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A model is proposed to describe the crystallization in disordered solids. The model is based on
accounting for small statistical fluctuations in structural parameters (valence angles, bond lengths,
etc.), which are shown to afFect the crystallization kinetics dramatically. As opposed to the stan-
dard approach that neglects any efFects due to disorder, the model reveals clearly divided stages
of nucleation, growth, and ripening in the crystallization of one-component disordered solids. We
show that at the nucleation stage the crystallization is nonlinear in time and is bounded by a cer-
tain small volume fraction (- 0.1). At the growth stage the radius of the crystallites depends on
time logarithmically and approximately double its initial value until the ripening stage comes. The
results of Raman light-scattering experiments designed to test various predictions of the model are
presented for a-Si:H subjected to crystallization. Good agreement is obtained.

I. INTRODUCTION

Amorphous solids are normally far from thermal equi-
librium. They therefore try to adjust their frozen-in
structures towards their equilibrium crystalline forms.
These relaxation rates are typically very slow as com-
pared to the experimental times. Adding energy to the
system accelerates the relaxation. In particular, heating
an amorphous solid well below its melting temperature
in many cases leads to its crystallization.

Although the microscopic reasons behind this type of
transformation are at present not well understood, a phe-
nomenological approach has been widely employed to
describe the transformations along the standard lines of
the erst-order phase transition theory. In the same spirit
as the latter theory the approach is based on consider-
ing the conception and posterior growth of crystalline
embryos in an amorphous matrix. Surprisingly, no atten-
tion has been paid to that approach to the static disorder
which is intrinsic to amorphous solids.

Recently attention has focused on disorder-induced ef-
fects in the 6rst-order phase transformations in solids: in
Refs. 4 and 5 a particular case of diffusive decomposition
in disordered solids has been considered. It was argued
that the static disorder, &ozen-in or caused by impuri-
ties, influences both the nucleation and ripening stages
of diffusive decomposition dramatically. It is then natu-
ral to extend this concept to the case of crystallization
in amorphous solids.

In this paper the emphasis will be placed on a descrip-
tion of the effects due to static disorder in amorphous
phase. While the short-range-order topology in the en-
samble of structural units ("elemental cells" ) of an amor-
phous solid is normally conserved, their microscopic pa-
rameters (valence angles, bond lengths, etc.) fluctuate,
leading to corresponding fluctuations in atomic energies

and thus local fluctuations in the free energy difference
between the two phases and in the interfacial energy. By
static fluctuations we mean those of lifetimes much longer
than both the times of nucleation and growth processes.
That is why these processes are expected to proceed dif-
ferently in different local regions of an amorphous solid.

The idea is that there are some local favorable inhomo-
geneities in randomly disordered media, which effectively
decrease thermodynamic barriers to nucleation and, thus,
increase the nucleation rate exponentially. On the other
hand, there should be some unfavorable local configu-
rations of the disorder, which do not contribute much
to the nucleation rate, while they slow down the growth
velocity. We show that because of the disorder, the crys-
tallite radii depend on time logarithmically and, thus,
the growth rate is considerably smaller than the nucle-
ation rate. Also, we show that available for nucleation
is a certain small relative volume v (( 1, beyond which
the nucleation slows down abruptly. As a result crystal-
lites of almost the same radii appear at the nucleation
stage and then grow with a time logarithmically. The
growth stage ends when the crystallites possessing dif-
ferent orientations of their crystallographic axes come in
touch with each other. From that moment on the ripen-
ing stage develops at which the crystallization is slowed
down still more since it is then necessary to reorient some
crystallites in order for the ripening to be possible.

The paper is organized as follows. In Sec. II we
consider both the standard approach and an original
model to describe crystallization in amorphous solids.
The model yields predictions for both the nucleation,
growth, and ripening stages of crystallization and sub-
stantiates the possibility to discriminate between these
stages as such. In Sec. III we present experimental re-
sults on the crystallization kinetics in a-Si:H. Raman-
light-scattering experiments are described and the recipe
is given to trace the crystallization kinetics by means of
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those experiments. Also, in Sec. III we compare the
experimental results with the predictions of our model;
we find. that all observed effects can be understood in
the framework of the model proposed. In Sec. IV some
concluding remarks are given.

II. CAY STALLIZATION IN DIS(3B.DEB.ED
SOLIDS

A. Standard approach

Let us first review the basic equations of the standard
theory of crystallization in solids. A crystalline phase
is supposed to appear in the form of critical embryos
which then grow by simple accretion atoms from the
outer amorphous matrix. Supposing the embryo has a
spherical shape, its formation changes the free energy by

4vrB'
F,(R) = — @+4'.R cr,

3

where R is the embryo radius, p(& 0) is the free energy
difference between the two phases per unit volume, and
cr is the interfacial energy per unit area. The function
F,(R) reaches its maximum

16' 0.
W = max F,(R) =

3@2

at the critical radius R, = 2o/p. An embryo grows at
B ) B„while it disappears at B & B . The number of
stable embryos per unit time per unit volume is given by
the nucleation rate

( V Wl ( WiI =I,'exp
I

— —
/
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where V is the barrier to overcome in order for an atomic
particle to join an embryo and k is Boltzmann's constant.
The preexponential factor Io varies from 10 to 10
s cm depending on the particular theory in use. An
estimate to serve as a rough guide is v/R„where v is the
characteristic atomic frequency in a solid (v 10is s i).
The quantities V and W are usually termed as the kinetic
and thermodynamic barriers to nucleation, respectively.

A stable embryo (R & R, ) is supposed to grow with
the velocity

talline particle passes through its own nucleation and
growth stages, the integral process can hardly be divided
into such stages in the framework of the above approach.
The latter implies that while some particles have already
appeared and increased their volumes by growing, the
nucleation still occurs in other local regions of the sys-
tem. This scenario differs considerably from that of first-
order phase transitions like diffusive decomposition which
are known to consist of nucleation, growth, and ripening
stages. In the latter case a limitation on the nucleation
time is due to the concomitant decrease in solute concen-
tration that makes the nucleation slow down. There is
no such constraint in the crystallization process unless it
develops via the diffusive decomposition in a multicom-
ponent system, in which case it is beyond the scope of
our consideration.

Based on the above consideration one can define the
saturation time t, as the time needed to make the crys-
talline phase volume fraction dominant. This time can
be roughly estimated from the condition B n 1 with
R = ut and n = It, which gives t, - (u I) '~ . As-
sociated with the latter is the characteristic crystalline
radius exponentially exceeding the critical radius:

(W) '~4
R=ut, R, exp~

~
&&R,.R, ikT)

We note that any effects due to static disorder are ig-
nored in the above outlined approach. Therefore, as ap-
plied to crystallization in amorphous materials, the ap-
proach implies that such effects are negligible. That the
classic theory remains true in spite of a disorder was tac-
itly assumed in most of the preceding work dealing with
crystallization in solids.

Standard approach predictions. We summarize this sec-
tion with the predictions of the standard crystallization
theory to be compared with experimental results in Sec.
III below. (i) There are no clearly divided stages of nucle-
ation and growth in the crystallization process. (ii) The
embryo concentration and radii depend on temperature
exponentially at any given time t well before the time of
saturation t, . (iii) Both the embryo concentration n(t)
and radii R(t) are linear in t at t ( t, . (iv) At the final
stage of the process (t t, ) the average embryo radius
is expected to be exponentially larger than the critical
radius B .

( v) ( nl
u = uo exp

/

—
/

1. exp
/kT) i kT) (4)

B. Nucleation rate

The preexponential factor uo is typically of the order of
10 cm/s (roughly estimated as av, where a is the char-
acteristic interatomic length in a solid). The multiplier
in square brackets on the right-hand side in Eq. (4) re-
Qects the possibility of a backward process in case the
energy 0 gained by a molecule in its joining an embryo
is not large enough. As long as it is given by Eq. (4) the
velocity does not depend on time and the nuclear radius
depends on time linearly: B = ut.

Note that in spite of the fact that a particular crys-

Although the nucleation rate in disordered media has
been recently calculated in Ref. 4, nothing has been said
in that paper on the temporal law n(t) in the presence
of a disorder. Based on the approach in Ref. 4 this law
is derived in what follows.

Associated with the change in Bee energy in Eq. (1) is
the minimum work needed to create a spherical atomic
layer of the width a and radius R )) a,

f, (R) = a = 6 Ra(R —R).
dF TV

dR B~
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FIG. 1. Change in the free energy due to a crystalline em-
bryo formation versus its radius B in a disordered solid (solid
line) and in a homogeneous solid (dashed line). W is the clas-
sic barrier to nucleation, R is the decrease in that barrier due
to fluctuations, and e is the fluctuation barrier to crystallite's
growth, as is discussed in Sec. II B.

As applied to a disordered system, a random contribu-
tion XR must be added on the right-hand side of Eq. (5),
reHecting Huctuations in microscopic structural parame-
ters. Supposing the mean-square-root fluctuation in en-
ergy per molecule is v, the dispersion A(R) = v24vrR2/a2
must be assigned to a random quantity X~, where
4nR2/a2 )) 1 is the number of molecules in the layer.
Being a sum of a large number of random contributions,
the quantity XR obeys the Gaussian statistics p(X~) oc

exp —X&2/24(R) . We therefore are in a position to es-
timate the probability P(R) exp f,—(R)/2b, (R) of
creating the layer without a loss in energy, while energy
f, (R) ) 0 would be expended to create such a layer in
the absence of the disorder.

Since the disorder makes it possible to create atomic
layers without a loss in energy, the possibility appears to
decrease the barrier to nucleation. Let E be the decrease
in the barrier due to static fluctuations in some favorable
area of amorphous solid (see Fig. 1). Then, the nucle-
ation rate in that area, I~, will be exponentially increased
as compared to that in Eq. (3), Iz = I exp(E/kT).

To estimate the probability P(E) of finding the barrier
decrease larger than E, it is convenient to introduce the
corresponding nuclear radius RE (& R, ) defined by the
condition that the minimum work needed to create the
nucleus of radius R~ does not exceed R' —E, that is,
I" (R~) = W —E (see Fig. 1). Supposing all the sub-
sequent layers beginning from B~ up to B are created
without a loss in energy, the barrier to nucleation will not
exceed R' —E as well. It follows, then, that the probabil-
ity sought is given by the product of K@ = (R, —R~)/a
probabilities P(R) for all the above-mentioned layers:

We restrict ourselves to considering the case of rela-
tively small barrier decrease E « R', which, however,
allows for an exponentially large increase in the nucle-
ation rate. The latter inequality enables one to approxi-
mate Eq. (1) by

I", =W —3 (R —R, )
C

in the proximity of the barrier maximum, and, thus,
R —R@ = R,gE/3W. With that a straightforward
calculation gives

r Ei"
P(E) = exp (Eo)

to within the accuracy of the preexponential factor,
where

In accordance with the procedure of its derivation, Eq.
(7) holds true when P(E) « 1, i.e. , E ) Eo. It should
be noted that the probability P(E) in Eq. (7) refers to
the local regions which are favorable to nucleation, while
there exists a comparable concentration of "dificult" re-
gions in which the nucleation is suppressed by the dis-
order. For the reasons described in Sec. IID, the latter
regions do not contribute to the process under consider-
ation.

It has been tacitly assumed above that the disorder
is completely uncorrelated and, thus, corresponding to
diQ'erent elemental cells, the local fluctuations can be re-
garded as mutually independent. This assumption can be
equally expressed by saying that the correlation radius of
a disorder is close to the characteristic interatomic dis-
tance. It is well known, however, that the static disorder
in amorphous solids can possess the correlation radius
r that considerably exceeds interatomic distances. The
latter concept implies that the arrangements of struc-
tural units in an amorphous medium are not completely
random but have some correlations on a scale of r . Es-
timates to serve as a rough guide can be borrowed from
the neutron scattering data on a glassy state which show
that r, 10—30 A, varying slightly between difFerent
glasses. Obviously, the above consideration holds true
provided that the critical radius R is large in the sense
R, )) r and the parameter a in Eq. (8) is replaced by
~C'

Following the approach in Ref. 4 one can optimize the
nucleation rate as

(EbI pt
——max P(E)I exp (-

qkTp

t'E, )'= Iexp
27 qkTy

where I is given by Eq. (3). The optimum nucleation rate
corresponds to the energy E ~t

——Eo(2Eo/3kT) . Since
for typical parameters in Eq. (8) the inequality obeys
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Eo )) kT (see estimates at the end of this subsection),
we conclude that the nucleation rate in disordered media
is exponentially larger than that of hypothetical crystal
with the same average parameters. The same inequality
makes the above consideration self-consistent by ensuring
that E.„))Eo.

Two comments regarding the result in Eq. (9) are in
order. The erst one is that fluctuations in kinetic bar-
riers V have not been taken into account. The reason-
ing behind this approximation is that such fluctuations
are normally characterized by the dispersion v related
to microscopic atomic potentials, while fluctuations in
thermodynamic barriers are governed by the dispersion
A(R) v (R/a) )) v and, thus, are expected to be
much more important. Another comment concerns the
favorable local areas dwindling in the course of nucleation
process. Supposing the nucleation is slowed down before
the time t ~q 1/R, I ~& of the optimum areas dwin-
dling, the nucleation rate is described by Eq. (9). This
can be the case for solid solutions where solute concen-
tration depletion makes the nucleation slowing down in a
time short enough. However, such is not necessarily the
case for crystallization in amorphous solids, where the
embryos of crystalline phase can appear until they 6.11

the available volume, and, thus, not only the optimum
areas have to serve as the nucleation centers.

In connection with the latter comment another reading
of the result in Eq. (7) is relevant. We introduce the
characteristic nucleation time

rw —z)
IORs ( kT )

corresponding to the local area in which the barrier to
nucleation is decreased by E due to static fluctuations.
For a time t the areas will be subjected to nucleation
possessing the times w~ & t and corresponding barrier
decreases E & E& = W —Tin(tIoR, ). The concentra-
tion of such areas R, P(Eq) can be regarded as that of
embryos appearing throughout the time t:

1 W —kT ln(tIoB~)

)z.
The interval in which the latter concentration wins over
the concentration R, sIO exp( —W/kT) predicted by the
classic theory is exponentially wide:

(E,i'
I,Rs' P

Note that given by Eq. (10) the embryo concentration is
strongly nonlinear in t as opposed to that of the standard.
approach. Indeed, from Eq. (10) one gets

d(lnv, ) 1 ) 3kT
d(int) v, p 2Eo '

where v is the volume fraction of crystalline phase.
As long as kT (( Eo, the quantity v turns out to
be superlinear in t at the earliest stage of nucleation
(din v /dint & 1), while it is sublinear in t if v, is not

extremely small. Note also that the time dependence in
Eq. (10) is restricted to the local regions favorable to
nucleation. Therefore, it is applicable provided that the
embryos take up the lesser part of the whole area. That
the latter condition is met in real situations will be ar-
gued in Sec. IID.

We shall end this subsection with some remarks con-
cerning the basic parameters appearing in the course of
our consideration. As was assumed above, the short-
range-order topology in the ensemble of structural units
of amorphous phase is typically conserved, while their mi-
croscopic parameters (valence angles, bond length, etc.)
fluctuate. These fluctuations are normally small, of the
order of few percent. Caused by these fluctuations,
the above-de6. ned mean-square-root energy fluctuation
v may not be very smail, since atomic potentials are
extremely sensitive to random changes in microscopic
structural parameters like valence angles, bond length,
etc. For instance, associated with the above quantity,
the relative dispersions in microscopic spring constants
are estimated as 0.1 by means of computer modeling
of difFerent glassy structures and amorphous silicon.
The same order-of-magnitude estimate can be extracted
from the comparison of atomic kinetics data with the
theory based on accounting for statistical fluctuations in
atomic potentials in glasses. With the above in mind
one can roughly estimate v 0.1 eV. Noting that the
same statistical fluctuations are responsible for the mis-
match between the crystalline and amorphous phases,
the surface energy per molecule can be estimated as
~a & v. One more energy parameter pa, the average
energy difFerence between the two phases per molecule,
can be expressed in terms of the critical nuclear radius:
gas = 20.as/R, v(a/R, )2. Since typically R, )) o, , say,
R, 10a (see Sec. III below), we get gas (( v. Given by
Eq. (8), the energy parameter Eo can be then estimated
as Eo v(R„/o, ) ~ 1 eV.

C. Nuclear growth

We now consider the nuclear growth determining the
temporal law R(t) at R & R, in the presence of static
disorder. Keeping an eye on the experiments below we
will restrict ourselves to considering the average nuclear
radius.

Based on the standard equation (4), two ways can be
pointed out in which the disorder can afFect the growth
velocity. They correspond to the static fluctuations
caused by the disorder in kinetic barriers V and energies
0, respectively. Fluctuations in kinetic barriers will be
shown to make no qualitative changes in growth kinetics.
To the contrary, the second cause will be shown to play
a crucial role, bringing into existence a set of additional
barriers to overcome in nuclear growth. These barriers
turn out to increase and, thus, the growth velocity ex-
ponentially decreases with B, leading to a logarithmic
dependence R(t).

To understand the role of fluctuations in kinetic barri-
ers we note that their probability distribution half-width
must be of the order of v and that this distribution is
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expected to decrease exponentially with the deviation
from the average barrier V. Therefore, the number of
molecules which have to surmount the diffusional barri-
ers considerably exceeding V, will be exponentially small,
and so will be the number of nuclei in which growth such
molecules are involved. Caused by the disorder, the devi-
ations bV from average kinetic barrier will be then typi-
cally of the order of v multiplied by some function of ln N,
where N is the number of molecules in a nucleus. Keeping
an eye on the experimentally observed nuclei (see below)
one can estimate N 10 —10 and thus bV & 10v. With
that in mind the fluctuations in kinetic barriers can be
accounted for by renormalizing V ~ V+ hV in Eq. (4),
causing no qualitative changes in the growth kinetics.

We now consider the second of the two above-
mentioned ways in which the static disorder can affect
the nuclear growth. That a barrier can appear in form-
ing an atomic layer of the radius B ) R is not apparent
immediately. Indeed, in accordance with Eq. (5) the en-
ergy decreases [f,(R) & 0] in forming a spherical atomic
layer of the radius R ) B, so that the average energy
gain per molecule in forming the layer is

f, (R) sR, —R
47r (R/a) 2 R

It is important that, although negative, the latter quan-
tity is small in absolute value as compared to the dis-
persion: ~B~ && v pa (R /a) (see the discussion at the
end of the preceding subsection). Therefore, a consid-
erable (although the lesser) part of molecules increases
their energies by joining an embryo. That an embryo
grows in spite of that increase must be attributed to the
posterior capturing of the molecules which decrease their
energies by joining the embryo. As long as the number
of the latter molecules is larger than that of the former
ones, the average nuclear energy decreases in the course
of growing.

Following the above consideration we can estimate the
mean-square-root fluctuation in the energy of a nucleus
containing N molecules as e(N) = v~N Hence, to a.ccu-
mulate N molecules a nucleus has typically to overcome
the barrier e(N) (see Fig. 1). In other words the process
of accumulating N )) 1 molecules can be described as a
sort of diffusion in the energy space. The diffusion oc-
curs via N steps, each of them decreasing or increasing
the energy by v with equal probabilities. This random
process is superimposed on a systematic drift caused by
the energy decrease 0 at each step.

The above reasoning implies the energy fluctuations
related to different molecules to be mutually indepen-
dent. In case the disorder possesses the correlation ra-
dius r ) a, the number of independent fluctuations will
be iV(a/r )s in place of 1V. Correspondingly, the barrier
becomes e(N) = vga(a/r, )s.

With the barrier e(K) taken into account Eq. (4) for
the growth velocity changes to

Solving the equation dR/dt = u with R —R, = 3&r, /4vr
gives

i/3
3rs kT (upt i V

ln
4vr v qa) v

(13)

Hence, the crystallite radii increase with a time logarith-
mic ally.

D. Nucleation and growth in amorphous media

(W —E,(ln v, )'~')
(14)

where v = 47rR n,/3 = 0.1.
At the second stage of crystallization new nuclei are

unlikely to appear, while those appeared before grow in
accordance with Eq. (13). The characteristic length of
this stage over which the nuclear radius doubles can be
estimated as

We are now in a position to compose a general scenario
of crystallization in amorphous media. The basic facts
are (1) the rapid increase in the nuclei concentration n(t)
at the nucleation stage [in Eq. (10)] and (2) relatively
weak, logarithmic nuclear radius increase R(t) [in Eq.
(13)] in the course of its growing.

In the first approximation one can neglect any change
in the radii throughout the nucleation time. It follows
then that appearing almost simultaneously, the concen-
tration of crystallites of almost the same radii is restricted
by the free volume available for nucleation. Namely, the
centers of two crystallites of the radius B each must be
typically separated by the distance AB exceeding 4B
in order that a new nucleus can appear between them.
Indeed, as long as the crystallites possess difFerent orien-
tations of their crystallographic axes, each of the two will
impose its own orientational constraint on a hypotheti-
cal new embryo that has to appear in touch with both
of them in the case AR & 4B. Since the constraints
are typically mutually exclusive, each pair of nuclei sep-
arated by the distance AR & 4B will prevent nucleation
between them. Supposing a close-packed structure takes
place with the distances between the spheres centers, 4B,
the volume fraction taken up by the spheres will be O.l.
Thus, the relative volume available for nucleation can be
estimated as & 0.1. Since the latter is much less than
the unity, all the nuclei can be attributed to the local ar-
eas favorable for nucleation, to which the consideration
in Sec. IID is applicable.

We conclude that at the first stage of crystallization
a set of nuclei appears with radii close to B and the
total relative volume = 0.1. At this stage the concentra-
tion of nuclei as a function of time is given by Eq. (10).
Therefore, the characteristic length of this stage can be
estimated as

V
u = uoexp — — — N

kT kT(rp
a v fR, ) '~'

At2 ——exp 2.6
vp kT g a ) (15)
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After the nuclei have doubled their radii the relative vol-
ume 0.1 x 8 = 0.8 is taken up by the crystalline phase.

On doubling their radii the nuclei come in touch with
each other. From that moment and. on the growth is
expected to slow down even more because of the compe-
tition between the crystallites possessing diferent orien-
tations of their crystallographic axes. Governed by such
a competition, the growth results in both the crystalliza-
tion of the remainder of amorphous phase and increase
of some crystallites at the expense of the others (ripen-
ing). It is beyond the scope of this paper to describe
the ripening stage of crystallization in detail. Here we
restrict ourselves to saying that at the ripening stage the
logarithmic time dependence B(t) is expected to survive
because the system remains disordered. However, the
dependence must be much slower than predicted by Eq.
(13), since, caused by different random orientations of
crystallites, the disorder is much stronger than that of
small static fluctuations in atomic parameters.

Our mode/ predictions. We summarize this section as
follows. We have developed a model of crystallization
in amorphous media which is based on accounting for
small statistical Quctuations of microscopic atomic pa-
rameters. The predictions of the model are as follows. (i)
There exist clearly divided nucleation and growth stages
in the crystallization process. (ii) The concentration of
nuclei increases nonlinearly with a time at the nucleation
stage, being restricted by the available volume fraction
= 0.1. The increase in nuclear radii can be neglected at
the nucleation stage. (iii) Over a wide range of times at
the growth stage the average nuclear radius B increases
as a function of the logarithm of time multiplied by the
temperature. B becomes nearly twice as large as R at
the end of the stage. The relative volume of crystalline
phase increases by a factor of 8 at this stage, while that
of amorphous phase decreases by a factor of 4.5.

The above predictions dier dramatically from those
of the standard approach (see Sec. II A). Such a discor-
dance can be an important factor in choosing between
the two approaches experimentally.

III. EXPERIMENTAL RESULTS

Before dealing with any specific experiments we point
out that the appearance of crystalline grains in amor-
phous films subjected to thermal treatments or intense
laser beams has been clearly established in a number of
experiments. Raman scattering experiments have
allowed this process to be followed as a function of an-
nealing schedules (times, temperatures, laser intensities).
Associated with such experiments is a formalism aimed
at extracting information about grain sizes from the Ra-
man scattering data. ' Although the most recent work
was devoted to porous silicon, the formalism is ap-
plicable to the case of crystalline grains in amorphous
materials as well.

All the experiments to be described below refer to
amorphous hydrogenated silicon, a-Si:H, and adequately
reHect the fact that most Raman scattering experiments
on crystallization performed to date have been performed

on this material. Also, it is important that the material
parameters are well known for both a-Si:H and c-Si, and
that the crystallization process occurs at not too high
temperatures 400—500'C. Last, a-Si:H remains a mate-
rial of great promise in modern electronics and, thus, the
study presented may oIII'er one more controllable way of
creating a-Si:H-based films of desired parameters.

It should be noted that the experimental results below
are typical of the published data on the crystal phase in
amorphous and porous silicon and on polycrystalline sili-
con films. Also, they have much in common with the d.ata
in crystallization in glasses. The main reason to carry out
the experiments below is to obtain the whole set of data
needed to verify the theory presented. The analysis of
Raman spectra below also follows the standard lines ex-
cept that we suggest some new interpretation of the rel-
ative Raman intensities corresponding to the crystalline
and amorphous phases (Sec. III A). Although this fea-
ture is not a crucial one in deciding between the standard
and our theories of crystallization, it enables one to ex-
tract more quantitative information from the measured
spectra.

A. Analysis of Raman spectra

The analysis is based on the fact ' ' that Raman
spectra of a-Si:H films und. ergo radical changes in the
course of their crystallization. Namely, associated with
amorphous phase the broad. low-frequency component
with a maximum at about 480 cm reduces while keep-
ing its shape nearly a constant as the temperature in-
creases. At the same time a narrow peak nearly 520
cm arises, associated with Raman-active I'25 mode
of crystalline silicon (c-Si). As opposed to the former
broad component, the peak changes its intensity, posi-
tion, and shape in the course of heating. The relative in-
tensities of the two Raman components are considered as
a measure of the relative amounts of amorphous and crys-
talline components in the material. Besides, the above-
mentioned changes in narrow peak's position and shape
are attributed to the corresponding changes in crystalline
grains radii during the heating. Given a proper model,
one can, therefore, estimate the crystalline grains radii.

The reasoning behind the latter interpretation is that
a spatial confinement of optical phonons takes place be-
cause of a crystallite radius finiteness. The wave func-
tion of optical phonons is no longer a plane wave when
the crystal has a finite dimension. Its localization leads
to a relaxation of the conservation of crystal momentum
in the creation and decay of phonons in crystallites. Al-
lowing transitions with the wave vector g g 0 adds a
contribution to the Raman spectrum at energies Lu that
are determined by the dispersion relations ~(g). As long
as the dispersion is negative, the additional transitions
with g g 0 will lead to a broadening of the Raman line
and a concomitant redshift of its mean position.

Based on the above reasoning the crystallite Raman
line shape has been shown to have a form

(16)
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where u(q) and I', are the phonon dispersion curve
and natural linewidth of the bulk crystal, respectively,
A is a constant, and the squared Fourier coefBcient of
phonon con6nement function is taken as ~C(0, q)~
exp( —q R /4~ ) in the simplest approximation.

One comment is in order regarding the latter equa-
tion. It has been tacitly assumed in the course of its
derivation that all the crystallites possess the same radii.
Weighted with a proper size distribution function, Eq.
(16) must be integrated over R to allow for the disper-
sion bB in grain radii. However, such a procedure makes
almost no change in Eq. (16). The point is that the
main contribution to the integral in Eq. (16) typically
comes from small qB (& 1, which statement can be ver-
ified by using various particular forms of the size distri-
bution function. For example, using the Gaussian distri-
bution exp[ —(R —(R)) /bR ] will change the exponent
in Eq. (16) to —q (R) [1 + (q8R) ],where the second
term in the denominator is effectively small. Besides, the
conclusion that the main contribution in the integral in
Eq. (16) comes from the range q « R can be made on
experimental grounds. Indeed, supposing the opposite is
true, the integral will depend on B exponentially, con-
trary to the experimentally observed weak Raman line B
dependence (see Refs. 27, 26, 24, and the data below).
Thus, the parameter R in Eq. (16) should be regarded
as the average crystallite radius, while the dispersion in
crystallites radii can hardly affect that equation consider-
ably. That is why Eq. (16) works very well as applied to
the porous and microcrystalline silicon in which the
dispersion in crystallites radii is known to be appreciable.

As for the amorphous contribution to Raman spec-
tra, its shape was suggested to approximate by the
Lorentzian

(17)

where ug and I'g are the material parameters and A' is
a constant. Although the above approximation is rather
arbitrary, we keep it in order that our consideration will
be tied with the preceding results. It is believed that
the observed Raman spectra can be approximated by the
sum of partial contributions given by Eqs. (16) and (17).
Fitting this approximation with the data enables one to
extract the material parameters entering the above equa-
tions.

We must also touch upon the question about the rela-
tive intensities of the amorphous (broad) and crystalline
(narrow) components of Raman spectra. The interpre-
tation was widely employed ' '2 ' 5 based on the belief
that these intensities are simply proportional to the vol-
ume fractions of amorphous and crystalline phases. This
view has its basis in the generally accepted fact that the
Raman scattering intensity is proportional to the volume
of a bulk sample. In connection with that we note that
the latter statement implies the sample size to be con-
siderably larger than the light wavelength. Therefore,
care should be taken to check whether such an inequality
holds in the case under consideration. If we compare the
characteristic crystallites sizes of the order of 100 A. with
a typical wavelength A 10 A. (see Refs. 27, 26, and the

I, 47rnR /3 (Ri=xI 1 —4~R'n/3 Er
(18)

where y is the ratio of the squared matrix elements corre-
sponding to the light scattering by crystalline and amor-
phous phase, respectively. Following the considerations
in Refs. 30—32 we put y 0.1 for the case of relatively
large grains with R 50 A. at hand. It follows &om Eq.
(18) that for a typical ratio R/r, ) 1 the relative inten-

sity of the crystalline component in the Raman spectra
is considerably greater than the volume &action of crys-
talline phase nB . This causes us to anticipate that Ra-
man scattering experiments make it possible to trace the
crystallization at its early, nucleation stage. Equations
(16), (18), and (17) provide a basis for the interpretation
of experimental results in what follows.

B. Experimental design and results

Undoped films of hydrogenated amorphous silicon were
prepared by the conventional plasma-enhanced chemical
vapor deposition (PECVD) technique at the frequency
13.56 MHz from 100% SiH4 at 200'C. We used fused
quartz for substrates. The films prepared were of a thick-
ness of about 5000 A. , possessing parameters typical of
standard a-Si:H films: the conductivity of the order of
10 ~o 0 ~ cm ~ (at room temperature) and optical gap
1.7—1.72 eV.

The Raman measurements were carried out in the
backscattering geometry using computer-controlled DFS-
24 double monochromator with a cooled photomultiplier
tube and a photon counting system. The spectral reso-
lution was 5 cm and the scanning accuracy was about
1 cm . The spectra were excited by the 4888-A. line
of an argon-ion laser. Also, laser-induced heating was
used to change the local temperature of the sample. The

data below), we see that quite opposite is true: A )) R.
Hence, the above interpretation has to be reconsidered.

First of all we note that the scattering intensity is
known to be proportional to the particle volume squared.
(not just a volume) in case the inequality A )) R
obeys. It would appear reasonable that different
crystallites in the matrix are mutually incoherent because
of the dispersion in their radii. Then, the total scatter-
ing intensity I due to crystallites will be proportional to
nB . It is proportional to the crystallite volume squared
and to the sample volume to the power 1. Reasoning in
the same way we can divide the amorphous phase into a
set of local areas of the radius r each, so that each area
exhibits a coherent scatter, while different scatters are
mutually incoherent. It is natural to identify r, with the
correlation radius in amorphous material. Then, associ-
ated with the amorphous phase, the broad component in
Raman scattering can be regarded as one composed of
the partial contributions corresponding to difFerent co-
herent scatters. Since the concentration of such scatters
is about (1 —4vrR n/3)r, , the total scattering inten-
sity I due to the amorphous phase is proportional to
(1 —4aR n/3)r, . As a result the ratio I,/I will be
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laser beam was focused in a 30—100-A. spot by means of
lenses. Estimated via the ratio of anti-Stokes and Stokes
intensities, the temperature varied from 30 to 1200 C de-
pending on the laser power and the spot diameter. The
following measurements were typically conducted. First,
the sample was heated by a power laser beam during the
scanning time (200 s). After that the laser power was
reduced to &10 mW (at which power no heating took
place) and the measurements were taken again. The lat-
ter step implies the crystallization to be an irreversible
efFect, surviving in spite of a posterior cooling. To check
the validity of the laser-induced heating procedure a con-
ventional thermal annealing was performed during the
same time 200 s at difFerent temperatures.

Shown in Fig. 2 are Raman spectra measured at vari-
ous temperatures. Associated with the crystalline phase
is the high-frequency peak that appears at the tem-
peratures exceeding 500 C. Although its relative inten-
sity everywhere increases with the temperature increase,
its maximum position shifts with the temperature non-
monotonously. Namely, the blueshift at T &730 C turns
into a redshift one at higher temperatures. Both the red-
shift and concomitant peak broadening result from the
increase in anharmonic processes which have nothing to
do with crystallites growth. That is why from here on we
restrict ourselves to considering the Raman spectra mea-
sured after the samples have been cooled from a given
temperature T to room temperature by reducing the laser
power. Corresponding to T = 730 C such a spectrum is
shown in Fig. 2 by a dashed line. In what follows each

Raman spectrum is characterized by the maximum tem-
perature T to which a particular sample has been heated.

More in detail measured at room temperature Raman
spectrum is shown in Fig. 3. The results are directly
comparable with Eqs. (16), (17), in which the follow-
ing experimental parameters have been used: uq ——522
cm, I', = 5 cm, wg ——480 cm, I'g ——70 cm
Also, we used the dispersion w(q) = cue(1 —0.18q ) with
q „= 0.8, where q is expressed in units 2'/a, and
a = 5.4 A. is the lattice parameter for bulk the crys-
talline silicon. The best fj.t (solid line in Fig. 3) was
achieved by putting R = 40 A which value we consider
as the average crystallite radius related to the annealing
temperature T = 730 C and annealing time t = 200 s.

In the same way we estimated the average crystallites
radii corresponding to difFerent annealing temperatures
T. The results are given in Fig. 4 for both laser and ther-
mally annealed samples. It is seen from Fig. 4 that the
two procedures lead to results which are in satisfactory
agreement. It is worth noting that, thermally annealed
at T 800 C, the samples showed alight yellow coloring
which is typical of microcrystalline silicon. The data in
Fig. 4 correspond to the annealing time t = 200 s.

Figure 5 shows the evolution of Raman spectra with
a time at the laser annealing temperature T = 730 C.
As is seen from Fig. 5, related to the crystalline phase,
the narrow peak arises at the early stage of annealing.
Its intensity increases rather fast initially. However, the
increase slows down considerably as time goes on. Plot-
ted in Fig. 6 these data clearly show two difFerent stages,
fast and slow, in the peak intensity kinetics. The time
dependence is approximately linear in t at the first stage,
while it can be equally described by either slow linear or
logarithmic dependence. Further measurements in the
long-time range must be called on to verify the logarith-
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FIG. 2. Raman spectra of a-Si:H annealed at different tem-
peratures for 200 s. Solid lines correspond to the measure-
ments taken at the annealing temperatures (1) 627'C, (2)
730'C, (3) 890'C, (4) 1030'C, (5) 1280'C. A dashed line
shows the spectrum (multiplied by a factor 5) measured at
room temperature after annealing at 730 C for 200 s. The
phonon frequency corresponding to c-Si at room temperature
is marked.
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FIG. 3. Raman spectrum measured at room temperature
(symbols) in a-Si:H annealed at 730'C for 200 s. The solid
line is a fit according to Eq. (16) and is discussed in the text.
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mic dependence predicted by the theory above.
This result should be noted. As is seen from Fig. 5, the

amorphous (broad) component of Raman line remains
the same both in its shape and intensity for all the an-
nealing times within the accuracy of our experiments.
This result clearly shows that the amorphous phase vol-
ume f'raction remains almost the same, in spite of the
fact that the crystallites cause strong light scattering, re-
sulting in the narrow Raman line component. Hence, the
scattering per unit volume of a crystalline phase is much
stronger than that of the amorphous phase. The latter
conclusion agrees with the prediction of Eq. (18) and the

related discussion in Sec. III A.
Along the same experimental lines the measurements

of crystallization kinetics were attempted at higher tem-
peratures 1000 and 1200 C. In both cases the Raman
components related to the crystalline phase showed a
small increase of the order of 10% within relatively nar-
row initial time intervals, after which no visible change
in the crystalline phase content was detected on a scale
of the experimental times t & 10 min. In both cases the
estimated average crystallites radius was close to 60 A.

C. Discussion
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FIG. 5. Raman spectra of a-Si:H annealed at 730 C de-

pending on the annealing time.

The above data enable one to decide between the two
scenarios of crystallization described in Sec. II. We note
that neither the concentration nor radii of the crystalline
embryos are found to be linear in time and exponential
in temperature. Also, no evidence of nuclear radii ex-
ponentially exceeding their initial values was observed.
Therefore, none of the predictions of the standard crys-
tallization scenarios predictions is confirmed experimen-
tally.

It should be stressed that the latter conclusion holds
true apart from the way in which the Raman line intensi-
ties are analyzed. Both the standard interpretation (im-
plying the intensities to be linear in corresponding vol-
ume &actions) and its modification in Sec. III A (based
on the quadratic dependences) lead to the same conclu-
sion that the standard approach to crystallization is in-
consistent with the above data on amorphous silicon.

On the other hand, there are at least two facts testify-
ing in the favor of the alternative scenario based. on ac-
counting for the disorder efFects in crystallization. These
are (1) the logarithmically weak time dependence of the
crystalline volume fraction and (2) the increase in the av-
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erage crystallite radius by a factor of 2 during the crys-
tallization process. Although the above data show the
presence of relatively fast kinetics at the early stage of
crystallization, they are not sufhcient to make a definite
conclusion about its time dependence. We can only note
that as linearly extrapolated to zero time the data lead
us to an absurd conclusion that the crystalline volume
fraction is negative at t = 0. The latter means that at
short times (beyond the experimental times) the kinetics
must be faster than observed. Therefore, the prediction
about the nucleation kinetics nonlinear in time is con-
firmed qualitatively.

Supposing the second scenario of crystallization is
valid, one can estimate different material parameters and
to test the self-consistency of the approach presented. By
linear extrapolating the data in Fig. 4 into the region
T = 400—500 C where the crystallization is known to
occur one can estimate the critical nuclear radius as
R, —27+ 3 A [that the dependence R(T) is slightly non-
linear as predicted by Eq. (13) does not influence the
latter estimate, since the interval of extrapolation is rel-
atively narrow; the nonlinearity is taken into account in
w hat follows].

Given the critical radius, an estimate of the correlation
radius r, can be attempted based on Eq. (18) and the
data on I,/I corresponding to different radii shown in
Fig. 4. Both the ratios I,/I and crystallites radii were
extracted from the same Raman spectra. Taking into
account that the crystalline volume fraction is close to
0.1 at R = R, (see Sec. IID above) Eq. (18) becomes

One can extract r, by fltting the data on I,/I with Eq.
(19). Shown in Fig. 7 the flt gives r, = 12 + 3 A.

To check the time dependence R(t) given by Eq. (13)
the value /4n. (Rs —Rs)/3r, versus T in(uot/a) is plot-

ted in Fig. 8 with uo ——10 cm/s (an uncertainty in uo
does not affect the results considerably, since it is under
the logarithm). It is clearly seen that taken at difFerent
temperatures and times the data scale as T lnt, in agree-
ment with Eq. (13). As extracted from the slope in Fig.
8 the characteristic dispersion in the diffusion barriers is
v = 0.1 eV, which value seems reasonable in light of the
discussion in Sec. II. Also, the intersection point gives
V/v 10; i.e. , the average difFusion barrier is estimated
as =1eV.

As mentioned in Sec. III B for the crystallization kinet-
ics measurements taken at high temperatures, they can
be interpreted as corresponding to the ripening stage. In-
deed, estimated from Eq. (18) the saturated crystalline
volume fraction was about 70%, while the average crys-
tallites radius close to 60 A. , twice as large as R . These
values are in a fair agreement with those predicted by our
model for the beginning of ripening stage. The apparent
saturation in the crystalline volume fraction can be then
regarded as a very slow ripening kinetics. This interpre-
tation agrees also with the prediction of Eq. (14) which
states that the nucleation time decreases exponentially
with temperature. Correspondingly, at high tempera-
tures the nucleation stage could be hardly observed on a
time scale of our experiments.

Less reliable are the estimates based on the fast kinet-
ics region data in Fig. 6. Following the model in Sec. II
that region corresponds to the nucleation stage of crys-
tallization. Then, substituting v, = O.l in Eq. (11) and
noting that dv /v, dt = dI, /2I, dt can be extracted from
the data in Fig. 6, one estimates Eo —6kT = 0.5 eV.

Given the energies V and Eo, we can estimate the nu-
cleation barrier TV by substituting the nucleation time
Ati in Eq. (14), which gives W 5 eV. Taking into
account that W = 47rR, cr/3 we find also era —0.05 eV.
From that we get pa = 2cras/R, —2x10 2 eV. The val-
ues of the parameters estimated above are summarized
in Table I. Thus, all the model parameters characteriz-
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FIG. 8. Scaling of the crystallites averaged radii measured
at diferent temperatures and annealing times as discussed in
the teat.
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v (eV)
0.1 + 0.02

o.a (eV)
(5+1) x10

TABLE I. Parameters of a-Si:H as estimated from the fit of the model proposed with experimen-
tal data: critical nucleation radius R, correlation radius of the disorder r„barrier to nucleation
W, surface energy per elemental cell oa, energy gain due to crystallization per elemental cell pa,
average diffusion barrier V, and dispersion in atomic energies v.

H.. (A) r. (A) W (ev) p,a (eV) V (eV)
27 + 3 12+3 5 + 0.7 (2 + 0.5) x 10 1.0 + 0.3

ing crystallization in a-Si:H are estimated experimentally.
These estimates do not contradict to those obtained in
Sec. IIB by means of simple physical arguments.

It should be noted that the above interpretation im-
plies the crystallization to be a polymorphic one: with-
out any change in chemical composition. That such a
crystallization is the case for a-Si:H is not immediately
apparent, since hydrogen diffusion cannot be ruled out a
posteriori. However, there is considerable evidence
for hydrogen effusion from a-Si:H at T & 600 C. Since
the annealing temperatures used in our experiments were
considerably higher than 600 C, we believe that our data
bear on the polymorphic crystallization.

IV. CONCLUSIONS

We have presented a model of crystallization in dis-
ordered solids which predicts the crystallization kinet-
ics that differs dramatically from the standard approach
predictions. Even a relatively small disorder is shown
to affect crystallization considerably. The model reveals
clearly divided nucleation, growth, and ripening stages in
crystallization processes and establishes the parameters
governing the kinetics at all of the stages. It accounts
for the limited small volume fraction available for nucle-
ation at the first stage. Also, it accounts for the log-
arithmic time dependences of crystallite radii observed
at the growth stage and the temperature scaling of their
magnitudes.

The results of Raman —light-scattering experiments de-
signed to test various predictions of the model are pre-

sented for a-Si:H subjected to crystallization. We have
shown that the standard predictions lack support from
the data, while they all can be explained in the framework
of our model. When these results are compared with the
model, it is possible to estimate the numerical values of
parameters governing the crystallization in a-Si:H. A set
of parameters has been estimated in this way including
both the crystallization parameters and the characteris-
tics of the disorder: correlation radius and fluctuations
in atomic energies.

Taken together with the results of recent theoretical
considerations in Refs. 4 and 5 the investigation pre-
sented shows that the first-order phase transition kinetics
in disordered solids differs qualitatively from the classic
theories predictions. Such a kinetics is perhaps one of the
most prominent examples of the disorder-induced effects
in solids. Generally, it has much in common with the elec-
tron kinetics in disordered solids. In both cases the dis-
order brings into existence and/or changes significantly
some potential barriers governing the kinetics; also, in
both cases the disorder makes the processes localized as
compared to those of homogeneous media.
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