40
meV, but flat bottoms of width 20 meV. Similar results
were also seen by Hasegawa et al. Assuming the most
likely scenario that the intermediate step corresponded to
a CuOz plane, these results strongly suggest that proximi-
ty coupling between the top (narrow gap semiconducting)
Bi-0 layer with the superconducting CuOz layers is
occurring, and the superconductivity within the CuOz
layers is nodeless, or s-wave like.

The situation with YBCO is quite similar. The junc-
tion tunneling data of Gurvitch et al. revealed a gaplike,
temperature-dependent feature at 4—5 meV, with a large
zero-bias conductance, very similar to the DOS curve
shown in Fig. 7 for a surface (or interface) state on the
top N layer. This behavior was also seen with c-axis junc-
tions on YBCO (001) films. ' On the other hand, point-
contact tunneling along the c axis ' of some (001) films

gave semiconducting gaplike behavior when the tip was
far from the surface, but superconducting gaplike struc-
tures at +20 meV with a large zero-bias conductance
when the tip was closer to the surface. On other YBCO
(001) films (grown at relatively low temperatures), howev-
er, a clear superconducting gap of 40 meV with an ex-
tremely fiat bottom and low zero-bias conductance (less
than 1% of the background) was seen. Such behavior
was also seen when the tip was along a seam comprising a
step of a c-axis unit cell in height (and hence involved
tunneling primarily into the CuOz layers). Point-contact
tunneling into the a, b axes of (110) YBCO films gave
V-shaped gaplike features with large zero-bias conduc-
tances, indicative of the relative importance of the nor-
mal CuO chains. Hence, both the tunneling results for
BSCCO and YBCO are consistent with our model of s-
wave superconductivity in the CuOz layers, with proximi-
ty coupling to adjacent 2V layers, and with surface states
on the top atomic layer on the (001) surface.

In our model no surface band can exist in a system

with one S layer per unit cell and no X layers. The model
can be realized if the interstitial region between S layers
is insulating, with large insulating gap. Band calculations
predict such an electronic structure for underdoped
HgBazCuO4+& (Hg1201). With increasing doping of
Hg1201, the band gap decreases, until at overdoped
Hg 1201, the Hg-0 chains hybridize with the CuOz
planes. We predict that, for underdoped and perhaps
optimally doped Hg1201, there should be no difference
between the surface and bulk DOS, and both are BCS like
for intralayer s-wave pairing. This prediction is in agree-
ment with the point-contact tunneling measurements on
Hg1201 by Chen et al. , which showed the strongest
point-contact tunneling evidence for s-wave superconduc-
tivity in a cuprate. We have not investigated the possibil-
ity of surface states in the case in which the interstitials
were narrow-gap semiconductors, having energy bands
near the Fermi surface. The ab initio calculation of I.in-
droos and Bansil for NCCO fills this void nicely. They
found that one surface state on a top Nd surface was con-
sistent with photoemission experiments on NCCO.
Such surface states might account for the point-contact
tunneling results of Zasadzinski et al. , which showed
rather BCS-like behavior but with a nonvanishing zero-
bias conductance and a U-shaped bottom, somewhat
different from that observed in Hg1201.

Photoemission experiments are also vulnerable to sur-
face state effects. ' While the incident photons may
penetrate several or many unit cells into the sample, the
outgoing electrons escape from the top few atomic layers.
The situation is especially acute in cases where the c-axis
transport have considerable incoherent character such
that the escaping photoelectrons will only contain phase-
coherent information from the top single atomic layer.
Also, in photoemission experiments on high-T, supercon-
ductors, one does not see the gap directly, but infers the
existence of a gap by a shift of the peak as one traverses
T, . All such experiments are carried out on cleaved (001)
surfaces, which are most sensitive to surface state effects.
In case the surface conducting layer is an N layer, the
DOS of the top layer is gapless and would result in no ob-
served shift in spectral peak. Indeed, all angle-resolved
photoemission experiments on YBCO, oxygen-deficient
YBCO, YBazCu408, and NCCO have failed to see the su-

perconducting gap. While in NCCO the failure to ob-
serve the gap might be due to the smaller value of T, (and
hence the gap), in the other materials the T, values were
comparable to that of BSCCO, the only material in which
the apparent observation of the superconducting gap by
angle-resolved photoemission spectroscopy (ARPES) ex-
periments has been reported.

For YBCO the Fermi surface predicted by Pickett
et al. contains two CuOz bands, a CuO chain band, and
a "post" and near the S point. Whereas early ARPES
measurements on YBCO (Ref. 37) claimed to observe the
Fermi surface at the S point and part of the chain band,
the only Fermi-surface crossings observed in that experi-
ment, which proved to be correct in light of later experi-
ments, were the two CuOz Fermi-surface crossings.
The CuO chain band was only observed in 2D-ACAR
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J, (k) =J2 —J'
~
cosk„a —

cost a ~, (97)

with J' )0 so that J, (k ) (J2 over the two-dimensional

(two-dimensional angular correlation of annihilation radi-
ation) (positron annihilation) experiments, and the Fer-
mi surface near the S point may have been seen in de
Haas —van Alphen "bomb" experiments. Similarly, the
existence of the Fermi surface in the ET-based [ET:
bis(ethylenedithio) tetrathiafulvalene] organic supercon-
ductors has been well established by de Haas —Shubnikov
oscillations ' and de Haas —van Alphen measurements"
but not in ARPES experiments. Hence, there are prob-
ably a number of reasons why some or all pieces of the
Fermi surface of a material might be difticult to observe
in ARPES experiments. Subsequently, Gofron was able
to observe two bands near Ez close to the Y-S and X-S
directions, but not along the I -S direction. The fact that
no one has observed any difference in the quasiparticle
dispersions above and below T, is consistent with our
surface picture, that either the top surface is semicon-
ducting or normal, or that is supports no surface state.

Similar two-band Fermi surfaces were predicted in a
calculation of the electronic structure of BSCCO, both
with and without mixing of the Bi-0 bands with the
Cu02 bands. Dessau et al. claimed to observe both Cu02
bands, which touched each other along the I"-Xand I - Y
lines as predicted, due to the high crystal symmetry of
these directions. However, recent measurements by
Ding et al. have disputed this. Furthermore, there
have been reports by Aebi et al. and by Kelley et al.
of similar experiments such that the Fermi surfaces, su-
perconducting gap functions, and interpretations extract-
ed from these four groups all differ from each other.
While none of these measurements claimed to be able to
see the Bi-0 band, it is possible that the top surface Bi-0
layer is a narrow-gap semiconducting layer, consistent
with the tunneling measurements. ' ' The Bi-0 bands
in the bulk of the sample may cross the Fermi energy as
predicted, but the ARPES experiments do not probe
deep enough to see even the second Bi-0 layer. To com-
plicate the situation further, the Bi-0 layers exhibit an in-
commensurate lattice distortion, which greatly affects
the analysis and may account for some of the differences
in the interpretation of experimental results from the
different groups. There is an additional materials prob-
lem with BSCCO, that it is not a stoichiometric com-
pound. Many physical properties on different com-
pounds may appear at first sight to be rather similar, yet
differences in other properties may lurk in the back-
ground. For instance, most samples have T, values in the
range 80—85 K and semiconductinglike c-axis resistivity
characteristics, but crystals with T, values of 97 K and
metallic c-axis resistivities have been reported. '

With these caveats in mind, we shall try to present a
possible interpretation of some, if not all, of the ARPES
experiments on BSCCO. In the theory and in some of
the experiments, ' ' the Cu02 bands touch along I -X
and I -Y lines. Figure 16 shows a possible manifestation
of this electronic structure, in which J& and J2 are func-
tions of k, k~ such that

Charge Density of Surface States

FIG. 16. The distribution of the surface state charge density
on the top layer of a two-layer system where the hopping in-
tegrals are dependen. t on k„,k~ such that J& =J2 at a set of
points in the two-dimensional Brillouin zone. The surface state
vanishes at these points.

Brillouin zone except at four points where they are equal.
At these points the two bulk bands and their Fermi sur-
faces touch at k, =m/s as in Refs. 1, 46, and 48. Assum-
ing that the top layer is an S layer, we find that the spec-
tral weight of the surface states vanishes at just these
points. Hence, the apparent vanishing of the gap at these
points in BSCCO (Ref. l) is consistent with the vanishing
of the spectral weight of the surface states in an s-wave
superconductor. The fact that the apparent anisotropy
disappears once the surface is contaminated' also sug-
gests that the entire effect is linked to the surface band
rather than the bulk band.

The hopping parameters may depend sensitively on the
stoichiometry of the material. If in some samples the
leading term on the right-hand side of Eq. (97) is less than
J2, the two sheets of Fermi surface will not touch even
along the I -X and I -X lines, resulting in the observation
that the gap is small there but nonvanishing, as reported
in Ref. 1 for some samples. In a similar manner, if the
leading term is slightly greater than J2, the two sheets
will cross at pairs of points on either side of the I -X and
I -Y symmetry lines and the measured gap appears to be
small between these crossings, as in Refs. 47 and 52.

Our findings for the three-layer model may shed fur-
ther light on some intriguing properties of YBCO. Since
ARPES experiments have failed to observe a supercon-
ducting gap on either fully oxygenated or oxygen-
deficient YBCO, we interpret this as arising from the top
layer being an N layer (or perhaps a pair of S layers), for
which the superconducting DOS would be gapless.

Finally, another possible manifestation of surface states
in photoemission experiments might be the observation of
"extended van Hove singularities, " which are sharp
quasiparticle peaks near the Fermi energy, as observed by
Gofron et al. in YBa2Cu408 and by Dessau et al. in a
Biz(Sro 97P10 03)QCu06+s (Bi2201). In particular, Figs.
4(b) and 4(c) of Ref. 53 show that the extra quasiparticle
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peaks appear halfway between the bulk quasiparticle
bands, as expected for surface states in our model. One
ought to consider the possibility that these so-called "ex-
tended van Hove singularities" might really just be sur-
face states, and hence might not be the primary source
for the high-T, values of the cuprates.

In conclusion, both the variety of tunneling results and
the apparent gap anisotropy observed with photoemission
on high-T, superconductors are consistent with s-wave
superconductivity, provided that one takes the surface
states into account. We would urge similar experiments
be performed on underdoped and possibly optimally
doped Hg1201, for which there is only one Cu02 derived
band and no normal layers, 3 and hence such surface
states are not expected.
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