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Theory of phonon-assisted multimagnon optical absorption and bimagnon states
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We calculate the effective charge for multimagnon infrared absorption assisted by phonons in
a perovskitelike antiferromagnet and we compute the spectra for two-magnon absorption using
interacting spin-wave theory. The full set of equations for the interacting two-magnon problem is
presented in the random-phase approximation for arbitrary total momentum of the magnon pair.
The spin-wave theory results fit very well the primary peak of recent measured bands in the parent
insulating compounds of cuprate superconductors. The line shape is explained as being due to the
absorption of one phonon plus a new quasiparticle excitation of the Heisenberg Hamiltonian that
consists of a long-lived virtual bound state of two magnons (bimagnon). The bimagnon states have
well-defined energy and momentum in a substantial portion of the Brillouin zone. The higher-energy
bands are explained as one phonon plus higher multimagnon absorption processes. Other possible
experiments for observing bimagnons are proposed. In addition we predict the line shape for the
spin-1 system La2Ni04.

I. INTRODUCTION

In the late 1950s Newman and Chrenko presented a pi-
oneering infrared absorption study in NiO. Among other
results they showed a band at 0.24 eV that correlated
with the disappearance of antiferromagnetism above the
Neel temperature and hence of likely magnetic origin.
This was very puzzling because in the NaCl structure,
with an 0 at an inversion center, a direct magnetic ab-
sorption is not allowed. In fact in a typical two-magnon
excitation, as for example, two spin Hips on adjacent met-
als atoms, all relaxation of charge in the excited state is
symmetric with no net dipole moment. An explanation
of this puzzle was given by Mizuno and Koide who ob-
served that the joint absorption process of a phonon and
two magnons is allowed since then the symmetry of the
lattice, after the phonon excitation, is efFectively lower.
To the best of our knowledge no detailed theory existed
of this efFect. Note that the Mizuno and Koide paper is
&om the early days of Anderson's superexchange theory.

Also very puzzling data was recently presented by
Perkins et al. ' They measured the absorption in many
diBerent parent insulating compounds of high-T, super-
conductors. The data show a narrow primary peak in the
charge transfer gap and a set of sidebands. Initially the
narrow peak was associated with an unidentified exciton.
However, no exciton is expected in this energy range. '

The purpose of this paper is to present a detailed the-
ory of phonon-assisted multimagnon infrared (IR) ab-
sorption. We apply the theory to layered insulators and
show that it explains the data of Perkins et al. (Sec. IV).
We estimate the coupling constant of light with multi-
magnon excitations (Sec. II) and we calculate the line
shape for one-phonon —two-magnon absorption using in-
teracting spin-wave theory. For this we need to solve
the two-magnon problem for arbitrary total momentum.

We present the full set of equations in the random-
phase approximation (RPA) and solve them approxi-
mately (Sec. III). The narrow primary peak reproduced
in Fig. 9, below, is explained in terms of a quasiparticle
excitation. It consists of a long-lived virtual bound state
of magnons referred to here as a bimagnon. The state has
well-defined energy and momentum in a substantial por-
tion of the Brillouin zone. We also present a prediction
for the line shape of the spin-1 system La2Ni04.

So far complementary information on antiferromag-
netism in perovskite materials has come &om probes like
neutron scattering and Raman light scattering. Our re-
sults show that IR absorption can be used to study mag-
netic properties of this systems. This is interesting be-
cause the technique is relatively simple.

In the Conclusions (Sec. V) we discuss and propose
other experiments which should be able to detect the
excitations. In particular two-magnon excitations can in
principle be measured by neutron scattering. '

A short account of these results was presented
elsewhere.

II. THEORY OF PHONON-ASSISTED
IR ABSORPTION OF MAGNONS

A. Model Hamiltonian

We concentrate on the case of a spin S = 1/2 and
two-dimensional (2D) material like the Cu-0 layers of
the cuprates but we indicate the corresponding general-
izations for a system with larger dimension and/or spin
like La2Ni04 or NiO. We consider a three-band Peierls-
Hubbard model ' in the presence of an electric Geld
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Here, c,. creates a hole with spin o at site i in the Cu
d~2 y2 or the 0 p~ „orbital. For simplicity Cu atoms
are kept fixed and 0 atoms are allowed to move with
displacements u~. These restrictions will be effectively
removed when we compare with real experiments since
measured phonon properties will be used. KA, ~ is a spring
constant tensor and S'~ is the momentum canonically
conjugate to mi, Rph = Ze P& mi is the phonon dipo-
lar moinent and Z is the ionic charge of 0 (Z = —2).
For electron-lattice coupling, we assume that the nearest-
neighbor Cu-0 hopping is modified by the 0-ion displace-
ment ui as t;~ = t 6 nbimi, where bi is a unit vector in
the direction of the corresponding Cu-Cu bond, bi = k,
y (and x for a SD system) and the + (—) applies if the
Cu-0 bond shrinks (stretches) with positive bimi (0-0
hopping is neglected here). t is given by (1/2) ~3@do in
terms of Slater-Koster integrals. The site energy con-
tains the coupling to the electric field and in addition
the Cu-site energy is assumed to be modulated linearly
by the displacements of the 0 ions,

e;= Eg + P ) (+)biui + eXz; (Cu),
l

e,= E„+eEr; (0).
In Eq. (2) the sum extends over the four surrounding
0 ions. The sign takes the value + (—) if the bond
becomes longer (shorter) with positive bimi and e; is
the position of atom i (including displacement). The
other electronic matrix elements are Cu-site (Ug) and
0-site (U„) repulsions for U;, and the nearest-neighbor
Cu-0 repulsion (Upg). We define 4 = Ep —Eg + Upg
and e = 2(E„—Eg) + U„. In the following we adopt
the notation that Cu sites are labeled with i and 0
sites or the corresponding Cu-Cu bond with i + b/2.
In this notation the position of an 0 ion is given by
i.;+~/2 ——a(i+ b/2) + ic,+/i/2, with a the lattice constant.

B. EfFective charges and dipole moment operator

To calculate the coupling constants of light with one-
and two-phonon-multimagnon processes we first obtain
a low-energy Hamiltonian as a perturbation expansion
valid when t (( 4, e, Ug and when the phonon field and
the electric field vary slowly with respect to typical gap
kequencies,

) Ji+8/2(E~ ("aj+s/2&)B*+s/2 + Hph E. Pph. (4)

Here B;+gy2 ——S;S;+g with S; spin operators and Hzh is
the phonon Hamiltonian containing spring constants and

FIG. 1. Schematic representation of the cluster used in the
calculations. Solid dots represent Cu's and open dots 0's.
Thick arrows represent the spin, thin short arrows represent
lattice displacements, and thin long arrows represent the di-
rection of the electric field. We have represented mo in con-
6guration A. In general its direction is equal to the direction
of the electric 6eld.

masses for the 0 ions (M) and Pph. The first term in
Eq., (4) contains the spin-dependent fourth-order correc-
tion in t whereas fourth-, second-, and zero-order spin-
independent processes are collected in the last two terms.
To compute J we can use the three-center system CuL, -

0-Cua of Fig. 1.
In order to generalize our result for arbitrary spin S

we define the saturated ferromagnetic state

F) = ImL = ssL, —s;m~ = s, sR = s)

and the Neel state,

~iv) = ~mL, = s, sL, = s; mR = —s, s~ = s).
Here m~ L, is the z component and SI. ~ is the magnitude
of the total spin of the ion. The superexchange can be
calculated as

1 = ((FiVRVRVRViF) —(NiVRVRVRViN)),

where R = (1 —P)/(Ep —Hp) P projects on the man-
ifold with SL, = S~ = S, Hp contains all site-diagonal
terms of the Hamiltonian, Eq. (1), and V the d-p hy-
bridization terms. For details see Ref. 15. In the case
of a 3D S=1 system like Ni0 we can orient the z axis
in the direction of the Ni-0-Ni bond; then t should be
taken as the hybridization between d3 2 „2 orbitals and
the p, orbital and is given by @do. in terms of Slater and
Koster integrals. Also appropriate values of Ug should
be used. The same is valid for La2Ni04 if the crystal
field splitting between the d3z2 2 and the d~2 „2 orbitals
is neglected.

We only need to consider the three configurations
(A, B,C) of the L Rbond and the ele-ctric field. Next
we Taylor expand J to first order in X and second order
in 94+8/2)i
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J = Jo+ g(uL —uR) —E[VIu0+ AVA(2u0 —uL —uR)]
E[(Iu0(uL uR) + ~(A(2u0 uL uR)

X(uL —uR)]+ . . (6

Here A = 1 for configuration A and A = 0 for configura-
tions B and C. In each configuration the displacement
of the central 0 and the electric field are parallel, i.e.,
E = Ee, up = tLpe. The direction of e is the same
as the arrows at the bottom of Fig. 1. uL, and u~ are
only relevant in configuration A. ul. ——uL, l + uI.2 —u1,3,

+Ql++Q2+tc+3 ~ The numbering and the direction
of the displacements are shown in Fig. l. Other terms
quadratic in u's have been neglected; they renormalize
the spring constants in Hph and give the magnon —two-
phonon interaction T.he first term in Eq. (6) is the su-
perexchange in absence of the electric and phonon fields,

t4 1 2
$'2 Q2 U'

The remaining quantities are a magnon-phonon coupling
constant

-t'p 1 f1
S242 4 Ug e

(8)

t4p s f1 2& 8f1
S2b 2 A2 Uq e e2 b,

(11)
2t4p2apd f 2 3 4 2 3

S24s Us AU2 &42 e2b, Ugb, 2
)

effective charges associated with one-phonon and multi-
magnon processes,

2t4 1 f1 2i 2

S b, b, U
l ~ e)

t 2 f 1 2) 1 fl 2)
S242 " A2 Ug e ) Ug 4 Ud,

(1o)

and effective charges associated with two-phonon and
multimagnon processes.

Here we use e in place of b to avoid confusion. The lattice
spacing a and 5 are set to 1. The supraindex labels the
direction of the vector e and N is the number of unit
cells. In the same way the Fourier transform of u;+gy2 is
given by

1u„= — e'~u;+A(2. (14)

After Fourier transforming, the dipole moment for one-
phonon and multimagnon processes for an in-plane Beld
in the x direction is

Pi h+ = 1V gI ) bB u
ge

+A4qA ) sin — sin —' bB u,' (15)
. fp.

and A = 1. For an electric field perpendicular to the
plane we have

+1ph+mas 1I ) bBpuip
pe

(16)

8(E'iH(G) fs)
BG

Since the term proportional to J0(s) in (s~H(s)~s) is the
magnetic part of the energy, its derivative is related to
the magnetic-dependent part of the 0 charge,

In a 3D system like NiO, A = 1, and we get the analogous
of Eq. (15) for the three directions and the sum over e is
also for the three directions.

As explained in Ref. 11 the "isotropic" term [propor-
tional to qI in Eq. (15)] can be understood as a spin-
dependent correction to the charge on Oo. In fact an
alternative way of deriving ql is with the aid of the
Hellmann-Feynman theorem. %'e can add to the elec-
tronic Hamiltonian of the Cur. -O-Cu~ a term enQ where
AQ —AQg + nQ~ and nQ is the occupation number op-
erator for the central 0 ion and spin cr. Now we can
calculate the expectation values of the resulting Hamil-
tonian H(s) in the ground state ~e'). We have that the
total charge on the 0 is given by the following derivative
of the energy:

ap~ is the Cu-0 distance, a/2. Within a point charge esti-
mation the parameter Pap~ -- 2Upg. The dipole moment
is obtained from Eq. (4) as 5' = —

&& and using Eq. (6)
in the relevant configurations. We get up to fourth order
in t,

OJ0(s)Ql=e
BG'

and since e just renormalizes 4, we have formally

(18)

P —Plph + P2ph + Plph+mag + P2ph+mag ~ (12) 0Jp
QI

The first two terms describe conventional one- and two-
phonon absorption processes.

We define bB;4.~y2 ——B;+,12 —(B;+ y2) and its Fourier
transform,

bB„=—) e'~bB;+,12.

This expression is useful to obtain ql if one can get Jo
&om a different method.

The "anisotropic" term [proportional to qA in Eq. (15)]
is present for an in-plane field only. As discussed in
Ref. 11 it originates &om a spin-dependent "charged
phonon" like effect. In a highly covalent material like
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the cuprates one can expect the charge phonon effects to
be quite strong and dominate the effective charges (see
Sec. IVA).

C. Optical absorption

and on the B sublattice,

( btb l
S;=b; 2S 2S) '

The real part of the optical conductivity due to the
processes described in the previous sections is given by
the dipole-moment —dipole-moment correlation function.
In Zubarev's notation

Si = 2S 1 — ' '
bi,2S) (22b)

27t &
™(((+1ph+magi +1ph+mag)) ) .

CU
(2O)

Here Vg„ is the volume associated with a Cu ion; i.e. ,
NVg„ is the total volume of the system per Cu-0 layer.
Now we assume for simplicity that only the u, 's with the
same b and e mix. To zero order in the magnon-phonon
interaction we can decouple the magnetic system from
the phonon system. In this approximation the eigen-
states of the system are products of phonon states times
magnetic states and by writing the Lehmann representa-
tion of the Green function one can factor out all phonon
matrix elements. Using that

2M~~„N '

2) Im I ((hB"„;bB"))
MVc

m
~ip

P

16A2q~2 sin (P2 ) sin'(~2) + (4Aq~ sin (~) —ql)2

~lip

with ~oph) the phonon vacuum and w,„ the phonon fre-
quency, we get

S- = —S+ b'bi

EN; (
————JS zN,

1 2

2

Ho ——SJz) n;+ SJ) (btb~t+ H.c.),
(ij)

(23)

(24)

H~ = —J) n;n~ ——) [b,.b. (n;+ n~) + H.c.]. (25)
J L

(ij) (ij)

(ij) indicates that nearest-neighbor pairs are counted
once in the sum, z is the coordination number, EN;, ~

is the classical Neel energy, Ho is the linear spin-wave
Hamiltonian, and Hq is the spin-wave —spin-wave inter-
action. Notice that the Hamiltonian is invariant under
the exchange of the sublattices and so we do not need to
distinguish between them. Accordingly we work in the
nonmagnetic Brillouin zone.

The noninteracting part Ho is diagonalized by the Bo-
goliubov transformation

where b; is a boson operator.
Now the Hamiltonian can be formally expanded in

powers of 1/S. From now on we adopt a more conven-
tional notation and drop the 0 subindex in Jo. We define

n, = b,-bi. The Hamiltonian reads H = EN~e~+ Ho+ Hq,
with

x ((bB,; bB„))-ti (21)
Ql, = ul bg —~~b-~,

Here ullp is the frequency of the u and u„"„phonons and
(LJJ p is the frequency of the u&p and u„p phonons. tulip
can be associated with the frequency of Cu-0 stretch-
ing mode phonons and ~~p with that of Cu-0 bending
mode phonons. The supraindex in the Green functions
indicates that the poles should be shifted by that amount.

III. TWO-MACNON PROBLEM
IN INTERACTING SPIN-WAVE THEORY

where bI, is the Fourier transform of bi and

1+(dg
24Jg

'Ua = —sgn('Ya)

(27)

To compute the magnon-magnon Green functions
we use interacting spin-wave theory with a Holstein-
Primakoff transformation. On the A sublattice we put

( btb;)

2
pg, = —) cos(kh),

8

1 —
pg .2

(2S)

(29)

blab;l
S,:=bt 2S 1—

2S)
S =S —bb-

(22a)

Now we can normal order the Hamiltonian with respect
to the noninteracting spin-wave ground state. This is
equivalent to writing the Hamiltonian as a Hartree-Fock
part plus Quctuations which we latter treat in the RPA.
After normal ordering the Hamiltonian can be written as
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0 = ENeel + ESW' + ) Ekqgqk + Vr48~

k

(3o)

where Esw =
z JS1Vz((l + (/2S), EI, ——E~u)a, E~ =

zSJ(1+(/2S), and ( is the Oguchi correction,

1(=1——)N
A:

(31)

For z = 4 as in the layered materials, ( 0.158. V„, =
V„, + V„, contains the normal-ordered product of the
interacting part, i.e. ,

Vll J
(iJ)

(32)

V„, = ——):[btbt (n; + n~ ) + H.c.]:'
(-2)

V...'" = ~ ) a(1+2 —3 —4)r»„q', q,'q, q, . (34)
1234

1, 2, ... stands for k1, IC2, ... and the vertexes are given in
the Appendix A.

We define

gSqiq~ = ((q-'j+q q —p —q iqz + Q4 ))

g is the total momentum of a magnon pair and q1, q2,
the relative momentum. In the following we make indis-
criminate use of the property that gpq, q, does not change
when q1 -+ —q1.

It is convenient for later use to define the auxiliary
functions

The first term originates from the Ising part of the inter-
action. In the Ising limit it is easy to check that the effect
of this term is to shift the energy of two nearest-neighbor
spin flips from the noninteracting value 4J to 3J. In the
Heisenberg limit and in the case of the Raman line shape
as an example, the noninteracting line shape has a peak
at 4J and this term shifts it to close to 3J. This term
is the more important one to get the correct line shape.
The second term is a correction to the exchange due to
the kinematic interaction.

The next step is to put V„, in terms of the spin-wave
operators, Eq. (26). Then we evaluate the normal order
and we do the RPA. This consists, in this case, in keeping
only those terms in V„, which create or destroy a pair of
magnons. With this we get

h„= P+ cos(qb),

h„= P„sin(qg), (3S)

h, =o+
Jq pq~

h„', = o.„,.
The f's have the property that fzq+ = fz—q, with
vr = (m, x, ...). If we Fourier transform them in q, we see
that they are different from zero in different sublattices.
For the h's, hp. q+~ —hp. q and they are different &om
zero on the same sublattice. They will allow us to clas-
sify the Green functions in "different sublattices" Green
functions and "same sublattice" Green function where
the relevant coordinate is the distance between the spin
operators. For example in the case of the operator (13)
since e joints different sublattices we need the former.

By replacing V„, by VRPA in the Hamiltonian (30)
the RPA equation of motion for the Green functions can
be computed by standard methods. No further approx-
imations are needed to obtain the Eqs. (44), (45). We
get

~q„q, +~q„-q. o & ~- 0 ~gpq& q& gpqy + ~r g gpq1 Pq1qgpqq& &

27t"
q

where g, = (u —E4„+ —Ei ) and the vertex
is given in Appendix A. . Since the vertex is a sum of sep-
arable potentials, the equations can be solved in integral
form. We define same sublattice Green functions

(4o)

(41)
qq

where p, v = l, b are combined indexes for l = 1,2, and
p, v = l for l = 3, 4. Analogously the different sublattice
Green functions are given by

(42)

(43)
qq

It is easy to see that similar zero-order Green functions
with an f and an h factor in the kernel vanish. Since the
vertexes [Eq. (A3)] do not mix the same sublattice with
different sublattice Green functions, the equations for
the interacting Green functions separate into two blocks.
From Eq. (39) we get, for same sublattice Green func-
tions,

pq 2p+q 2p-q 2P+q 2P

+Pq —,
' p+q"-,' J —q 2P+q

the "different sublattice" form factors

f„",= o.+, cos(qb),

f = a cos(qg),
+

and "same sublattice" form factors

(36a)

(36b)

(37)

+ ) K„2& + —sin —K„~ K2g,
(0) ~ - &~ (o)

(p, l ()+ — ) cos —
~

K ~h Ks~
2

l
2 )

+ — ) sin~I —I4„~4 K4 ), (44
(p, ) (,)
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and for difFerent sublattices, 20

2 )
(p)+ ) G„2)G2(„

+ —ypG s + —) cos l

—G I g G3 ~ (45)

Note that the Green functions depend on the total mo-
mentum p which appears also as a parameter in the equa-
tions.

We can expand also our two-magnon Green function
in Eq. (21) in powers of 1/S to lowest order; we get

((B*.; B:))= G....+- —* (G. ..+G,..)
s'

( 2*)

+ cos —
I G33 (46)

This neglects small Oguchi-type corrections to the
prefactor which slightly renormalizes the intensity
scales in the results that follow. First we will solve the
equations in some limiting case in which one can handle
the equations analytically.

A. 2D Raman case

S2
GR = N((Bo —Bo";Be —Bo)) = S2

Gxx, =o (47)

G)), is defined in Appendix B and, in this case Gii „
wher

It is useful to see bow some well-known results are re-
covered in this formalism. In Appendix B we solve the
equations for the case p = p„. The case of p = 0 is of
particular interest because it corresponds to the Raman
line shape. According to Ref. 20 for the case of a layered
antiferromagnet the scattered intensity is proportional to
the imaginary part of the Green function

0
I

0.4
I

0.8 1.2
~/E

1.6

FIG. 2. Raman line shape as given by ImGR according to
Eq. (49) (solid line), in the high-energy (HE) approximation
(short dashed line), and taking ug, = 1, vg, = 0 (long dashed
line).

E(o p)
—1.46E = 3.38J, (50)

as is well known. Since the line shape lies at high ener-

gies (~ ) E ), we can get a good approximation for G~~
[Eq. (B2)] by applying the high-energy (HE) approxima-
tion of Appendix D. We have G++ G22 Gi2

d(o) d(o) d(o)

GzI, where in this case G++ o ——~(I( )+2L( )+I,( ))
and we get

d(p)
++,g=o

1 + JG++ p
d(o) (51)

Here the distinction mention in Appendix D between the
HE approximation done in the vertex alone or in the
vertex and in the operator does not apply because the
operator has been explicitly constrained to have the cor-
rect symmetry. The corresponding line shape is given by
the short dashed line in Fig. 2 for the Raman case. The
position of the maximum is at 1.46E as before and only
the intensity decreases a bit. A popular and more drastic
approximation consists in putting ug ——1, vy ——0. In this
case one gets, for the Raman case,

In Fig. 2 we show with a solid line the imaginary part of
GR which gives the Raman line shape. The position of
the maximum is at

2
(&)

N ((u )' u) —2Eq
(48)

1(o)
G (52)

and fq ——cosq —cos q&. With this equivalence Eq. (B2)
becomes equivalent to the well-known expression

g(2) + 2 [L,(o) L,(2) (L,(~) )2]
Gz = 491+,(L,(o) + L, ( )) +,' [L,(o)L, (2) (I,( )) ]

Note that the fact that we use a Holstein-PrimakoKrepre-
sentation rather than a Dyson-Maleev one (as in Ref. 19)
did not affect this result. This is because the efI'ect of the
exchange part of the interaction which is different in the
two formalisms cancels out in this case due to symmetry.

This line shape is shown with the long dashed line. The
peak shifts appreciably and is at 1.48E . This approx-
imation is much worse and we will not use it in the fol-
lowing.

It is interesting to compare the present approach with
the pioneering work of Elliott et al. ' They assume a
Neel state as starting point and neglect the Oguchi cor-
rection. This gives in this case a similar line shape but
peaking at 2.71J. The present theory assumes a spin-
wave ground state and takes the Oguchi correction into
account. Although, at least qualitatively, a similar result
is obtain for g = 0 in the two theories, this changes dra-
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matically for p g 0. If one tries to extend the Elliott-
Thorpe theory for that case, nonphysical poles appear in
the Green functions at energies E1 p+q E1p q

indi-
2P

cating that a better ground state must be used as done
here.

B. IR case

To calculate the IR line shape we need to evaluate the
Green function given by Eq. (46). The narrow exper-
imental line shape for the cuprates suggests the occur-
rence of a sharp resonance for some values of p. This can-
not occur close to p = (0, 0) or (vr, vr) because there the
continua of two magnon excitations extends kom zero to
2E and the imaginary part of the noninteracting Green
function is relatively large at the energies of typical two-
magnon excitations. This changes at diferent values of p;
in particular for p = (vr, 0) there is a gap in the spectrum
from 0 to E and the imaginary part of the noninter-
acting Green function is very small where the resonance
occurs. This case is analyzed in detail next.

(o)

1+2JG( )
(55)

The imaginary part of this is shown with dotted long
dashed line in Fig. 3. Again we see that the HE approxi-
mation is very accurate. In particular the peak does not
shift and there is only a small decrease in the intensity.

We show also ImG& &, ImG& &, ImG& & This repre-
sents the density of states of the continua of two-magnon
excitations in which the bimagnon can decay. As men-
tioned before it starts at E and is very small at the posi-
tion of the bimagnon pole. This explains the long lifetime
of the bimagnon. We see that Gz z Gz z G~

d(0) d(O) d(0)

This is because at high energies vg is quite small [see
Eqs. (36a),(37),(42)] and all of them are very close to

G+ + defined in Appendix D. We can then apply the
HE approximation of Appendix D. For simplicity here
we use the HE approximation both in the vertex and
in the operator since in this case there is no low-energy
spurious spectral weight; i.e. , we neglect G+, G'
in Eq. (D6a). We get the familiar RPA-like form

1. Bimagnon at g = (7r, 0) g. Bimagnon for genera/ p

The relevant Green function for this problem is
[Eq. (46)]

S~
((~&-(.,o) ~&(*.

,o))) = ~ &~*.~*

In Appendix C we solve Eq. (45) for this momentum in
any dimension. Gq q is given by Eq. (C2). In Fig. 3 we
show with a solid line the imaginary part of this Green
function. A sharp resonance occurs, indicating that a vir-
tual bound state (bimagnon) is formed. The maximum
is at

E( 0)
——1.179E = 2.731J. (54)

20

15— p =(n.0)

10—

0
0.4

I

0.8 1.2 1.6
u E

FIG. 3. ImGq, q at y = (x, 0) in the full theory of Eq. (C2)
(solid line), and almost indistinguishable, in the HE approx-
imation (dotted long dashed line). We also show (very close
to each other) ImGi~ l~ (short dashed line), ImGi& l~ (long
dashed line), ImGi~ l~ (dotted short dashed line).

To obtain the total line shape we have to integrate the
contributions &om the whole Brillouin zone, and so we
need the Green function at all values of ~. By the same
arguments as before we can use the HE approximation
of Appendix D. We expect this to work well because of
the following reasons. (i) We expect that the total line
shape will be determined by the sharp excitations that
occur close to momentum (m, 0) and we have seen that in
this region the approximation does extremely good. (ii)
Far &om this region the approximation is also good as
we have already shown for the Raman case.

To analyze the following results it is useful to look first
at the noninteracting (S = oo) case (Fig. 4). The regions
where the imaginary part is small are good candidates
for having narrow resonances in the interacting case.

In Fig. 5 we show the imaginary part of the Green
function from Eq. (46) as a function of the total momen-
tum p in the high-energy approximation in the vertex but
not in the operator (see Appendix D). The bimagnon is
only well de6ned close to (vr, 0). It disperses upwards on
going towards (0, 0) [Fig. 5(a)] and downwards on going
towards (vr, vr) [Fig. 5(b)]. This is shown more clearly in
the inset of Fig. 9 below. This indicates that (m, 0) is a
saddle point and hence it should give a Van Hove singu-
larity when integrated over p [Eq. (21)]. Because of that,
the position of the peak in the final integrated line shape
is the same as for the (7r, 0) bimagnon [Eq. (54)].

The peak at lower energy is a real bound state. Its po-
sition, the intensity, and even its existence are not very
reliable because the position is beyond the range of ap-
plicability of the HE approximation. If the HE approx-
imation is done in the vertex and in the operator, this
peak gets a much larger spectral weight and contributes
spurious intensity to the line shape (see next section).
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FIG. 7. I(u) for different values of S in the HE approxi-
mation done in the vertex alone (solid line). In the case of
S = 1/2 we show also the result for the HE approximation
done in the vertex and in the operator (dashed line). A small
imaginary part (0.016E ) has been added in the denominator
of the Green function.
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FIG. 9. Experimental data from Ref. 4 (solid line) and the-
oretical line shape for two-magnon absorption (dashed line)
in LaqCu04. The dashed dotted line is the contribution to
the line shape from the bimagnon at p = (x, 0) Parameters
are &u~~

= 0.080 eV (Ref. 23), 1= 0.121 eV, o.o = 2.88 cm

IR &equency of the E„stretching mode as suggested by
comparing with La~Cu04. Notice that these difFerences
are insignificant anyway. The fitting for the primary peak
is quite good. The improved theory (HE approximation
in the vertex alone) has a slightly narrower line shape
which makes the 6t not as good as for the more approxi-
mate line shape of Ref. 11. Still the Gt is quite good and
this is surprising because such a good Gt, especially for
the width, was not possible within the RPA in the Ra-
man case. In fact the experimental Raman line shape
is much broader than the theoretical prediction shown in
Fig. 2. This suggest that the RPA is not so accurate in
the case of' S = 1/2. The fact that we obtain a reasonable
fit in our case can be partially reconciled with the rela-
tively bad performance of the RPA in the Raman case
due to the fact that the final (p-integrated) width in the
line shape is not so sensitive to the precise width of the

200—
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~ ~

0 '

0.2 0.4 0.6 0.8 1.0 1.2
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FIG. 8. Experimental data from Ref. 4 (solid line) and the-
oretical line shape for two-magnon absorption (dashed line)
in Sr~CuOqClq. The dashed dotted line is the contribution to
the line shape from the bimagnon at p = (s', 0). Parameters
are cu~i

——0.061 eV J = 0.107 eV, o;o ——3.72 cm

bimagnon close to p = (vr, 0) as was explined in Ref. 11.
From the position of the maximum we found J = 0.107

eV. An alternative way to estimate J is &om the position
of the maximum in the Raman peak, Eq. (50). From the
measurements of Ref. 26 we found J = 0.103 eV. In this
estimation one should again be aware that the accuracy
of the RPA for a S = 1/2 system has been questioned. ~s

We keep for comparison in Figs. 8,9 the contribution
&om the real bound states although their position, inten-
sity, and even their existence are not very reliable because
they are beyond the applicability of the HE approxima-
tion.

The data show also tiny structures above the primary
peak. These structures can also be due to adsorbates
or, as the same authors suggest, they can be phonon
sidebands. In fact the two-phonon —bimagnon contribu-
tion is expected at E& &~

plus two-phonon &equencies.
Its spectral weight is much smaller than the one-phonon
plus bimagnon. For example the isotropic charge is of
order (I &&ql and hence the absorption is of order

(~,'+g/g&
((P2ph+mag j P2ph+mag)) ~ ((Plph+mag j Plph+mag)) I

y)d
2 2

where we have taken a factor &,
"" 1. This is roughly

three orders of magnitude smaller than the previous con-
tributions and can explain the tiny structures reported
for SrqCuOqCl~. The shift &om the primary peak is
0.04 eV and 0.07 eV in good agreement with typical val-
ues of u~ and uii. Note that only the presence of a sharp
bimagnon state would make those processes observable.

In Fig. 9 we show the 6t for LaqCu04. Here we found
J = 0.121 eV. The corresponding value &om the position
of the maximum jn the observed Raman line shape
is J = 0.118 eV. The same comment as before applies for
the accuracy of this RPA estimate. The superexchange
was estimated also &om a study of the moments of the
Raman line shape with the result J = 0.128 eV.

The shoulder observed at lower energies (Fig. 9)
was assigned to direct two-magnon absorption ' made
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weakly allowed by the lower lattice symmetry according
to the results of Refs. 2, 28. However, we found that the
dipole moment for this process can only contribute for
a field perpendicular to the plane, ruling out this pos-
sibility. It is possible that a soft mode of the distorted
structure gives rise to this effect since this will gener-
ate an enhanced intensity at lower &equencies according
to Eq. (21) although more theoretical and experimen-
tal work is needed to clarify this point. %e note that
anharmonicities produce a spliting of the u~~ phonon,
its partner being at u~~

——0.06 eV at room temperature,
and the shift between the primary peak and the shoulder
is in the range of phonon energies ( 0.04 eV).

C. Spectral meighlts

The measured spectral weight for the primary peak is
determined by the parameter ao. With Eq. (60) we can
converted that to oo. For Sr2Cu02C12 we have E = 5.5
(Ref. 24) and we get cro = 0.023 0 cxn i and for
La2Cu04 e = 6.0 (Ref. 24) and ITo ——0.018 0 cm
We can use Eq. (58) to estimate q~. For La2Cu04,
V~„——95 x 10 cm and we approximate M with
an 0 mass (a reduced mass would be more appropri-
ate). We get q~/e = 0.082. For Sr2Cu02C12 with
Vo„= 123 x 10 4 cxn we get q~/e = 0.088. Exam-
ining the expression for the effective charge we find that
is of order q~/e &, 0.1 in very good agreement
with the experimental values. One should take into ac-
count, however, that the previous estimates neglect the
weight in the sidebands so that the observed spectral
weight is in reality larger than the one estimated with
q~/e 0.1. This leaves room for the effects discussed in
Sec. IVA.

D. Prediction for LaqNi04

In this case structural parameters are similar to the
previous compound, VN; ——94 x 10 cm and e~
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FIG. 10. Theoretical line shape for two-magnon absorption
in La2Ni04 (dashed line). The dashed dotted line is the con-
tribution to the line shape from the bimagnon at JI = (Ix, 0).
Parameters are Id~~ = 0.066 eV (Ref. 30), J = 0.030 eV (Ref.
32), no ——6.0 x 10 cm

5.4; however, the ratio J/E is an order of magnitude
smaller. So we expect q~ &, 0.01 which makes32 2JU~g

the absorption two orders of magnitude smaller than in
the previous compounds. Vhth this value of q~ we get
o.o ——3.7 x 10 0 cm . The expected absorption is
plotted in Fig. 10. As explained before there are no sharp
features in the S = 1 case.

After this work was completed we sent the predicted
line shape to J. Perkins and collaborators. They allowed
us to examine yet unpublished experimental data in
this compound which showed remarkably good agree-
ment with the predicted line shape. In order to fit the
data no readjustment was necessary for the energy scale
and the rough estimation for the intensity was only a
factor of 3 smaller than the observed value. The data
show no high-energy sidebands which illustrates quite
remarkably the difference between the S = 1 and the
S = 1/2 system, the latter showing the strong sidebands
which require an explanation beyond the RPA.

V. DISCUSSION AND CONCLUSIONS

The experiments show also very strong sidebands.
These are expected as the effect of quantum Quctuations
corresponding to the creation of an arbitrary even num-
ber of magnons. This is in principle also true for the
Raman case and in fact a structure attributed to a four-
magnon process was observed in Raman at a similar
energy to the first sideband (note that phonon energies
are almost negligible here).

In the Ising limit one can roughly estimate the position
of these sidebands. The minimum energy to excite four
magnons (plaquette configuration) is m4 s ——4J which
correspond to the first sideband (see Figs. 8,9). The next
sideband is attributed to a process in which four spins
are Hipped in a column which has an excitation energy
of u4 z ——5J in the Ising limit. In general one can
show that sidebands are expected at integer values of J
as observed experimentally. We have also computed the
sidebands by exact diagonalization of a small cluster.
The exact result confirms the Green function calcula-
tion and shows the sidebands corresponding to higher
multimagnon process. The relative weight of the side-
bands seems to be smaller than in the experiments pre-
suxnably because of finite-size effects or the presence of
other process in the magnetic Hamiltonian as in Raman
case. ' Exact diagonalization calculations of the Ra-
man spectra show also this kind of sideband.

As the temperature is raised one expects that the struc-
ture broadens in a way similar to the Raman line shape
and at the same time a hot phonon band should appear at
E~ o~

—
~~~ corresponding to a process in which a phonon

of the bath is absorbed and a bimagnon is emitted. It
would be interesting if this effect can be seen experimen-
tally.

It is interesting to point out that one can in princi-
ple see the bimagnons for a particular momentum with-
out the assistance of the phonon in neutron scattering
experiments. s i This came from the terxn ((S„';S'„))
which is proportional to G33 Unfortunately in the
present spin-1/2 materials the energy of the bimagnons is
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too high for conventional neutron sources and one should
search for other low-spin materials with a smaller J.

Also high-resolution electron energy loss (HREELS)
experiments have the possibility to access two-magnon
excitations at nonzero momentum. In addition for the
particular case of small energy losses with respect to the
energy of the incident electrons and in specular scattering
geometry, dipole selection rules are valid and one should
also see the analog of the phonon-assisted IR line shape.
Preliminary HREELS results in Sr2Cu02C12 show a
structure which agrees very well with the data of Perkins
et a/. . Other possibilities to see these excitations with-
out the assistance of the phonon would be to add im-
purities. In this way the zero total momentum selection
rule will not apply any more and the narrow (m, 0) bi-
magnon should give some signature at ~ = E . The
impurity should also break inversion symmetry (which
to same extent it always does) in order to make the
two-magnon excitations IR active and they should not
introduce doping; otherwise the doping-dependent mid-
IR band would mask everything. Possible candidates
would be Nd2 Pr Cu04 or similar combinations with
other rare earths. Since the Nd is on top of a Cu, the 0
is no longer in a center of inversion.

Another interesting experiment would be to repeat the
experiment of Perkins et a/. in an insulator w'ith in-plane
anisotropy. Since an electric Geld in the ~ direction cou-
ples with bimagnons at (m, 0) and one in the y direction
with bimagnons at (0, vr), if these two directions are not
equivalent, the primary peak should split in a twinned
crystal.

We do not believe that these mid-IR excitations are re-
lated to the doping-dependent mid-IR bands observed in
the cuprates for which a completely different mechanism
has been proposed. ' 9 For example for Nd2Cu04 „ in
the notation of Ref. 40 the band labeled J at 0.16 eV
has been quite undoubtedly shown to be due to lat-
tice polaron formation ' ' ' by Calvani et a/. The
structure labeled I at 0.76 eV is the analog of the mid-
IR band reported by Uchida et a/. for La2 Sr Cu04
at 0.5 eV and can be explained by a purely electronic
mechanism. ' Only the much weaker structure labeled
K at 0.34 eV may be related to these excitations.

In this work we have computed effective coupling con-
stants of light with multimagnon excitations assisted by
phonons and the line shape of the primary peak. Our re-
sults explain recent measured absorption bands in the
mid-IR region of parent cuprate superconductors and
show that this technique proves high-energy magnetic
excitations. This is very interesting because IR spec-
troscopy is a technique intrinsically more accurate and
with a much better signal-to-noise ratio than other tech-
niques available like Raman or neutron scattering. We
have demonstrated the existence of very sharp virtual
bound states of magnons in spin-1 j2 systems at momen-
tum (m, 0) and showed the shape of the excitations at
different momenta.
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APPENDIX A: VERTEX FUNCTIONS

The symmetrized vertexes in Eq. (34) are given by I
rll + I'~ with

ll

~X234 = Jz
[Y2+l(ulv2v3u4 + vlu2u3 4)

+Y2 4(uiu2u3u4 + viv2vsv4 + uiv2u3v4

+viu2vsu4) + 1 ++ 2 + 3 ++ 4 + 1 ++ 2 and

3 ~ 4], (Al)

T J
~ Z234—

Jz
8 [(2 Y2 + Y3)ulu2vsu4 + (2 Yl + Y3)v1v2u3v4

+(2p3 + p2)uiv2u3u4 + (2' + p2)viu2V3v4

+1 ++ 2 + 3 ++ 4 + 1 ++ 2 and 3 ++ 4]. (A2)

In terms of total momentum and relative momentum
variables the vertex in Eq. (39) can be rewritten as

pc.c = & fpc fpc + pc. pc
8 ) ( )

+—sin —h„,h„, + qg m q2
2 ( 2

(A4)

where we used the definitions in Eqs. (37),(38).

APPENDIX B: SOLUTION
OF THE TWO-MAGNON PROBLEM FOR 2D

AND p =py

In this case the Green functions for fixed p are in-
variant with respect to the exchange q~ e+ q„. As is
done in the theory of Raman scattering we can define
G&"&, ——2(Gi i —Gi i „) and a similar definition for
the noninteracting Green functions. In this case Eq. (45)
reduces to a 2 x 2 problem,

Gd(o) J ~ Gd(o) ggll' ll"

Pl( JpciA + ( pci pci pci pc~) 2 Ypfpcifpci
bi=1,2

(A3)
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which can be solved for
Gd(0) + g[Gd(0)Gd(o) (Gd(o))2]

1 + J (Gd(o) + Gd(o)
) + J& [Gd(o) Gd(o) (Gd(o) )2]

(B2)
APPENDIX C: SOLUTION

OF THE TWO-MAGNON PROBLEM
FOR y = (m, 0, 0, .. .)

In this case the Green function for the x direction
decouples &om the rest in Eq. (45). This is because

G& s ——0, G& &,&
——0 with b P x. To see this notice

that in the definition Eq. (42) the kernel changes sign
under the replacement q ~ q + (m, 0, 0, . . .). So we get

(o) i - (o)Gt~, i~* = Gi*,v~ J g G
l"=1,2

We can solve for

We can solve for

Gi~ i~+ G2~ 2~+ 2Gla 2m+ [ la lx 2a, 2x ( 1x,2m) 1

(o) (o) (o) (o) (o) (o) 2

(o) (o) (o) (o) (o)~ + J(Glx, lx + G22. ,2x) + 4J [Glx, lxG2x, 2z ( lx, 2x)

APPENDIX D: HIGH-ENERGY
APPROXIMATION

When the line shape is positioned at sufFiciently high
energies (ur )E ) it is a good approximation to neglect
the v's respect to the u's in Eqs. (36a)—(38). In principle
this can be done everywhere in the expressions for the
Green functions. However, it is convenient to do this in
two steps. First we define

fib fis g f28

and we do the HE approximation in the vertex; i.e. , we
neglect all contributions that involve v's in Eq. (A3). We
denote with primes the quantities computed in the HE
approximation, i.e. ,

I",q, q,
= 2J):f~'e'-, fp+.'.

8

(D2)

Gi. = -(G+++ G'—+ 2G+-)

Gsi = (Gs++ Gs —)2

Gis = -(G+s+ G'-s).
2

(D6a)

(D6b)

(D6c)

When calculating the Green function for the two-magnon
operator, Eq. (46), one could be tempted to make the
same approximation and keep only G++ since according
to the definitions Eqs. (36), (37), (43), all other contribu-
tions are negligible. This means that not only the vertex
or equivalently the interaction part of the Hamiltonian
(VRP+) is approximated by (V,'R ) but also the opera-
tor bB is approximated by bB' . We call this the HE
approximation in the vertex and in the operator. Al-
though this is perfectly consistent at high energies, this
approach produces a large spurious contribution at low
energies. To see this consider the case of p = 0. We can
define

Now we rederive Eq. (45) in the HE approximation:
Now we find

bB; = bB,*+bB,",
bB" = bB —bB".

(D7)
(D8)

(D3)
((bBo; bBo)) = —(((bBo, bBo)) + ((bBo,. bBo))

We can treat b as a matrix or vector index of dimension
D, the dimensionality of the lattice, and put this as

(o) (o)G)), ——G)), —2JG)+ G+), . (D4)

G'„= (i+ 2ZG" )-'G",'

and replacing in Eq. (D4) we get also G&&, . We also have
the exact transformation

Notice that G11 G22 G~~ are matrices G13 G31
vectors, and G33 is a scalar. Solving the D x D problem
for G+& we get

+((bBo bBo))+ ((bBo bBo))) (»)
Only the first term contributes to the line shape; i.e.,
the p = 0 contribution to the IR line shape is identical
to the Raman line shape. This follows from the fact
that Bo is proportional to the Hamiltonian and hence it
commutes with it. To enforce that in spin-wave theory,
we would like Bo to commute with H order by order in
1/S. However, if we do the high-energy approximation in
the operator of Eq. (46), we miss some terms of order S
in Bo and then we find that to order S, [bB&', Hp] g 0.
This gives spurious scattering in the s channel. We can
avoid that by doing the high-energy approximation in the
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vertex alone. In this case G&3, G3&, and G33 are kept in
Eq. (46) and computed with Eqs. (D4), (D5), and (D6).
It is instructive to check analytically that in this way the
noninteracting ((SBo;hBo)) = 0.

In the 2D case we Gnd

~„=1+2J(G."&., + G&;& „)
+ 4J'[G-'+, *+Gy+,s+ —(G*'+,.+)']

and so we get for G+ +

(D11)

(1+ 2JG+(+)) G( + 2J[G( ) G „„—(G ) +„)z]
+x)+z ++

with

&++ ( —2JG +„+ 1+2JG + ~)
(D12)

This reduces to Eq. (55) for p = (vr, 0) using the proper-
ties of Appendix C.
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