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The equations of motion of dipolar-coupled spins of I = 1/2 placed on a rigid lattice are solved
approximately in the high-temperature and high-field limit. The NMR spectra predicted by this
theory are in close agreement with both the theoretical spectral moments, up to the eighth in the case
of a simple cubic lattice, and the extremely accurate experimental results which have been obtained
in the case of Cap2. The theory is compared with the recent NMR experiment of Lefmann et al.
on C diamond. It predicts a double-peak splitting of the NMR spectrum when the field is applied
along [111], in accordance with the experiment, though the widths of the calculated resonance lines
are smaller than observed.

I. INTRODUCTION

Recently Lefmann et al. have measured the NMR
spectra on single crystals of the new material C dia-
mond. The nuclear spin of the C isotope is 1/2, and in
the case of a field applied along [lllj, the square of the
magnetic dipole-dipole interaction between two nearest-
neighboring spins in the direction of the field is an order
of magnitude stronger than the interaction between any
other neighbors. This leads to a splitting of the resonance
into two peaks, a phenomenon which has only previously
been observed in dense systems of molecules. The C
diamond constitutes a system of I = 1/2 nuclei inter-
acting through the dipole force between their magnetic
moments and, because the Debye temperature of the di-
amond crystal is high, the lattice may be considered to
be rigid. The same model applies for the NMR in CaF2
except that the I = 1/2 nuclei, the F ions, are placed on
a simple cubic lattice.

The simplest problem of NMR in solids is the one
where identical nuclei of I = 1/2 are placed on a rigid
lattice. In this case no quadrupole moment or quadrupo-
lar broadening effects have to be considered, and lattice
vibrations are neglected. The calculation of the dipolar
broadening of the NMR is, nevertheless, a complicated
many-body problem with no small expansion parameter.
Van Vleck calculated the second and fourth moments of
the spectral distribution, which indicate that the line
shape is neither Lorentzian nor Gaussian. The real-time
response function E(t), the so-called &ee-induction-decay
(FID) curve, derived f'rom experiments on CaF2, was
found by Abragam to be accurately described by the
function

5'(t) = e ' ~ sin(bt)/bt,

when the parameters a and b were adjusted so to get the
right second and fourth moments of the spectral func-
tion. In the early 1970s the calculation of the moments
was extended to include the sixth and eighth, and the
method of Abragam was generalized in order to account

for the values of these higher moments. ' Experimen-
tally, the FID curves of the standard NMR system CaF2
were determined with very high precision by Engelsberg
and Lowe. Later on important progress in determin-
ing the response function &om the equations of motion
was made by Engelsberg and Chao, ~ by Becker et al. ,
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and by Lundin. ' The method of Lundin, which has
recently been developed further by Shakhmuratov, is
reminiscent of the simple physical interpretation made
by Lefmann and collaborators of the double-peak struc-
ture in C diamond, where the splitting is considered to
be due to the strongly coupled pairs of nearest neighbors,
and the width to a Gaussian-like distributed random field
&om other neighbors. '

In the present work the equations of motion of the
Green function are analyzed. One main result is that, if
only the z components of the spins are coupled, the Green
function is to a very good approximation determined by
a single-branched continued fraction, which may be com-
puted accurately by numerical methods. This result is
then generalized to include the efFects of the x and y
components of the dipole-dipole interaction. In this step,
we utilize the analytic results obtained previously for the
higher moments. A numerical analysis is then carried
through in the cases corresponding to CaF2 and 3C dia-
mond. The results obtained by the present method agree
closely with the experimental results obtained for CaF2.
In the case of C diamond there are discrepancies, which
are probably mostly of experimental origin.

II. EQUATIONS OF MOTION

We want to consider the linear magnetic response of a
lattice of nuclear moments subjected to a large station-
ary field. The normal situation in the case of a NMR
experiment is that kT is much larger than the mean-field
splitting between the nuclear levels, which is again much
larger than the energy shifts due to the coupling between
the nuclear moments. These conditions we shall assume
to be satisfied throughout. We shall only treat the case
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of I = 1/2 nuclei placed in a nonmetallic crystal. In
this case we need only to consider the classical coupling
of the nuclear moments and, neglecting nonlinear efFects,
the Hamiltonian may eBectively be reduced to"' "

Q = ——) c7,
' —) J (ij)s+s ——) J, (ij )o.,'o'.

z U

OO

G(A) = lim (—s)0(t)( A(t)) , s. )e te'els'dt,
2

(2.4)

where 8(t) is the step function, and the equation of
motion '~ is

(2.1) tssG(A) —G((A, W]) = ( A, ) s ). (2.5)

3(1 —3 cos2 0; )
(gPN ) (2.2)

where R,~ is the distance between the ith and jth nucleus,
and 0;. is the angle between the line connecting the two
nuclei and the z axis. The contribution of the dipole-
dipole interaction is then included in Eq. (2.1) via

4 = gp~H is the Zeeman splitting between the I, = + 2
states, g is the nuclear g factor, and the gyromagnetic
ratio p = gp~/h. The operators s,+ = I,kiI„; and 0,' =
2I;. An effective dipole-coupling parameter is defined as

Due to our general assumptions, we can neglect the dipole
coupling in the determination of the thermal average
on the RHS of this equation, and only ([s+, g. s ]) =
(cr,') A/kT is nonzero to leading order in 1/kT. The
linear response observed in NMR experiments is propor-
tional to the imaginary part of the Green function G(s+).
Utilizing the special properties of the spin-1/2 operators,
e.g. , ((7,'. ) = 1, Eqs. (2.1) and (2.5) lead to the following
equation:

sG(s+) = —(cr,'. ) + ) [J (ij)G(cr,'s+) —J, (ij)G(s+0.')]

J.(ij) = ,'D„, J,—(ij).= ', D,, -- (2.3) (2.6)

The frequency-dependent Green functions are defined with e = 4 —Lu. The next-order Green functions are
determined by (i g j)

e'G(s,+cr' )= J (ij)G.(s+) —J,(ij)G(s,+) + ) ' J (ik)G((7,'(7's&) —J, (ik)G(s+o'crI', )

+2J (j k) (G(s+ s+s„) —G(s+ s. s~+)j (2.7)

where the primed sum means that the summation index (k) has to be different from the other indices (i or j). Next
we find, when all indices i, j, and A: are diferent Rom each other,

sG(s,+. (7'(Tl', ) = J (ik)G(cT'sq ) + J (ij)G(s+crq) — J(i k)G(s,+ ('T) —J,(ij.)G(s,+ cTI',).
+) ' J (il)G((T,'o,'(T„'s~+) —J, (il)G(s+(T,'(T„'o.f)

+2J (jl)(G(s,+s+. (7)', s& ) —G(s+s (T&s,+)j+2J (kl)(G(s,+(7's& s& ) —G(s,+(T'. s& s&+)j (2.8)

2sG(s+s+sq ) = J (ik)(G(cr,'s+) —G(s'. oq) j+J (jk)(G(s+(r') —G(s+oq)}

+2) ' J (il)G( 's+cts& s&+) + J (jl)G(s,+o's& s&+) —J (kl.)G(s,+s+cr&s& ).
—(J,(il) + J,(jl) —J, (kl) }G(s,+. s+. s& cT&') (2.9)

The major complications in the equations of motion
above are due to J (ij). The Green function G, (s+),
determined by these equations when J (ij) = 0, only
depends on higher-order Green functions G, (s,+. (7'cT& . )
involving one 8+ operator, and in the next order:

sG, (s,+cr'. (Tq(7,') = —J (ak)G, (s,+(7'(T,')
J,(ij)G, (s,+o„'of)— .

—) 'J, (im)G, (s+~;~„~;~ ).
(2.10)
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Hence the hierarchy of Green functions determining
G (s+) has a transparent structure, and Lowe and Nor-
berg have found the exact solution for the real-time re-
sponse function

written as a systematic expansion in odd powers of 1/s:

G(s+) = — ' 1+ —) 'Xi(ij) + —) 'Xi(ij)((T ) 1 , 1

7'(t) =
~

coe (d, (ij)t/7)4 (2.11)
x )-'X,(ij')+) 'X, ('jk) + .

~l A:

(2.15)

from which G, (s+) may be determined by a Fourier
transformation. We shall not make use of this solu-
tion but rather consider the approximate one which is
obtained if. the first three terms of Eq. (2.10) are re-
placed by the single term —3J,(il)G, (s,+. o'o)', ). With
a similar modification of all the equations of motion [the
two terms in front of the summation sign of Eq. (2.8)
are replaced by —2J, (ik) G, (s,+jr')] the equations are re-
duced to a set which only involves a single chain of Green
functions. Introducing a vector with the components
G, (s,+. ), J,(ij)G, (s,+o'), J, (ij)J,(ik)G, (s+(7'(7q), etc. ,
these equations may be written as an infinite-dimensional
matrix equation, for which an infinite continued &action
provides a solution

Z

G(s+) = — ' 1+ —,) D,', + —,) D,',
2 2

) D,", + —) '(7D'~ + 5D,'i
~l

'
k

y6D, kDi, ) + (2.16)

Assuming all nuclei to be placed in equivalent surround-
ings, i.e., G(s+) = G(s+), then we get from Eqs. (2.6)—
(2.9)

G (s+) =

with

—(~:)
J,2 (ij)

2J,'(ik)
3J2(il)

s —Q4 (ijkl)

(2.12)
utilizing that the summation indices may be interchanged
(the prime on the j sums is unnecessary as D;; = 0). A
comparison of (2.15) and (2.16) then allows the identifi-
cation of X~ and X2. The distinction between D,& and
D2k in the last sum is arbitrary, and because G(s,+) =
(1/N) g, G(s,+) the result should be the same if the sum
over j, in the first step of the infinite continued &action,
is replaced by a sum over i. In order to ensure this, also
when introducing the higher-order terms, it is sufBcient
to assume the solution to be symmetric in i and j:

(2.13)

etc. Notice that Q4(ijkl) depends implicitly on the in-
dices j, k, and l, because the summation index m has
to be different from all the preceding ones, as indicated
by the prime. Equation (2.12) is the exact solution, if
all nonzero values of J,(ij) are equal. In general it is
not, but it is extremely close to it; the second, fourth,
and sixth moments are correct, the eighth differs only
minutely from its right value [at maximum 0.13% in the
case of a cubic structure when J,(ij) (x D; ], and the.
dominant contribution to all the 2nth moments, propor-
tional to the nth power of the second moment, is ac-
counted for.

The response G, (s+) is closely determined by the
single-branched continued &action above, and the con-
jecture is now that the final Green function, including
the J (ij) coupling, may to a good approximation still
be written in this way, except that the dependence on
the coupling parameters is altered, i.e., Q in (2.12) is
replaced by

X,(ij) = D,', ,

X2(&jk) = -(D,'~+ D,'i. + D;i.D~, ) .
3

(2.17a)

(2.17b)

The moments of the spectral energy distribution, defined
with respect to the mean value L, are

where G"(s,+; s) denotes the imaginary part of the Green
function [M is (2vrh) times the usual frequency mo-
ments]. The odd moments vanish by symmetry, and an
elementary result is

+ (~;)-G(s+) = — ' 1+—M + —M
E; E' 8'

(2.19)

which shows that (2.16) is equivalent to an expansion of
G(s+) in terms of the spectral moments. Introducing the
notation S = P D;, the moments are

M„= (4") = f D"( e+;e)d 4f eG"(e~+;e)de,

(2.18)

X„(ij . .)Q('j .)=) '
Q (. . ). (2.14)

Dividing the numerator and denominator in Q„with s
and performing a stepwise Taylor expansion, we find that
the infinite continued fraction representing G(s+) may be

=1 2M4 ——— 7de —4S4+ 25'4 ) D;4D4, ),
in accordance with previous results. '

(2.20a)

(2.20b)
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Xs(ijkl) = —(D,) + D~() . (2.21)

The complexity in performing the expansion (2.16) of
G(s,+. ) increases dramatically in the next order. There-
fore we make use of the additional assumption that terms
which involve products of two different D couplings can
be neglected in X„,when p & 3. The coupling D;. takes
on both positive and negative values and D,. - integrated
over a sphere vanishes, whereas in contrast D; is always
positive. Advancing one more step in the hierarchy of
Green functions, beyond that of Eqs. (2.8) and (2.9), and
keeping track of only the squared coupling terms, we find
the linear combination Xs(ijkl) = aD~& + bD2& + cD&~& to
be determined by a + t)+ c = 41/18, and further that a
solution syinmetric in i and j (a = b) implies c = 0, thus

n„= 1+0.327(p —1), p & 5. (2.23)

In the numerical evaluation of the Green function we
have to make some additional approximations. The infi-
nite continued &action

n„series continues leaves us a single degree of &eedom,
which we have utilized for a small overall adjustment of
the calculated response functions, using for this purpose
the accurate experimental results for CaF~. We have
tried to use linear extrapolations [o.„=1 + 1.16(p —1)
or n„= n4+ 2.2(p —4)], but the a„values above are de-

scribed closely by n„= 1 + 0.033(p —1) + 0.302(p —1)
i.e., o.„seems to increase quadratically rather than lin-
early with p, and we obtained a slightly better result by
using the following quadratic extrapolation:

This result predicts the sixth moment M6 to be

229S~ —272S2S4+ 171SB—41 ) 77;,13,„77~,)27 U 2

G(8,') =
D,
—Q(j)

(2.24)

X„(ijk . .p) = "(D, +D )—, p) 4.(2.22)

corresponding to Eq. (2.21). Using the result of Knak
Jensen and Kja:rsgard Hansen that the leading order
term in Ms is (11031/243)S2, we find n4 ——2819/738.
Introducing an effective o.„for the lower-order terms also,
we get the following sequence of values for o.„:

4 41
1 3' 18'

2819
738

for p = 1, 2, 3, and 4. The final Green function is not
much dependent on how the series is continued, except
that n„ increases with p [which is guaranteed by the
J, (ij) coupling]. Although the four moments M2 —Ms do
not determine the response, they put strong limits on the
kind of variation which may be achieved by varying the
higher-order terms. However, our ignorance of how the

plus the terms deriving from D;&Dr, in X2(ijk), which
is consistent with the analytical result for M6 derived
by Knak Jensen and Kjmrsgard Hansen. It is possi-
ble to include most of the terms in M6 depending on
the linear factors, but the price is that Q2(ij) has to
be divided into at least two continued &actions, which
makes the procedure somewhat arbitrary. More im-
portantly, in principle, is the occurrence of the term
—(8/27) PD, D,&D,&D&&D& D &. in Ms. It. falls outside
the present scheme and cannot be incorporated into the
continued &action in any simple way, thus indicating a
limit to the present procedure. However, as discussed
above, the contributions to M6 which are neglected in
Eq. (2.21) are expected to be small, and this is supported
by the numerical analysis discussed below.

In the higher order it is not important to discriminate
between the different quadratic contributions, e.g. , be-
tween D~, D2, . . . in X4(ijklm). In any case, such a
separation plays no role in the following numerical anal-
ysis, and we may assume

Q2(ij) =
—;V(ij)+ -', ) .D;j,Dk,

k

nsV(zj)
~4V('j)

(2.25)

The infinite continued &action has to be determined for
each value of the summation index j. This is done by
assuming n„ to be constant for p ) n, i.e. , Q„(ij)
a„V(ij)/( s Q„(ij)) or

1
Q„(jj) = —(e —1jc~ —4a„V(jj) ) . (2.26)

The minus sign in &ont of the square root is the only
choice which leads to the right sign of G"(s+). Even for
rather large values of n, this termination of the infinite
continued &action gives rise to spurious oscillations in
the calculated response function (as function of n or s),
which are, however, found to cancel out in the mean value
of the response function calculated for two successive val-
ues of n. With the use of this averaging procedure it is
found that the result becomes independent of n, when
n is larger than about 20—30 (we have used n = 50 and
51 in the final calculations). The approximation made
in Eq. (2.25) for Q2(ij) may be improved, and to next
order we get

-,D,'a+ D,'~+ D;j,Dj„(")=-3&-' ' .,W(,,k)'
k

c24W(i jk)

(2.27)

becomes less and. less dependent on the actual values
of Q (ij .) the larger p is, and to a first approxiina-
tion we assume that the summation index only needs
to be difFerent &om i and j. In this approximation
g'X (ijk . p) a V(ij) with V(ij) = S2 —D2 for.
p & 3, hence
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with W(ijk) = S2 —D, —(D;k + D2&)/2. The effec-

tive coupling parameter D, . is proportional to B, , but
although this coupling decreases much faster than the
dipole coupling itself, the j sum has to be extended over
10—20000 neighbors in order to obtain an acceptable ac-
curacy. Fortunately, the modifications introduced by the
replacement of Eq. (2.25) by Eq. (2.27) only inHuence the
final response function weakly, and it is only necessary to
apply the improved expression for Q2(ij) when j is one of
the 20—30 neighbors which are coupled most strongly to
the ith site. The result (2.27) may be considered to cor-
respond to the analytical result derived above. The next
step, which involves taking into account that the sum-
mation indices in Q4(ijkl) have to be difFerent from 1,
presupposes a more detailed determination of X4(ijktm)
than given by Eq. (2.22), and requires much more exten-
sive numerical calculations. Considering Eq. (2.27) to be
the starting equation, we may say in short that all ad-
ditional approximations made in the numerical analysis
are kept at such a level that their influence on the Anal
results is insignificant.

III. COMPARISON WITH EXPERIMENTS

A. Calcium Buoride

0.8

0.6

0
04

M

Q)

0.2

0.0
4 6

Magnetic field (Oe)
10

FIG. 1. The NMR line shape in CaF2 when the field is
along one of the three high symmetry directions, shown as a
function of the field parameter s/gp~. The symbols indicate
the experimental results derived from the parametrized FID
curves of Engelsberg and Lowe (Ref. 10) and the solid lines
are the theoretical predictions.

CaF2 has for a long time served as a standard ma-
terial for comparisons between NMR line-shape theories
and experiments. ' The stable F isotope in CaF2 with
I = 1/2 and g = 5.25454 (p = 25166.2 rads i Oe i) is
positioned on a simple cubic lattice with the lattice pa-
rameter a/2 = 2.723 25 A in the low-temperature limit.
The nuclear magnetic resonance in CaFq was measured
by Bruce in 1957 with the field applied along the three
high symmetry directions, and 14 years later Engelsberg
and Lowe repeated the measurements and established
with a high degree of accuracy the FID curve in each of
the three cases. |A'e have used their parametrized exper-
imental results for calculating the corresponding Fourier-
transformed response functions which are shown in Fig.
1. These results should bene6t from the great precision
by which the FID curves were measured, and it has been
checked that the moments of the resonance curves (up
to the eighth) are those reportedio by Engelsberg and
Lowe in their Table IV. The results of Bruce, in the
cases where the Held is along [100] or [110], agree well
with those derived from the experimental FID curves of
Engelsberg and Lowe, when the data are corrected for
the change of the lattice constant which occurs between
room temperature and 4.2 K. Bruce's result in the case
of a field along [ill] has a second moment which is about
13% larger than the theoretical value, 2i but a folding of
the results of Engelsberg and Lowe with a Gaussian with
a width which corrects for the difference between the sec-
ond moments leads to a good coincidence of the two sets
of experimental results in this case also.

The experimental results in Fig. 1 are compared with
the predictions of Eq. (2.27). The intensities shown in
the figure are —(gp~/(cr, '))G"(s+) as functions of the

0.012

0.008 /
/ I.r, \

I
l
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0.000
P
Q)

K -0.004

c -0.008
Q)

-0.012

0]

-0.016
0 2 4 6 8 10

Magnetic Field (Oe)

FIG. 2. The intensity difFerence in CaF& between the ex-
perimental and theoretical results in Fig. 1.

field parameter s/gp~, and the experimental results have
been scaled so that the total integrated intensity is equal
to vr in all the cases shown. As may be seen in the figure,
the agreement between theory and experiment is very
good, but there are small systematic deviations, which
are at most 2—3% of the intensity at zero frequency. Fig-
ure 2 shows a blowup of the intensity di8'erences between
the experimental results and the theory in CaF2. It is
difBcult to determine the origin of these deviations, but
they are most likely due to the approximations made in
the theory rather than to the experimental uncertainties.

The corresponding spectral moments are given in Ta-
ble I. The experimental moments M2 (M2 ——M2/gp~ in
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[1oo] Expt.
Theory
Exact

M2 ~ (Oe)
3.615
3.6020
3.6021

M4/M2

2.103
2.1244
2.1245

Ms/M2

6.08
6.427
6.329

Ms/Ms

22.2
26.57
25.16

TABLE I. The spectral moments in CaF2. The experi-
mental values are derived from the parametrized FID curves
of Engelsberg and Lowe (Ref. 10), and the ex:act values of Ms
and Ms are the results of Knak Jensen and Kjmrsgard Hansen
(Ref. 8), extrapolated to the infinite lattice. Mq is the same
in each row of the table.

1.0

0.8

0.6

0.4

o 02

0.0

aF2

II [1QQ]

[11o] Expt.
Theory
Exact
Expt.
Theory
Exact

2.191
2.2174
2.2176
1.508
1.4937
1.4940

2.236
2.3021
2.3022
2.340
2.3693
2.3694

6.93
7.815
7.709
8.05
8.540
8.511

26.7
36.85
34.96
36.9
43.78
44.09

-0.2

-0.4 I

40
I I

80
Time t (p,s)

I

120
I

160

FIG. 3. The FID curve F(t) in CaF2 when the field is along
[100]. The dashed lines are the experimental results of Engels-
berg and Lowe (Ref. 10) and the solid lines are the theoretical
results.

Table I) and M4 are in good agreement with the theoret-
ical values. Ms/M2s and Ms/M24, which are determined
with experimental uncertainties of, respectively, about
7% and 15%, are systematically smaller than predicted
by the theory. However, one should take into considera-
tion that the exponentially decaying tail, in for instance
the [ill] case above a field of 9.5 Oe, accounts for 0.1%
of the intensity but contributes as much as ll%%uo and 26%%uo

to, respectively, the sixth and the eighth moments. Ac-
tually, we may say that the parametrized experimental
results of Engelsberg and Lowe, including an extrapola-
tion of the long-time behavior of the FID curves, account
for a surprisingly large portion of the tails. Concerning
the comparison between the moments predicted by the
present theory and the in principle exact values obtained
by a direct calculation of the moments, we remark first
that, since the theory should predict the right second and
fourth moments, the close coincidence seen for these mo-
ments just reHects the accuracy of the numerical analysis.
Second, we notice that the values of M6 and Ms predicted
by the theory only differ &om the exact values by a few
percent, which shows that the terms discarded in the ex-
pression for As(ijk) or A4(ijkl), (2.21) or (2.22), only
have minor effects on these moments.

The free-induction-decay curve is defined as the (nor-
malized~j time-dependent correlation function of the av-
eraged I component in the rotating kame set up by the
stationary field, which may be shown to be

p(t) = f G"(s,+. ;~)cos(~t/5)d~ f G"is,+;~)da.

(3.1)

The FID curve in the case of a field along [100] pre-
dicted by the theory is compared with the experimental
(parametrized) FID curve observed by Engelsberg and
Lowe in Fig. 3. The agreement is close for times less
than 50 ps. At longer times some discrepancies develop
and the times at which the FID curve becomes zero are
about 5—6% larger than observed experimentally. The
period of the oscillations is greater when the field is ap-

plied along the other symmetry directions, and here the
calculated positions of the zeros agree within 3—4% with
the experimental values. The long-time form of the FID
curve is well described by the simpler exponentially de-
caying function

E(t) = Ae cos(Pt + c),

instead of expression (1.1) introduced by Abragam, and
the theoretical values of parameters a and P are com-
pared with experiment in Table II.

B. C diamond

TABLE II. Parameters of the long-time form of the FID
curves in CaF2. The experimental values are from Ref. 10.

[100]
[110]
[111]

n (calc.)
(~s ')
0.064
0.043
0.029

a (expt. )
(&s )
0.050
0.041
0.030

vr/P (calc.)
(ys)
22.2
32.8
46.1

s./P (expt. )
(ps)
20.5
30.6
47.6

The present work was initiated by the NMR exper-
iments of Lefmann et al. on ~ C diamond. However,
the experimental conditions were less favorable in this
system and the results therefore not of the same high
accuracy as in CaF2. The I = 1/2 carbon nucleus
isC has g = 1.40437 (p = 6726.1 rads i Oe i) and
is placed in a diamond lattice with the lattice param-
eter a = 3.5666 A. at room temperature. The diamond
lattice is not a Bravais lattice, but the inversion sym-
metry between the two fcc sublattices implies that the
surroundings of each nuclei are equivalent, and the the-
ory is directly applicable also in this case. The theo-
retical resonance curves —(2n Ii/(o,') )G"(s+) as functions
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of frequency s'/2vrh, when the field is applied along the
three symmetry directions, are compared with the ex-
perimental results in Fig. 4. It is immediately seen that,
although the qualitative behavior is similar, the experi-
mental widths of the resonance curves are considerably
larger than the theoretical ones. This is also clearly re-
Hected in the spectral moments given in Table III (here
M2 ——M2/2mb). The experimental second moinents were
calculated by Lefmann et al. , and we also give the values
of the experimental fourth moments estimated from the
resonance curves in Fig. 4. In addition to the theoretical
second and fourth moments, which are equal to the exact
values, we also give the calculated values of the sixth and
eighth moments, which are expected to be correct within
a few percent.

A comparison of the tabulated moments shows that
the ratio between the second and the higher moments in
CaF2, when the field is along [ill) and [110],are nearly
the same as in C diamond when the field is along, re-
spectively, [100] and [110].This coincidence is also found
to occur for the calculated line-shape curves (most pro-
nouncedly in the 6rst of the two cases), if the square roots
of the second moments are used as scale parameters.

The experiment shows that the resonance line in the
[111]case splits into two peaks, as also predicted by the
theory. The calculated splitting of the resonance line is
8.56 kHz, which is near to the observed value. Based on
Eqs. (2.24)—(2.25), it is found that the parameter which is
decisive for the occurrence of the splitting is the minimum

TABLE III. The spectral moments in C diamond. The
experimental values are from Ref. 1.

[100]

[110]

Expt.
Theory
Expt.
Theory
Expt.
Theory

M,'" (kHs)

2.1
1.3710
4.5
3.4294
5.0
3.8800

M4/M2 M6/M2 M8/M2

3.7
2.3906 8.728 45.46
2.5
2.2419
2.0
1.7822

7.139

4.471

30.43

15.89

value of the ratio

r(ij) =
& S2 —D; + —) D&Dt, /S2. (3.2)

In isC diamond in the [ill] case the minimum value
is found to be 0.43 for the two nearest neighbors along
the direction of the Geld. The resonance in CaF2 when
the field is along [100] is just on the threshold where it
splits into two peaks, and here the minimum value is 0.94,
slightly smaller than 1, valid for the four nearest neigh-
bors in the plane perpendicular to the Geld. In any of the
other cases considered in the two systems the minimum
ratio is larger than 1. Neglecting the last term in the
numerator, the condition is approximately 4D;. ) S2,
i.e., the square of the coupling between one pair of the
nuclear dipoles should contribute more than one-quarter
of the total sum of the squared couplings, to be able to
establish a coherent response of the dipole pair which is
sufBciently strong to survive the incoherent effects due to
other neighbors.

The comparison between theory and experiment in C
diamond shows that the experimental NMR line shapes
are distorted. The only additional efFects which may
inHuence the results are the presence of impurities, or
the repetition rate of 3—4 spectra per minute used in
the experiment, which is relatively high compared with
the long spin-lattice relaxation time of 14—16 s. To a
first approximation the impurities give rise to an extra
Gaussian broadening of the spectra. This is concordant
with the results obtained in the [100] case, which cor-
respond to the theoretical curve folded with a Gaussian
with o = 1.6 kHz, but the differences in the two other
cases are not describable in this manner, which indicates
that the high repetition rate might have had some inHu-
ence on the results.

0.2 IV. DISCUSSION AND CONCLUSION

0 Q
I

-16 -12 -8 -4 0 4 8
Frequency (kHz)

12 16

FIG. 4. The NMR resonance line in C diamond as a func-
tion of /2@eh when the field is along [100], [110], and [111].
The dashed lines show the experimental results of Lefmann
et al. (Ref. 1) and the solid lines are the theoretical curves.

The NMR line shape due to the dipole coupling of
I = 1/2 nuclei has been calculated approximately at high
temperatures and high fields. The result is determined
in terms of an infinite continued-&action, which is rela-
tively easy to handle by numerical methods. The spec-
tra derived by the present theory have the right second
and fourth moments, and the sixth and eighth moments
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are found to be close to the values calculated directly
in the case of a simple cubic system. The theoretical
results agree satisfactorily with the precise experimen-
tal results of Engelsberg and Lowe for the FID curves
in CaF2 obtained with the field along each of the three
high symmetry directions. In the case of C diamond
the theory predicts a splitting of the resonance line in
the [111]case which is of the same size as observed by
Lefmann et al. , but the spectra are in general predicted
to be more distinct than observed experimentally. The
differences are believed to be mostly due to experimental
diKculties, and the high repetition rate applied in the
experiment, relatively to the spin-lattice relaxation time,
is suggested to be a main cause.

The present theory may be considered to be a fur-
ther development of the theory of Engelsberg and Chao
who derived an infinite continued-fraction representa-
tion for the Green function with P X„(ij . .) in Eq.
(2.14) replaced by constants deriving Rom the moments
so that the expansion (2.19) is fulfilled, i.e. , by the pa-
rameter 1/7„ ir„(7'„ is defined in their paper), where

1/wo7'i = Mz, 1/wiv2 ——(M4 —M2)/M2, etc. The termi-
nation of the infinite continued fraction was performed
in the same way as here, Eq. (2.26), but only the known
part of the fraction was included, i.e. , they assumed
Tp ] Tp T3 T4

for@�

& 4 . The results derived by the
two methods are nearly identical if the termination is
introduced after step n = 4 in both cases (if the mo-
ments are the same). As discussed in connection with
Eq. (2.26) the termination of the continued fraction at
small values of n leads to spurious oscillations in the cal-
culated response function. In the case of CaFq with the
field. applied along [100] the use of the exact moments
produces oscillations of a magnitude which is about five
times larger than those shown in Fig. 2. The magnitude
of these oscillations may be controlled by v4 and with a
slight reduction of Ms/M2 from 25.2 to 23.2 (plus a mi-
nor adjustment of Ms) Engelsberg and Chao did reduce
the magnitude of the oscillations by a factor 2—3. The
previous theory thus relies on (small) adjustments of the
sixth and eighth moments in order to reduce the spurious
oscillations, which introduces some uncertainties in its
predictions. Here we find that the proper way to control
the oscillations is to extend the continued fraction further
before it is terminated. The way this is done is not of
particular importance, except that n in Eq. (2.22) has
to increase with p. For instance, considering the linear
extrapolation n„= o.4+ c(p —4), then the oscillations are
reduced to the level obtained by Engelsberg and Chao,

if c is about 1.5 or about 3, and in the middle of this
interval the magnitude of the oscillations is reduced fur-
ther by a factor 2—3. In this case, c = 2.2, the calculated
spectra are all practically identical with those obtained
on the basis of the quadratic extrapolation (2.23).

The present method bears some resemblance with the
procedure of Parker and Lado, ' who utilized the mo-
ment expansion directly for a calculation of the line-shape
curves. The results obtained by the two methods are
also quite similar but, considering the behavior of the
FID curves at long times, Table II, the lengths of the
periods predicted by the present theory are closer to the
experimental values than those obtained by Parker and
Lado. The zeros of the [100] FID curve in CaF2 pre-
dicted by the approximate solution derived by Becker
et al. of the equations of motion agree even more closely
with experiment. On the other hand their values for the
moments, beyond the second, are systematically smaller
than the correct values, which is probably mostly due to
their neglect of terms involving more than one 8+ op-
erator like the Green function G(s+s+s& ) in Eq. (2.9).
The method of Lundin ' is based on a small number of
assumptions which appear to be nearly fulfilled, and the
improvements introduced by Shakhmuratov lead to an
excellent description of the [100] FID curve in CaFz.

The infinite-continued-fraction solution derived in the
present work may be improved in various ways. The most
obvious one would be to include some of those terms ne-
glected in Xq and X4. We have made some effort in this
direction, but the improvements obtained were small and
not commensurate with the extra complications appear-
ing in the expression for the Green function and in the
numerical work. In any case they are more or less elimi-
nated by the arbitrariness connected to the extrapolation
(2.23) of n„beyond p = 4, which indicates that a further
improvement in the theory would have to include a de-
termination of o,5, in order to reduce the importance of
the assumption about the behavior of the o.p series.
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