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Modulated structures stabilized by spin softening:
An expansion in inverse spin anisotropy
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We develop an analytic approach which allows us to study the behavior of spin models with
competing interactions and p-fold spin anisotropy D in the limit where the pinning potential which
results from D is large. This is an expansion in inverse spin anisotropy which must be carried out to
all orders where necessary. Interesting behavior occurs near where the boundary between different
ground states is infinitely degenerate for infinite D. Here as D decreases and the spins are allowed
to soften, we are able to demonstrate the existence of several different behaviors ranging from a
single first-order boundary to infinite series of commensurate phases. The method is illustrated by
considering the soft chiral clock model and the soft clock model with first- and second-neighbor
competing interactions. In the latter case the results are strongly dependent on the value of p.

I. INTRODUCTION

There are many examples of long-period phases in na-
ture. These include the ferrimagnetic phases of the rare
earths, long-period atomic ordering in binary alloys, and
polytypism, the possibility of many different forms of
long wavelength structural order in some minerals.

The underlying physical mechanism responsible for the
formation of long-period structures is often the existence
of competing interactions. Therefore it is of interest to
understand the properties of model systems with such
competition. Perhaps the simplest of these is the axial
next-nearest-neighbor Ising (ANNNI) model, a ferromag-
netic Ising model with second-neighbor antiferromagnetic
interactions along one lattice axis. Despite its simplicity
the ANNNI model has a very rich phase structure with
infinite sequences of commensurate and incommensurate
phases at finite temperatures. '

If continuous spins are considered similar structures
can occur even in the ground state. Banerjea and Taylor
performed numerical work on the chiral X-Y model with
p = two-fold spin anisotropy D and showed that long-
period phases are stable. Chou and GriKths later
proved that an infinite number of commensurate phases
appear as ground states for p ) 3. Numerical work has
also shown that the X-Y model with first- and second-
neighbor competing interactions and p = six-fold spin
anisotropy has a highly complicated ground-state phase
diagram.

Note that a common feature of these models is the spin
anisotropy D. As D is increased &om zero to infinity the
spins are confined to increasingly deep potential wells and
the model crosses over &om a continuous to a discrete
spin limit. For example, the X-Y model with p-fold spin
anisotropy becomes a p-state clock model for D = oo.

For infinite spin anisotropy the ground state typically

comprises a few short-period phases. The boundaries be-
tween the phases can either correspond to a first-order
transition where only the neighboring phases are sta-
ble or a multiphase point at which an infinite number
of phases are degenerate. As D decreases &om infinity
the states at the multiphase point can either remain de-
generate with the point becoming a multiphase line or
their energy can be differentiated as the spins soften. In
the latter case some or all of the degenerate phases may
become ground states in their own right and typically a
fan of phases springs &om the multiphase point. Indeed
we shall see that in many respects D behaves in a way
akin to temperature with the spin softening playing the
part of entropic fluctuations.

The large D region of the phase diagram is difBcult
to explore numerically because the phase sequences can
be very complicated and the widths of the stable phases
small. Therefore our aim in this paper is to describe an
analytic technique which is useful in helping to under-
stand the ground state of models with competing inter-
actions for large spin anisotropy D. This is an expansion
in 1/D taken to all orders where necessary. A short paper
has suInmarized some of the results of the calculations.
Here our aim is to describe the technical details of the
expansion.

In Sec. II of the paper we explain the approach in
some detail for the chiral X-Y model with p-fold spin
anisotropy. In II A the model is defined and our notation
introduced. The energy differences which are central to
the argument are defined in II B and their dependence on
the deviation of the spins &om their positions at D = oo
is calculated. II C descibes the convenient labeling of the
spin states which allows a calculation of the energy differ-
ences to leading order presented in IID. From these we
are able to show, in agreement with Chou and GrifBths,
that all possible phases are stable near the multiphase
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point for p & 3. In Sec. IIE the widths of the long-period
phases are calculated.

The calculation is repeated in Sec. III for the X-Y
model with first- and second-neighbor competing interac-
tions and p-fold spin anisotropy. This is an involved cal-
culation because of the existence of the second-neighbor
interactions. Previous numerical results for this model
for p = 6 were unable to probe the large D limit. We
6nd that the behavior near the multiphase points is com-
plicated and highly dependent on p.

The results are summarized and discussed in Sec. IV.

II. THE CHIRAL XY MODEL

To this end we require a notation capable of distin-
guishing the different phases stable at the multiphase
point. Typically a stable ground state will consist of
a sequence of bands where n; ~

—n, = 0 separated by
walls with n; q

—n; = l. [ Eq, E2, . . . , E ] will be used to
describe a phase where the repeating sequence consists
of m bands of length /~, E2, . . . , 1 . It may be helpful to
list some examples for p = 6

[»]
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A. Definitions and notation

The approach is most easily explained by considering
its application to the chiral XY model with p-fold spin
anisotropy. This is described by the Hamiltonian

'R = ) (—J cos(8; i —8, + 4) —D(cos pg; —1)/p2 j

where the 8; are angular variables which can take values
between 0 and 2m lying on the sites i of a one-dimensional
lattice.

Note that the Harniltonian (1) is invariant under the
transformation

b, -+ 4' = 4 + 2vrm/p, (2)

for any integer m given the reidenti6cation

0; m 8,'. = (8; + 2vrmi/p)

and therefore we may restrict our attention to 0 & 4 (
2'/p. Moreover the system is invariant under

E m b, ' = 2m. /p —4,
8, ~ 8,' = (—8, +2~j/p). (4)

Thus the phase boundaries for A ) n/p are related to
those for 4 ( vr/p by reflection in the line 4 = n/p.
However, the phases themselves must be identi6ed dif-
ferently within the two regimes according to (4).

For D = oo the spins are restricted to discrete values
27m;/p where n; = 0, 1, . . . , p —1 and the Hamiltonian
(1) becomes that of the p-state chiral clock model. The
ground state is well known in this limit. For 0 & 6 &

m/p it is ferromagnetic whereas for n/p & E ( 2m/p,
n;+q ——n; + 1, the increase in the chirality L favoring a
twist in the spin ordering. At b, = vr/p itself the ground
state is infinitely degenerate, with any phase for which
n;+z —n, = 0 or 1 for all i having equal energy. Such a
point is often termed a multiphase point. It is expected
on the basis of previous work that as D decreases &om
infinity the degeneracy will be lifted. Our aim is to ex-
plore the phase structure through an expansion in D
We consider p & 3.

where a vertical line is used to denote a wall. In the
subsequent text we shall use the term l band to describe
a band of length 1 spins. For example [232] consists of a
2 band followed by two 3 bands.

B. The energy differences

The goal is to establish which of the infinite number of
phases degenerate at the multiphase point remain stable
for finite D. This is done by using an expansion in inverse
spin anisotropy, D . The difhculty is that in order to
check the stability of all commensurate phases certain
terms must be calculated at all orders in D

However, the relevant terms can be identi6ed and the
phase diagram constructed inductively using an argu-
ment first developed by Fisher and Selke to study the
phase diagram of the axial nearest-neighbor Ising model
using a low temperature expansion. We summarize their
argument here.

Consider two phases [a] and [P] which share a common
boundary at a given order of a series expansion. Fisher
and Selke showed that the 6rst phase which can appear
between them as the expansion is taken to higher orders
is [p]=[nP]. To check whether this phase does indeed
appear the important energy difference is

E—:nhl Eh, l
—nl 3 EI l

—
ntp3 EIpl

where EI 3, Eipl, EI&l are the ground-state energies per
spin and n~ 3, nIpl, n~~l, the nuxnber of spins per period of
[o.], [P] and [p], respectively.

There are three possibilities:
(i) EE ) 0 and the boundary between [n] and [P]

remains stable to all orders.
(ii) b,E ( 0 and [n/3] appears as a stable phase in the

vicinity of the [n]: [P] boundary. The analysis must
recommence about the new [n]: [aP] and [nP]: [P]
boundaries.

(iii) AE = 0 and [p] remains degenerate on the [n]:
[P] boundary to all orders.

To explore the phase structure our goal is to calculate
AE and investigate its sign. To this end we write

where 0, is the value of the spin 0; for D = oo, and
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expand the Hamiltonian (1) to quadratic order in the
niE[ )

= (Jc; (n; i —o.; + a; /c; ) /2
i=1

Do', /2 —J(s; )'/(2c; )),

(n —n, )E~, = ). (Jd,'(P;, —P, +",/&)'/2
i=ny+1

+DP,'/2 —J(".)'/(2~)),
n

nE(~j = ).(Jc~(p; i —p;+ a, /c. , )./2
i=1

+»,'/2 —J(";)'/(2C)) (

'R = 'R
~
D— + 5 (Jc; (8, i —8, + s; /c, ) /2

z

+DC/2 —J(,'-)'/(2 .')) (8)

where

c; = cos(8, i —8; + 4), a; = sin(8, i —8, + 4). (9)

Because [p]:—[o.P] we can choose to label the spins in
such a way that

0 0= A ~ ) 1 & i & nl,

nl+1&i&n0 p0 (12)
D8; = J(c;8, i —c;8; —c,+i8; + c;+i8;+i8 8 8 e

8 8+; —,+i)
and take

10

We shall henceforth work with the quadratic approxima-
tion (8) to the chiral XY model. To leading order this
gives the same results for the energy differences as the
full Hamiltonian (1).

In equilibrium the energy of each phase must be min-
imal. DifFerentiating (8) with respect to the 8; leads to
the relation

which we shall need below.
For the quadratic Hamiltonian 'R the energy difFer-

ences can be calculated exactly. Let n~ j
——nl and

n~~~ = n and label the spins within the phases [n], [P]
and [p] by n;, P;, p;, respectively. Then, using (8) the
energy of each phase relative to its value at D = oo is

C —C.

d,'. = c,'. ,

8- = 8 ' ,

S~ = 8'. ,

1&i &nl',

nl+1&i&n.
This means that we may drop the o., P, p superscripts
on the (c,) and (s,) and the final terms in (11) drop out
when the energy difference is calculated

E —5 [ J(c,(p, i p, + a, /c, ) c, (n, i a, + a, /c, ) )/2+ D(p; ci, )/2]

+ 5 - [ J(c'(7'-i —7'+ s'/c')' —c*(p'-i —p'+ s'/c') )/2+ D(&' —p')/2].
i=ny+1

(14)

This expression can be simplified considerably using
(10). Recalling the periodicity of the ground-state phases
which ensures

~' = ~-,+' p' = p- ,+' ~' = ~--+' V i (15)

leads after some algebra to

&E = Jci((~-, —P-)(Wi —W-, +i)
—(~. —0-,+i)(~- —~-, ))/2.

C. Labeling the spins

The energy differences we are trying to calculate are
independent of the labeling of the spins given that the
conditions (13) hold. In general differences such as n, —
P in the energy difference (16) will be polynomials in

Note that LE depends only on the difference between a
small number of spins. It is this which facilitates its cal-
culation. The expression (16) is exact for the quadratic
Hamiltonian (8) but only correct to leading order for the
full Hamiltonian (1). However, this will be sufficient for
the calculations presented below.

I

D . Low order terms will cancel when the difference in
(16) is taken, in such a way that the final result becomes
independent of the labeling. However, calculationally the
problem is simplified by a careful choice of spin labels
which allow the leading order contribution to LE to be
obtained directly.

We first point out that every commensurate ground
state of the Hamiltonian (1) has two points of mirror
symmetry in each period evenly spaced along the chain.
It is possible to distinguish two cases. For states of odd
period half the symmetry points are located on lattice
sites and the other half between lattice sites. By symme-
try the spins located on the lattice sites corresponding to
mirror symmetry points do not deviate &om their D = oo
position for finite D (8 = 0). For states of even period
the symmetry points are located either all between or
all on lattice sites. For states formed by the branching
process [n] + [P] ~ [aP] only the former can occur.

As the branching process [a] + [p] ~ [p]:—[o.p] pro-
ceeds states are made up in two ways: (i) odd + odd
~ even, (ii) odd + even ~ odd. (A moment's refiection
shows that even + even ~ even never occurs because, as
the ground states are formed inductively, no neighboring
even phases ever appear. )
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Our aim is to choose the origin for the labeling of the
spins in such a way that the formula (16) for the energy
difFerence is simplified. It is necessary to consider each
of the two cases (i) and (ii) separately.

(i) odd + odd m even.
We recall the notation [a] + [P] ~ [p] with [ca] and [p]

having nl and n spins, respectively, in each period. A

convenient choice of labeling is

ca„a =0; P„=O.

It will be useful later to write the spin deviations within
a perjod of each phase in a way that explicitly displays
the symmetry

~i/ = 1&1)~2) ~ ~ ) ii(na —1)/2& ii(na+1)/2 & ) &na —2) &na —1& ~iraa j
AV

O 1& O'2& ~ '
& ~(na —1)/2) ~(raa —1)/2» ii2& Ca'1& 0}

(Pi j = (Pna+1) Pna+2» P(ra+na —1)/2& P(n+raa+1)/2 &
~ ~ ~ r Pra 2) P—n —1) Pn j

(Pna+1) Pna+2 ) & P(n+na —1)/2) & P(n+na —1)/2) ~ ~ ~
& Praa+2 ) Pn 1+1 ) 0j.

(o.) and (P) combine to give an even state (p) with symmetry points between i = (nl —1)/2, i = (nl + 1)/2 and
i = (n+ nl —1)/2, i = (n+ nl + 1)/2.

('Yi j = ('Yl &
'Y2) ' ' ' r 7(na —1)/2) Y(na'+1)/2 r ) 'Yraa —1) 'Yna r 'Yna+1) 'Yna+2) ' ' '

& 'Y(ra+na —1)/2 ) 'Y(n+na+1)/2) ' ' ' ) 'Yn 1& Yn j'—
—(71) 'Y2) ~ ~ ~

& Y(na —1)/2& Y{na —1)/2» Y2& Yl) Yn) Yn —1& ~ r Y(n+na+1)/2) Y{ra+na+1)/2& ~ ~ ~ ) Yn —1& Yn j~

Because a, —P = 0, (16) simplifies immediately to

b,E = —Jci (ni —P„,+1)(p„—p„,)/2. (21)

Y(n+na)/2) Y(n+raa)/2) ) & Yn —1& Yn, jr (25)

(ii) odd + even ~ odd.
We take [a] odd and [P] even. Choosing a(,~1)/2 ——0,

(&ij = (&1& ii2) ~ ) O'(na 1)/2) 0—
&

Ca'(raa —1)/2) ) ~ ~ ) ~12) ill j~ (22)

A consistent choice of labeling for [P] which results in
the correct 6nal state is to take the mirror symmetry
points to lie between spins 2 = 0 and 2 = 1 and between
i = (n —nl)/2 and i = (n —nl)/2+ 1. Hence we may
write

(P;j =(P,
P(n+nl)/2»' ' ' Pna+» Pnl+1 j

It is immediately apparent &om (22) and (23) that

~, —P- = —(~i —P-, +1)
Using [n] and [P] to construct [p] will preserve a point of
mirror symmetry at i = (nl + 1)/2. Hence

( Ya j ( Yl & Y2& ' ' ) Y(na —1)/2) Or Y(na —1)/2)

p2) 71) YA) fA —1) '

I

Eq. (10) which followed from minimizing the ground-
state energy. Let

gl g2

D D2 (28)

Substituting into (10) and equating like powers of D
gives

8,. = J(s; —s;+1))

8, = J(c,8, 1
—c,8, —c;+18; + c;+18;+1 ),

n) 1. (30)

Again it is necessary to consider separately the combina-
tion of states with diferent symmetries.

(i) odd + odd -+ even. Note first that nl —Pl +, de-

pends only on the (s, j and (s~j, that is, only on the
value of the spins for D = oo. I et

n, —P„,+, ——0,1 1

ni —
P nl+t = GQ)

2 &np)

AQ ~

(31)
(32)

Then a consequence of the spin labeling and symmetry
summarized by Eqs. (18) and (19) is that

from which it follows that

~- —V-1 = —(~-1+1 —~i) . (26) 1 f21Q . —p . = —Gp&n~ —i

2 &np)
2 —72Q ~

(33)

(34)

Using (24) and (26) the energy difference (16) simplifies
to

AE = —Jcl((%1 —P„,+1)(7„—p„,) . (27)

D. Recursion equations

The next step is the calculation of the spin deviations
in forinulas (21) and (27). To do this we start from (xi —P„,+1 ——J"' cos (7l /p)

"' G /Do"' . (35)

It is apparent &om the recursion equations (30) that
after one step of the iteration the spin difFerences a™;-
P,+; and cr. , —P, ; with i = (no —1) will attain a
nonzero value; after a second step these difFerences with
i = np —2 will become nonzero and so on. Therefore
iterating (no —1) times gives the leading order result
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1

1 1
~n, +i = ~»

—flo&z&n»
'L = +Ap.

(36)

(37)

Note that we have assumed that e; = cos(m/p) V i. This
is true to leading order near A = m/p.

It is also appropriate to mention here that further it-
eration of the linear equations will generate corrections
to (35) which are correct for the quadratic Hamiltonian
(8) but not for the full chiral clock model (1). However,
these terms are not necessary for our argument.

As a consequence of the conditions (13) and because
[p] = [nP] it must also hold that

&om terms iterating froxn the left. Using (27) the energy
difference is

b,E = —J "' 'cos(7r/p) "' 'ap/D "'. (46)

Both of the energy difFerences (39) and (46) are negative.
Hence for p & 3 all phases appear for large D near the
multiphase point in agreement with the conclusions of
Chou and GriKths. 4

Noting that s; = +sin(x/Ji) V i it is apparent by in-
spection that ap2 = 4J2 sin (vr/Jx). We prove in Appendix
A that np ——[(n(&) + 1)/2] —1 where [n] is the integer part
of n. Therefore for all combinations of phases

Iterating np times using (30) gives EE = —J"'[~j cos(vr/p)" [~~ ap/D" i~i (47)

p„—p„, = 2J"' cos(~/p)"'ap/D"'+ (as)

AE = —J "' cos(7r/p) "'ap/D "'+ .

where the factor 2 appears because terms which iterate
both &om the right and left along the chain contribute
to this order. Hence the energy difFerence (21) is

Correction terms O(1/D"I~I) will arise &om contribu-
tions to the energy difFerence (16) and the recursion equa-
tions (10) from nonharmoxiic terms in the Hamiltonian
(1). There will also be correction terms within the har-
monic approximation (8) itself arising from further iter-
ation of the recursion equations (10).

1 1n, —P„+,. 0, —(np —1) & i & np,

1 g1 1 R1—R
~O r ~1+~0 0) (~o —1) ~&1 (no —1)=a n = —a .

(ii) odd + even ~ odd. We assume as before that (31)
and (32) hold. It follows immediately from considering
(22) and (23) that

E. Phase widths

An advantage of the formalism presented above is that
it allows a calculation of the widths of the long-period
phases. We de6ne 4 ~, Lp~, and L p by

Similarly

(41) E(-)(&-.) = E(,)(&-.)
E[p)(&p~) = E(~)(&p~)
E( ](&-p) = E[p)(&-p).

(4s)
(49)
(50)

1 1

1 1
&z &n, +g = f2»

Iterating (np —1) times,

—(np —1) &i&np,
i = np, —(np —1).

(42)

(43)
For a stable phase [p] 4 p will lie between 4 ~ and Ap~
and if the phase [p] is not too wide a Taylor expansion
gives

nx —P„,+i ——J"' cos(vr/Jx)"' a /Dp"'

&om terms iterating from the right and

p„—p„, = J"' 'cos(vr/p)"' 'a /Dp" 0

(44)
E(.)(~.,) = E(.)(~-p) + EI.)(~-, —~-p)
E(,)(~.,) = E(,)(~-p)+ EI,)(~-, —~-p)

where ' denotes a derivative with repect to L.
Subtracting (52) from (51) and using (48) gives

(51)

(52)

(E(.) —E(,)) (&-~ —&-p) = E(~) (&-p) —E(-)(&-p)
fl [p]= E(~) (&-p) — E(-) (&-p) — E[p) (&-p)

A[~] A [~]

(53)

(54)

(55)

where in the penultimate step we have used (50) and in
the final step the definition of AE, Eq. (6). Writing down
a similar expression for Lp~

—4 p and combining it with
(55) gives an expression for the width of the phase [p]

For D = oo the energy per spin of a ground-state phase
at the multiphase point [n], say, is

E[ ]
= —J(l( ] cosE+ (1 —l[ )) cos( 2'/Jx+ A—)), (57)

~[~]:(+p~ + ~) = +Ei(EIp] E[ ])
—(E[-) E[')) '&/"( ]- (56)

where l[~~ is the &action of nearest-neighbor ferromag-
netic bonds. Differentiating the expression (57) and sim-
ilar formulas for [P] and [p] and substituting into (56)
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gives to leading order

~E('w —'(w)
2Jn(~j sin(m/p) (l(pj —l(~() (l(

~

—l(~j)

It is not hard to show inductively that

'(~j —'(-j = (n(-~nW)
'

'(
~

—'(.j = (n(Wn(. j)
'

l(~] l(~j = (n(~In(~l) (59)

Therefore using (47) we finally obtain

W(~1 = —2J"~~j cos(vr/p) "~~~ sin(~/p)n(~) /D"~~~

(60)

To fully describe the ground states and the phases de-
generate at the multiphase points it is necessary to ex-
tend the notation introduced in Sec. IIA. Note that
at multiphase points such as x = 1 for p = 6 all
phases with n, —n; i —— 1, 2, with the proviso that
n;+i —n; = n; —n, q

——2 is not allowed, are stable.
Hence the natural definition of a wall is as lying between
spins i and i—1 for which n, —n; i ——2. The term band is
used as before to describe the sequence of spins between
two walls. The phases stable at the multiphase point can
then be more easily described as those containing only
bands of lengths & 2.

A given state will be labeled by (Eq, I2, . . . , I. )
where the repeating sequence comprises bands of length

. It may be helpful to list some examples for
@=6:

III. X'Y MODEL WITH COMPETING FIRST-
AND SECOND-NEIGHBOR INTERACTIONS

AND P-FOLD SPIN ANISOTROPY

A. Definitions and notation

(» "1o11341o11".
(») " 1»13451»145o1".

(3'4) " 1o»14»1»451»315o1134»
I
"

(oo) . . . 01234. . . (62)

In the second part of the paper we extend the formal-
ism developed earlier to obtain new results for a more
complex spin model. This is the XY model with com-
peting first- and second-neighbor interactions and p-fold
spin anisotropy. Each classical A Y spin vector lies in a
plane perpendicular to the z axis and has unit length.
The Hamiltonian can be written

'8 = ) —Jq cos(8, q
—8;) + J2 cos(0' 2 —8')

2

Compare the notation using square brackets
[Eq, l , 2. . . , E ] introduced in Sec. IIA where the walls
correspond to n, —n; i ——1 in a background matrix of
n; —n; i ——0. This will also be needed here.

We are new in a position to describe the ground states
of the Hamiltonian (61) for all values of p and D = oo.
The results which were obtained by comparing the en-
ergies of the possible ground states and checked using
the Floria-GriKths algorithm to ensure no states were
missed are summarized in Fig. 1.

(i) For p = 2 and 3, [oo] is stable for x ( 1/2 and [2)

D( cos(p8, )——1)/p' (61)

where 8, is the angle between the spin located at site i
and, say, the x axis. Competition is introduced along
the z direction by taking the first- and second-neighbor
interactions to be ferromagnetic and antiferromagnetic,
respectively (Jq ) O, J2 ) 0). x = J2/Jq will prove an
important variable in the description of the phase dia-
gram.

The parameter D ) 0 models a p-fold spin anisotropy
in the (x, y) plane. The ground state in the two limits
D = 0 and D = oo is well understood. For D = 0 it is
ferromagnetic for x ( 1/4. For x ) 1/4 it exhibits heli-
cal order with a wave vector q = qz which is, in general,
incommensurate with the underlying lattice. The mag-
nitude of the wave vector is determined by the exchange
energies through the relation cos q = (4x)

For D = oo, however, the spin angles 0, are constrained
to take one of the discrete set of values 27m, /p, n;
0, 1, . . . , p —1. The Hamiltonian (61) then reduces to a
p-state clock model with competing interactions. The
ground state now has a very different character: only a
few short-period commensurate phases are stable as x is
varied. Boundaries between the different ground states
can either be simple first-order transitions with only the
neighboring phases being stable or multiphase points at
which an infinite number of phases have the same energy.
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I

1/2

1/2

p 4, [ ]
1/2

. ..001 1001 1 .. .

. ..00220022. ..

...00112200...

...01230123...
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I
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...01340134.. .
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p P, [] I
I
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p g, [] (") .-.
O.RQ. . 1/2

...0134671... =(2)
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p=9 ["], (-) (~) ...02468135...

p=10 ["],( ) (~)
I -r

0.27.. 0.40.. 1/2

...08466084...

FIG. 1. Ground states of the p-state clock model mith fer-
romagnetic 6rst-neighbor interactions Jq and antiferromag-
netic second-neighbor interactions J2. The phases are labeled
by the spin sequences . . .n; zn, &n,n, +zn, +z. . . . A vertical
line represents a first-order boundary and a star a multiphase
point.
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for x & 1/2. x = 1/2 is a multiphase point.
(ii) For p = 4, [oo] is stable for x & 1/2 and (oo) = [1]

(together with the phase . . .002200 . . . ) for x & 1/2.
Again x = 1/2 is a multiphase point.

(iii) For p = 5 for x & xo( ) ——(1 + cos(2vr/5)) /2,
[oo] is stable. For x & xo, (oo) is stable. xo is not a
multiphase point.

(iv) For p & 6 there is a common trend for small x. For
x & xi ——(1+cos(2m/p)) /2, [oo] is stable. For xi"
x & xo( ) = (cos(2m/p) —cos(6vr/p))/2{cos(4m/p)—
cos(6m/p)), the phase (oo) appears. For x & xo", (2)
is stable. (For p = 6 the state . . .003300 . . . is degener-
ate with (2).) For p = 6 and 7 the phases listed above
provide all the ground states. For p & 8 other phases are
stable for higher values of x, but these phases will not
concern us here. At the points xi~ the phases [oo] and
(oo) coexist but no other phases are stable and there is

I

a 6rst order transition. xo", however, is a multiphase
point where all phases comprising bands of length & 2
are degenerate.

Our aim is to apply an expansion in D 1 to under-
stand the phase structure in the vicinity of the multi-

phase points xo["). We proceed in the same way as in
Sec. II. The results are listed in Sec. IIIF. A brief ac-
count of this work has appeared elsewhere.

B. The energy difFerences

Our approach follows that described in Sec. IIB for
the chiral clock model. The first step as before is to
expand the Hamiltonian (61) to second order in the 8;,
the deviations of the spins from their positions at D = oo,
which were defined by Eq. (7). This gives

& = & )D= +) (J;(,)(8, 1 —8;+ A, (,)) —Ji(s, (,)) /c,. (,)

+ 2( ~, [2))'/c,', (2] i, [2]( i 2 i + +i,[2])' + D8,')/2 (63)

where

s,. ( )
——sin(8,.

( )
—80),

i, [m] ~i, [m]/ ~i, [m] ~

c,. [ ]
——cos(8; (~)

—8, ),
8 8Ji [m]

——JmC', [m]. (64)

Minimizing (63) with respect to 8; leads to the equation

D8i = Ji, [1](8i 18i—+ +i [1]) Ji+1,[1](8i 8i+1 + +i+1 [1])
8 8

8 8Ji, [2](8i—2 8i + +i, [2]) + Ji+2, [2] (8i 8i+2 + +i+2, [2]). (65)

It is possible to calculate the energy difference b,E, defined by (6), exactly for the quadratic Hamiltonian (63). As
before we consider the branching process [ci] + [P] ~ [aP] = [p], let n( ]

= ni and n(~) = n and identify the spins
within the phases [n], [P], and [p] by n, , P;, and p, , respectively. We choose to label the spins such that

0 0

0 0
v, = P;

1&i &n1,

ni+1&i & n, (66)

&om. which it follows that

'Y

i [m] i [m]'

1&i&n1,
n1+1&i &n. (67)

The energy difFerence (6) may now be written

2AE = 2 .([J, (1)(P; 1 —P; + b., (1)) —J, [1)(6; 1 —ii, + 4;, [2)) ']i=1
[Ji,[2] ( Yi—2 Yi + +i, [2]) J,[2](~ —2 ~ + +,[2)) ] + (7' ~' ))

+ ~ - ([J',(»(&'-1 —&'+ &'.(1])' —J', (»()3'-1 —~'+ ~', (»)']
n;+1
[J',[2]('Y'—2 '7' + +', [2]) J', [2](P'—2 P ++', [2]) ] + D(Y' 'P ))'' (68)

Using Eq. (65) this can be simplified to give
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Jl, [1]((~1'raa Pn)(Y1 Yraa+1) (~1 Pna+1)(pn Yraa))
Ae

Jl, [2)((~1'raa —1 Pn1).—(Y1 Yna+1) (O 1 Praa+1)( Yra 1— Yna —1))
J2, [2]((a2'raa Pn) ( Y2 Yna+2) (~12 Praa+2) ( Yn Yna )). (69)

Again. the energy difference depends only on the difference of the spin deviations on a few sites. Given a careful
labeling of the states these can be calculated to leading order and their signs determined.

C. Labeling the spins

We label the spins in a way identical to that described in Sec. IIC. This simplifies the formula for the energy
difference LE as follows:

(i) odd + odd ~ even. With the choice (17) it can be read ofF immediately &om (18), (19), and (20) that

(i„, —P„=0,

~11 —P,+1 = —(~,-1 —P -1),
(Vl —V-, +1) = (V- —V-, ), (70)

and hence &om (69),

Jl, [1](~11 Praa+1) (Yn 'Yna ) + Jl, [2] (Cll Pn a+1) (|'n—1 'Yna —1 + 'Yl 'Yna+1)

+ J2, [2](a2'2 Pna+2) (Yn Yna) ~ (71)

(ii) odd + even ~ odd. Using (22), (23), and (25),

il, -l —P 1= —(~2 -—P,+2),
P= —(~1 ——P-, +1),

('Yra 1'Yn—a —1) = ('Yraa+2 'Y2) a

(~ —~-, ) = —(W, +1 —~1).

Therefore,

2J1,[1)(~11 Praa+1)('Yl Yna+1) + Jl, [2]((~2 Pna+2)( Yl Yna+1) + (~l Pna+1)( Y2 dna+2) j
+ J2, [2]f(ca 1 Pna+1) ( Y2 '7na+2) + (ca2 Praa+2) ( Yl Yraa+1)). (73)

D. Recursion equations

~i Jl (si, [1] Bi+1,[1]) J2 (Si,[2] Bi+2, [2]) (74)

(75)

For the model with second-neighbor interactions it is nec-
essary to consider four different cases when calculating
the energy differences.

(i) odd + odd ~ even; even starting position. Let

1 gal
2np &nl+2~p p )

—2np (i(2np,

We follow Sec. IID in using recursion equations to de-
rive the leading order terms in the energy difFerences (71)
and (73). Substituting (28) into the energy minimization
Eqs. (65) gives

1 1

1 1
'Y; —'Vn, +' = +»

—2np & i & 2np)

z —+2np ~

~1 P,+1 - t-")(1/D—"'+')
O(1/D '

)

q„—q„, - D(1/D" +'),
c 2 —Pn, +2 - &(1/D"')

(78)

and the leading order term in the energy difference (71)
1S

2&& = J2, [2)(~2 —P-, +2)(7- —7-, ).

From the recursion equations (75) iterating (np —1) times

The recursion equations (75) show that the spin devi-

ations a2.; —P,+; for i = k(2np —1) and i = +(2np —2)
will be D(l/D ); for i = +(2np —3) andi = +(2np —4)
will be O(l/D ), and so forth. Hence

that is, i is even when col —Pl +, is first nonzero. We
consider np & 1 throughout. This implies

n2 —P„,+2 = (ap( —J2)"' 'c",

X c&,.
~O 1 ~m [2~012]1 I ~~p (80)
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where n (i, j) is the number of walls between i and j and

COS(O!r 2
—l1r ) = C2o = COS(6'lt/P)

if the iteration step jumps across a wall and

cos(cx, 2
—a, ) = c2, ——cos(47r/p), (82)

if it does not.
Similarly, iterating no times and collecting equal terms

ft. om the left and right,

f w / T $np n [2np, O] no —n [2np, O] l g ~no+ 1
Yn any y+aO ( +2)

Substituting (80) and (83) into (79) gives

2 g T y 2np —1 nm [2np &2]+n [2np &O]= t"2 [2] O& J»
2no —n [2no, 2] n[2—no P] 1)/D2no+1" 2%

r 2r J i2no 2n [2no, P] 2no —2n [2no, P])/D2no+1
)

(s5)
I

6 = 0. Therefore the band containing i = n of the state
{n) must be of odd length. 1 bands are forbidden. If
the band is of length 3, J2 [2]

= J2C2, and n [2np, 0] =
n [2np, 2] + 1. If it is of length ) 5, J2 [2] = J2C2; and
n [2np, 0] = n [2np, 2]. In both cases,

=a2np —1 ~n1+2np —1

1—(2np —1) ~™nx—(2no —1) (86)

where we now consider i odd for cx, —P„+, first nonzero.
This implies

q,'. —q„' +,. —0, —(2np —1) & i & (2n, —1),

p,.
' —p„' +, = ap, i = +(2np —1). (s7)

Iterating the recursion equations (75) shows that

cxi —P„,+1 - O(1/D"'), P„—P„, O(1/D"'+ ),
~. -~-,+. -&(1/D" ), .-P-,+. - ~(1/D" ),

(88)
and hence the leading order term in the energy difference
(71) is

Jl, [2](~1 Pny+1)( Yl Yny+1 + Yn 1Yn—g —1) ~

{s9)

From the recursion equations (75) iterating (np —1) times,

where the relevance of the subscript on LE will become
apparent later.

(ii) odd + odd ~ even; odd starting position. Let

n, —P„+;——0, —(2np —1) & i & (2np —1),

np 1 n [2np —1,1] np —1—n [2np —1,1] np
O 1 Pnr+1 —Yl Ynr+1 Yn —1 fnz —1 = (ap( —J2) C2o C2r

' )/D (90)

J1 [2]
——J2C2,. as the band containing the spin i = n must be of length & 3. Therefore,

A ~ f 2 g T y 2np —1 2n [2np —1,1] 2np —1—2n [2np —1,1]Q / ~2np (91)

(iii) odd + even ~ odd; even starting position Let.
—(2np —1) &i & 2np,

1 ~1 1 n1
2no ~nx+2np» —(2np —1) ~nz —(2np —1)

1 ~1
2np+1 ~ny+2np+1 1 & —2np ~n1 —2np (92)

and similarly for the pi —pi +, . Noting from the recursion equations (75) that

~i —P-, +1 - &(1/D"'+') ~1 —~-,+1 - &(1/D"'+')

W2
—&n, +2 - &( /D"')) ~2 —Pn, +2 - &( / "'),

and that whatever the arrangement of walls symmetry implies Ji [2] = J2 [2] the energy difFerence (73) becoines

+E Jl, [2]((a2 Pnq+2) (Yl Ynr+1) + (~1 Png+1) ( Y2 Ynq+2)) ~

Iterating the recursion equations (75) (np —1) times

(93)

(94)

n - — f g T inp —1 n [2np, 2] no —1—n [2no, 2] q I ~np
&+2 +2 + x+2 = gaO( —J2) C2 C2 (95)

Calculation of ni —P,+1 is slightly more involved as iterating np times contributions can arise either from hops from
i = 2no which include a J1 term or &om hops from i = 2no + 1 which include only J2 terms,
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np —1 n [2no, 1]—1 np —n [2np, 1]—1
In&+1 {Op( ~2) J1C2~ C2i

' (C2cC]i(np np) + C2iC1~np)

7 xnp n [2no+1,1] np —n [2np+1, 1]

inp n~ [—(2no —1),1] no —n [—(2no —1),1]1 ( mnp+1 (96)

where np is the number of paths in which the J1 hop crosses a wall between 2np and 1, c1, = cos(4~/p), and
1i = cas(2~/p). The expression for p1 —pn, +1 is similar but the last term, as it corresponds to iteration from t}e

left, contributes with opposite sign. Therefore the energy difFerence (73) is

2 r x i 2np —2 v n [2np 2]+n [2np, 1]—1 2np —2 —n [2np, 2]—n~ [2np11]{2J1,[2]+o(J2 J Jlc2 c2 (c2 cl'(Ao —Ao) + c2 c1 ~Q j
~2no —1 n [2no 2]+n [2np+111] 2no 1 n [2np 2] ntv [2np+1 1] q I ~2no (97)

(iv) odd + even ~ odd; odd starting position. Let

1 ~1
2np —1 ~n1+2np —1 =a

1 ~1
~2no &nx+2no +1)

—(2np 2) & i & 2np —1
1—(2np —2) ~n1 —(2np —2)
1—(2np —1) ~n1 —(2no —1) 1 (98)

and similarly for the p; —p +;. Iterating Eqs. (75) (np —1) times

f f Y x np —1 n [2np —1,1] np —1—ntv [2np —1,1]z I ~np
O'1 —~n, +1 —Pl —7n, +1 —

goo~ —J2~ '
C2

'
C (99)

~12 Png+2 = Y2 Yng+2
n~ [2np —1&2] —1 np —n [2np —1 2]—2 I I= {ap(—g2) ' J,c " ' c, . ' (c2,c„(np —1 —np) + c2;c1,np)

n~ [2no, 2] no —1 n~ [2no, 2])/Dno— (100)

where n& is the number of paths in which the Jl hop crosses a wall between 2nD —1 and 2. Using these formulas the
energy difference (73) is

i 2no —2 2n [2np 1 1] 2np 2 2n [2no 1 1]~11 =
&
—Jl, [1]o( J2)

2 I T x 2np —3 a n [2no —1,2]+n~ [2no —1,1]—1 2no —3—n [2no —1 2]—n [2no —1 1]z r 1 ( X I
2Jl, [2]+P(J2) Jlc2 c2' (c2 c1'&0 1 ~0) + c2'cl ~o)

n [2no —1 1]+n~ [2no 2] 2no 2 n [2no 1 1] n~ [2no~2] z p ~2no (101)

E. Phases bounding (oo)

AE = (m+. 1)E& +1) —mE( )
—E& ). (102)

In the (oo) phase the spins remain in their clack positions
as D is reduced &om oo.

We must again consider four possibilities.
(i) (gn + 8) + (oo) W (gn + g). We consider n ) 1

throughout. Chaase (p) = (oo). Thex1 p = 0 and n1 ——

n —1. The initial conditions are

The formulas for the energy differences calculated in
the preceding section may no longer hold when one of
the initial phases is (oo) = . . .0123. . . . Therefore this
case is now treated separately. As the phase diagram is
constructed recursively the phases which will appear on
the (oo) boundary are (m), m = 3, 4, 5, . . . . Hence the
energy differences we wish to calculate are

~E(~) {2(J )2n 2n)/~2n+1 (107)

(ii) (gn + 1) + (oo) ~ (gn + 2). Again choose (P) =
(oo). The initial conditions are now

u,'. =0, —(2n —1) &i&2n —1,
1 10!2 1 = —0! (2 1)

= Qo,

p; =0) —2n&z(2n —1)
1 1

(108)
(109)

(110)
(111)

Recalling that nl ——n —1,

~1 - ~-,-1 - ~1 - ~2 - &(1/D" )

g. 1 - ~., - ~- - ~-,+1 - &(1/D") (112)

Noting that p, = —p„ the calculation follows that de-
scribed in Sec. III D(i). The energy difFerence is given by
Eq. (85) with n I2n, 0] = 0,

o.; =0, —2n(i&2n,
1 10!2 = —& 2 = Go)

p,
' = 0, —(2n+ 1) & i & 2n,

1 = — 1
Y2

= 'Y (2 +1) =~0 ~

(103)
(104)
(105)
(106)

and that the symmetry of (p) implies

+1 — any —1

the leading term in the energy difFerence (71) is

(113)
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2J1,[2]~1+1 ~ (114)

Iterating the recursion equations (75) (n —1) times to
obtain 61 and p1 gives a result

gE(oo& ( 2(J )2n 12—n —1}/D2n (115)

1P„,+; ——0,

+nq+2n +n1 —(2n —1)

p. =01=
1 1

+2n+ 1 Y—(2n —1) +0 ~

—(2n —1) &i&2n,
~n1+2n+ 1 &n1 —2n =a
—(2n —1) & i & (2n+ 1),

1 1

(116)

Using the symmetry properties of (P) and (p),

nz+& Pnz i+11— Pi Q—i+2 (117)

and noting that

P3 ~ P3 ~ Q(1/D ) P2 ~ P2 ~ Q(1/D )

the leading order contribution to the energy diBerence
(73) is

(iii) (gn+ 2) + (oo) ~ (gn+ 8). To use the energy
difference formula (60) (P) must be even. Therefore we
choose (n) = (oo) implying ni ——1 and 6; = 0 V i. The
initial conditions are

ap ——J2(sin(6m /p) —sin(4vr/p) }/D,
ai ———J,(sin(4vr/p) —sin(2vr/p) }/D, (124)

follow immediately from (75).

There will be correction terms to the formulas for the
energy difFerences which arise both &om nonharmonic
terms in the Hamiltonian (61) and from further iteration
of the recursion equation (75). These will be more dan-
gerous than for the chiral XY model as they may carry
an additional factor np/D where the np comes from, say,
dividing a J2 step into two J1 steps and placing them
at any position along the chain. Therefore for large n0
these terms could dominate, possibly changing the sign
of the LE and the sequence of phases could terminate for
any finite D. Analytic calculation of the correction terms
would be prohibitively diKcult. However, numerical re-
sults show no sign of deviations &om the leading behavior
for n~~~

——15. A similar mechanism has been desribed for
the ANNNI model at finite temperatures.

To apply the formulas for the energy difFerences it
is necessary to ascertain which LEI, and AEk, k =
1, 2, 3, 4 should be used at each step of the iteration pro-
cedure. By checking low order examples or by an induc-
tive argument similar to that given in Appendix A one

finds that AEI, and LE& are relevant for a final phase(~)
with n[~] = A: [mod4].

The values of a0 and a1,

(Jl, [2] + J2, [2]) (P3 Y2 + P2 Y3 ) . (119)

AE3 J2 c2 (ap(2 Jinci; + J2c2;)
—2apai J2c2'}/D'"+'. (120)

(iv) (gn) + (oo) ~ (gn + 1). Choosing (n) = (oo) the
initial conditions are

1P„,+, ——0, —(2n —2) &i&2n —1,

t n1+2n —1 ~n1 —(2n —2)

1 ~1
~n1+2n ~n1 —(2n —1) — 1

p,
' = 0, —(2n —2) & i & 2n,

1 1
'Y2 = 'Y—(2 —2)

= ~0 &2 +1 = &—(2 —1) = ~1.

Using the symmetry properties (117) the leading order
contribution to the energy difFerence (73) is

2Jl, [1]P2 Y2 + (Ji, [2] + J2, [2])(P3 Y2

+P2 Y3 —P2&2) . (122)

Using the recursion equations (75) we obtain

(ap(Jici'(211 1) + J2c2 )
—2apai J2c2,}/D " . (123)

Iterating the recursion equations (75) to obtain the spin
deviations the final result is

F. The sequence of phases

The stability of the short-period phases is most eas-
ily checked by an explicit evaluation of their energy us-
ing the Hamiltonian (63). Phases which appear O(1/D)
and D(1/D ) are shown schematically in Fig. 2. Stable
boundaries are denoted by a vertical line; boundaries at
which an infinite number of phases still coexist Q(1/D )
by a star. By using the energy di8'erences derived above it
is possible to calculate which of these phases are in fact
stable when higher order terms in 1/D are considered.
The results depend sensitively on p and so we consider
each value in turn.

p = 6. For p = 6 the calculation of terms Q(1/D2) es-
tablishes that the (2): (3) boundary is stable. However,
all other boundaries are multiphase lines and therefore
any phase which contains only bands of lengths & 3 may
appear in the phase diagram. To understand which of
these phases are stable we need the signs of the energy
difFerences.

The energy di8'erences are simplified by noting that
for p = 6, a1 ——0. To obtain the sign of LE1 given by
Eq. (101) two cases znust be considered. If there is a wall
on the axis of symmetry (i.e. , between np and ni) then,
recalling that all bands are of length at least 3, J1 ~1I

——

Jici„J1[2] = J2c2„and n [2np —1, 2] = n [2np —1, 1].
Putting in values for c2, etc. , gives

J2no
(

1
)

(2no —2n —ll
(

5 + 3 I /2)/D2no

(125)
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( ) J
(6) (5)

(4)
I

(3)
(2)

p=7 (-) „„(4)„(3)
(6) (5) (23)

p=B (4)
(23)

(2)

p=9 (4)
'

(23)

p=10
(3)

(2)

(2)

If there is no wall on the axis of symmetry, Jy []j
= J]]

Ji yj = J2c2;, and n [2np —1 2] = n [2np 1, 1]. There-
fore,

3J J2no
(
i )&2~0 —2~ +1)(1 2n + 3nI )/D2~0

(126)

which is negative. Using similar arguments, or by in-
spection, all the other energy differences are found to
be negative. ~ Therefore, all phases which contain only

I

FIG. 2. Phase diagram of the soft clock model with com-
peting interactions near the multiphase point xo~" showing the
phases that are stabilized by terms in the energy G(1/D) (la-
beled above the line) and O(1/D ) (labeled below the line).
Examples of the notation used to describe the states are given
in Eq. (62). A vertical line represents a first-order boundary
and a star a multiphase line at which an in6nite number of
phases remain degenerate to this order.

bands of lengths & 3 appear in the phase diagram.
p = 7. For p = 7 it can be shown, using arguments

similar to those presented for p = 6, that all the energy
differences are negative for large enough np. The cases
where np is small and n& and np are close in value to
np must be checked independently. One finds that all
the relevant cases are negative except LEq for np ——2,
np ——1. This determines the stability of (2 3). Therfore
for p = 7 the (2): (223) boundary is not split. All phases
lying between (223) and (oo) are, however, stable.

p = 8. The energy differences LEp, LEy, LE2, and
AE3 given by Eqs. (85), (101), (91), and (97) are zero.
Therefore higher order terms which are prohibitively dif-
ficult to calculate are needed to establish the signs of the
energy difFerences.

However, it is possible to obtain an expansion of the
energies of the low order phases numerically directly &om
the Hamiltonian (61). [The quadratic approximation
(63) to the Hamiltonian may not be sufficient to pick
up the correct leading behavior in this case. ] Comparing
these energies one Gnds that at least all phases expected
to appear O(l/D ) (n&&) ( 12) are stable.

p = 9. For. p = 9 the situation is complicated and
no clear pattern of phases emerges. Results O(1/D )
indicate that only phases which are made up of bands of
lengths & 4 can appear. One finds by inspection LEp ( 0
[Eq. (85)]; AE2 ) 0 [Eq. (91)]. For large eiiough np, if
there is a wall on the axis of symmetry, AE3 ( 0 and
AEi ) 0 from Eqs. (97) and (101), whereas if there is
no wall on the axis of symmetry, LE3 & 0 and LE~ & 0.
However, for low values of np, where np and n~ are close
in value to np these conclusions may not hold and each
case must be treated independently. In particular for
(23) + (2) ~ (223), which corresponds to the case AEs
with no wall on the axis of symmetry and for (2 3) +
(2) ~ (2 3), which corresponds to the case AEi with a
wall on the axis of symmetry, the energy differences are
negative.

Hence O(1/D ) the phase sequence is

(oo): (4): (34): (3); (2333); (233); (23); (23223); (223); (2223): (2), (127)

where: denotes a stable boundary and; a boundary
which may be split at higher orders of the expansion.

p = 20. For p = 10, ap = 0, which means that the
leading order terms in the energy differences are zero and
the series analysis breaks down. Numerically we have
been able to show that the only stable phases are (2"3)
appearing between (2) and (3). The existence of these
phases has been checked for k & 5 by expanding the
energies O(l/D )

p = 11. A calculation O(1/D) shows that the (2)
(oo) boundary is stable; no new phases appear near xp
and the transition is first order.

IV. DISCUSSION

Models with competing interactions may have ground
states which include special points, so-called multiphase

I

points, where the ground state is infinitely degener-
ate. At these points one might expect that small per-
turbations can have a drastic efFect. One possible such
perturbation is to allow the spins to soften; others are
temperature or quantum fIuctuations.

The aim of this paper has been to study the first of
these possibilities. We have considered continuous spin
models with a p-fold spin anisotropy D which in the D —+
oo limit exhibit a multiphase point. An expansion in 1/D
is described which allows us to calculate the form of the
phase diagram near the multiphase points as the spins
soften.

The first model we considered was the chiral XY model
with p-fold spin anisotropy, which for large D can be
thought of as a soft chiral clock model. This model pro-
vided a useful illustation of the technique. We showed
in agreexnent with Chou and GriKths that for p & 3 all
phases formed by combining adjacent structures are sta-
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ble near the multiphase point and obtained leading order
expressions for the widths of the phases.

We then described results for the more complicated sit-
uation of the XY model with erst- and second-neighbor
interactions for large D. Here the situation is very com-
plex with the behavior near the multiphase point being
strongly dependent on the value of p. For 6 ( p & 10
in6nite sequences of phases are stable, but their quanti-
tative form is diferent for diferent p. For p & 11 the
phase boundary emanating Rom the multiphase point is
first order.

We note that not only does the symmetry of the
anisotropy have a nonuniversal eKect on the nature of
the phase diagram but also that the physical form of the
perturbation is important. For example, for the ANNNI
model itself temperature leads to a phase sequence [2"3],
k 0 ) 1 ) 2

y
quantum fluctuations result in a phase

sequence [Ic], k = 2, 3, 4. . .,
i2 whereas when the spins

soften there is a single first-order transition.
The models described here have a complex mathemat-

ical structure but also interesting applications to real
systems. For example, rare-earth magnetism has been
modeled by an XY model with competing interactions
and six-fold spin anisotropy. -Modulated structures in
UNi2Si2 have been described using a model expected to
behave in a similar way to those considered here.

Finally we comment on some further possible uses
for the technique introduced in this paper. Bassler,
Sasaki, and GriKths have descibed an upsilon point,
a checkerboard structure of long-period phases which is
in some sense a two-dimensional version of the sequences
of phases we have been concerned with here. Sasaki
found some evidence for the existence of such a point
in a spin model by performing an expansion in 1/D to
order 1/D2. An expansion taken to all orders will give
Grmer proof of where such points can be found. A simi-
lar technique can be used to investigate interface unbind-
ing where spin softening can allow an interface to unbind
&om a surface through a series of layering transitions.

process [n] + [p] m [p].
Consider two odd phases [n] and [P]. Let np = np([aP])

for [n] + [P] ~ [nP]. Using the labeling scheme defined
in Sec. IIC(i),

[~l = (E~) —(~) o) (A1)

where we use (n) as shorthand for

(ni, n2, . . . , o.(, ili2) [see equation (18)]. Similarly,

[Pl = ((P), -(P) 0) (A2)

The resulting even phase is

[~p] = ((~) —(~) o (p) —(p) o). (A3)

Consider now the process [nP] + [P] ~ [o. P]. Now

an even and odd state are combined and therefore the
labeling scheme defined in Sec. IIC(ii) is appropriate.
From (A2) and (A3),

[np] = (—(p j,0, (n]', —(n), 0, (p)),

[P] = (-P).0, (P))

By inspection of (A4) it is apparent that

~o([~P']) = ~o([~P]) + (nyj+ 1)/2

(A4)

(A5)

that is, adding an odd state [P] to an even state increases
no by (n(pj + 1)/2.

A similar argument shows that for [n] odd and [P] even,

n. ([~P']) = n. ([~P]) + (n(pj)/2

no([~'P]) = no([~P]) + (~(-j —1)/2 (A7)

that is, adding an even (odd) state [P] ([u]) to an odd
state [nP] increases no by n(pj/2 ((n( )

—1)/2).
It is not hard to check that the conditions (A5), (A6),

and (A7) are consistent with
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no ——(n~~j —(2m+ 1))/2, n~~j odd,

Ap = (7l [&j
—(2m + 2))/2, ntzj even (A8)

for any integer m. By inspection no ([23]) = 2. Therefore,
fA=0 and

APPENDIX A

We aim here to show how no defined by Eqs. (31) and
(40) is related to n~~j, the length of the final phase in the

AI~j + 1

2

where [n] is the integer part of n.

(A9)
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