
PHYSICAL REVIEW B VOLUME 52, NUMBER 13 1 OCTOBER 1995-I

Nontopological thermal solitons in isotropic ferromagnetic lattices

N. Theodorakopoulos
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vas. Constantinou g8,

GR-116 85 Ath, ens, Greece
(Received 19 December 1994)

The paper deals with the properties of thermally excited solitons of the isotropic spin-S ferro-
magnetic chain with nearest-neighbor logarithmic interactions. The exact statistical mechanics of
the interacting soliton gas is developed for the general case (arbitrary S, temperature, and mag-
netic field). At low temperatures the model's thermodynamics coincides with that of the Heisenberg
model. We present analytical approximations of the leading-order asymptotic behavior of the energy
in three limiting cases: (a) zero field, low temperature, classical limit; (b) zero field, T ~ 0, S finite
(quantum limit); (c) zero field, high temperature, classical limit. Cases (a) and (c) are examples of
a dense gas of [nontopologicalj solitons; results are in agreement with those obtained by the transfer
integral method. Case (b) illustrates the behavior of a dilute, yet strongly interacting soliton gas;
results for the thermodynamics are very close to (but not identical with) spin-wave andior Bethe
ansatz predictions.

I. INTRODUCTION

Theoretical and experimental work with one-
dimensional magnets has provided ample evidence for
the existence and importance of solitons. The develop-
ment of solitonic concepts and techniques has been char-
acterized by a remarkable degree of cross-fertilization be-
tween statistical physics, field theory, and applied math-
ematics. Indeed, much of our present understanding of
the thermal behavior of magnetic solitons results &om
Mikeska's seminal exploitation of the formal equivalence
between the anisotropic Heisenberg model (with an ex-
ternal field) and the sine-Gordon continuum. There has
been no lack of "direct" candidates &om magnetism. The
isotropic Heisenberg ferromagnet (IHF) has been known
to be integrable in the continuum limit, ' and a vari-
ant, the Ishimori-Haldane-Fadeev ferromagnet (IHFF),
is completely integrable on a lattice. In both mod-
els, the properties of solitons at thermal equilibrium, al-
though of fundamental interest, are difFicult to extract.
The reason for this is twofold: (i) the presence of non-
topological solitons, whose amplitudes can become arbi-
trarily small and their numbers presumably arbitrarily
large, and (ii) the fact that those nontopological soli-
tons, which perform breatherlike internal oscillations in
addition to their translational motion, actually reduce to
linear spin waves in the small amplitude limit. The first
problem is generic to all systems which carry nontopolog-
ical solitons (e.g. , the Toda lattice ); it means that one
must incorporate interactions between solitons in order
to achieve a valid description of their statistics at any
finite temperature. The second problem has been dealt
with in the case of sine-Gordon breathers. There, it has
been demonstrated (in leading-order asymptotics ) that
if one allows the presence of both breathers and phonons,
enough of either will be displaced to maintain the total
number of degrees of &eedom. Double counting can in
fact be avoided less tediously a priori: Exact formula-
tions of statistical mechanics in terms of either nonlinear

phonons or breathers yield identical results.
The present work deals with the thermodynamics of

IHFF solitons. At suKciently low temperatures, the
model's properties coincide with those of the IHF. Since
the (integrable) IHF continuum can be considered to be
a good approximation to the IHF lattice under the same
condition, i.e., at low temperatures, our results in eAect
provide a description of soliton statistical mechanics of
the IHF as well. This equivalence has been exploited in
a recent Letter, where many of our key results have
appeared without proof.

The aims of this paper are (i) to give a reasonably
complete account of the theory of (exact) soliton statis-
tical mechanics in the only magnetic system where this
has been possible to a full extent and (ii) to support the
conclusions of the theory by presenting its application to
selected analytically tractable limiting cases. Of partic-
ular interest in the latter context is the treatment of the
high-teinperature regime (not reported in Ref. 13), which
validates the concept of a strongly interacting, dense gas
of extremely localized solitons.

The paper is organized as follows: Section II intro-
duces the model and its dynamics. It reviews the basic
properties of one- and two-soliton solutions and discusses
the conservation laws which control the symmetries of
soliton-soliton phase shifts and are thus central to the
statistical mechanics. Section III formulates the statis-
tical mechanics in terms of occupation probabilities for
microstates. Its main result is formulated in terms of a
two-dimensional integral equation. It will be shown that
the exact thermodynamic quantities (soliton density, en-
ergy, magnetization) are controlled by the asymptotic be-
havior of soliton quasienergies in phase space. Section IV
deals with the limiting case of zero-field, high- and low-
temperature asymptotic behavior. In the latter case, it
will be possible to derive results for both the quantum
and the classical regime. Concluding remarks are made in
Sec. V. The relationship between thermodynamic prop-
erties and integral-equation asymptotics is derived in the
Appendix.
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II. DYNAMICS

A. The model

The IHFF model Hamiltonian

S„.S„+,lII = —2JS ) ln
(2 2S2

—gB ) (S„' —S)

(2.1)
M(iU, k) = —2

sinh 2m

cosh 2m —cos 2k

the soliton has a spatial extent (in units of the lattice
constant E) equal to 1/(2iU), it moves with a transla-
tional velocity U(ur, k) = sinh2msin2k/(2m), and per-
forms an internal oscillation of frequency O(m, k)
2kU(io, k) + 2(cosh 2m cos 2k —1) + 6; furthermore, one
can evaluate the two obvious integrals of motion, namely,
the total magnetization

describes a chain of N atoms, each of which carries a
spin S of length S, and is subjected to an external field
B along the z axis. The particular form of the interac-
tion guarantees complete integrability at the classical
limit, i.e., as S + oo, 5 -+ 0, SS —+ S,J ~ 0, JS —+

j,g + 0, gS ~ g, . It will, however, be necessary to keep
the value of S as a parameter in the problem, both in or-
der to deal with semiclassical approximations of quantum
chains and because the equation which describes statis-
tical mechanics at the classical limit is singular.

The classical dynamics of (2.1) is described by

(in units of S,) and energy

E(m, k) = 8m —hM(~, k) (2 4)

dPdM =
B(u), k)

U i, Bk)
du)dk

(in units of j) carried by a single soliton. The soliton
canonical inomentum P, defined via (BP/OE) M

——1/U
(in units of S,/E) determines the correct measure to be
used in statistical mechanics:

OH—S„= x S„,
dt

(2.2) = 32 dmdk.
(cosh 2m —cos 2k) 2

where time is measured in units of h/(JS) = S,/j. The
fact that the dynamical system (2.2) is completely in-
tegrable has been demonstrated in a variety of ways.
Reference 5 makes use of the gauge equivalence of the
dynamics arising from (2.2) (for B = 0) to the Ablowitz-
Ladik (AL) (Ref. 16) version of the discrete nonlinear
Schrodinger equation. References 6 and 7 conjecture
the existence of such a model by considering a sequence
of finite-S models which are Bethe-ansatz solvable. "
The complete inverse scattering theory has also been
presented. We will follow and make direct reference
to Ref. 16 when appropriate.

B. Properties of single solitons

The problem of the Inagnetic field is disposed of first.
The physical eÃect of the field is to make all spins perform
a uniform precessional motion with angular &equency
h = g,B/j. This motion can be eliminated by introduc-
ing a rotating coordinate &arne. Now, since the dynamics
of the zero-field IHFF (2.2) can be mapped to the dynam-
ics of the AI model, it is possible to describe any general
multisoliton solution of (2.2) in terms of the correspond-
ing AL solution, and superimpose the uniform precession
due to the magnetic field at the end. This simplification
is of particular importance for the statistical mechanics,
since it means that all relevant properties of interactions
between solitons are controlled by the values of their dy-
namical parameters for vanishing magnetic field; it does
not imply however that thermodynamic properties have
a trivial dependence on the magnetic field (cf. Sec. III).

The form of the single-soliton solution (cf. Ref. 5)
demonstrates that all physical soliton properties can be
described in terms of two parameters m and k. Thus,

(2.5)

In the limit m ~ 0, the properties of a soliton character-
ized by (iU, k) reduce to those of a plane spin wave with
wave vector q = 2k and frequency 4 sin (q/2).

C. Multisoliton solutions:
Soliton-soliton phase shifts

The simplest way to evaluate the asymptotic space
shifts resulting &om the interaction of two solitons is to
go back to the AI formulation of the inverse-scattering
transform, write down the two-soliton solution, and ex-
amine its asymptotic form as t —+ +oo. The calculation
is tedious but straightforward. Here, we only quote the
result and make a few comments. The phase shift which
a soliton (ug, k) experiences due to its collision with a
soliton (vo', k') is given by

b, (m, k; m', k') = 1 cosh 2(iU' + w) —cos 2(k —k')
ln

2tu cosh 2(iu' —u)) —cos 2(k —k')

(2.6)

It follows that the sum rule

(2.7)

(2.8)

is always satisfied. Furthermore, the soliton-soliton phase
shifts obey the following symmetry (generalizable to any
multisoliton solution characterized by (iUp, k&)):
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D. Phase shift symmetries and conservation laws

Symmetries of the type (2.8) are generic to soliton-
bearing systems. They reBect the existence of a low-order
integral of motion I = P& ipse Up (where Up is the velocity
of the 4th soliton) and imply that the (conserved) quan-
tity P& ip~ travels at a constant speed. Inspection of the
formula for the group velocity shows that the required
conserved quantity is AI 's Cq or, in spin language,

I= ) = )~ Sz'(Sn+1 x Sn 1)—
(1 + S„.S„+i)(1 + S„S„i)

and reHects the invariance of the original spin Hamilto-
nian under infinitesimal rotations of each spin 8 around
an axis defined by the spin-space gradient

Ts I = 7'g (y„+i + y„+y„ i) . (2.10)

A = —) ng(S„. S„+i), (2.11)

where g is such that the denominator Z = P [g(S
S +i)] is a constant of the motion. The derivative dA/dt
can be written down by using (2.2); it turns out that,
in order for it to remain constant under the Hamiltonian
flow, (i) g must be proportional to f (and thus Z pro-
portional to the exchange part of the Hamiltonian) and
(ii) the quantity

) g'(S„.S„+i)g (S„.S„ i)S„.(S„+i x S„ i) (2 12)

must be a constant of the motion, as indeed is the case
with the logarithmic (but not with the Heisenberg) inter-
action. Thus, the existence of the constant of motion I
guarantees a very special status to the exchange energy
of the IHFF model (analogous to that of the mass in a
lattice models).

Note that generally (i.e., for h g 0) iU is proportional
to the exchange part of soliton energy. It is possible
to show that the center of exchange energy of the entire
IHFF lattice travels at a constant speed, independently of
any soliton considerations. Given an infinite chain with
any type of isotropic nearest-neighbor spin interaction
f(S . S„+i),consider the quantity

III. SOLITON THERMODYNAMICS:
EXACT RESULTS

The general part of the formalism used has been pre-
sented in Ref. 20, in the context of the Sine-Gordon equa-
tion; the reader is referred there for details. The physics
involve the minimization of the classical free energy func-
tional with respect to the occupation probability of each
state. The procedure is self-consistent since the density
of states is itself a functional of the occupation probabili-
ties, due to the pairwise additive interactions (2.7) which
restrict available phase space. The thermodynamics de-
rived within this &amework is in principle exact, with a
single caveat: Because solitons with a very large charac-
teristic length are practically indistinguishable from lin-
ear excitations (spin waves; cf. above), one expects that
a correct statistical mechanical treatment will ultimately
eliminate one or the other. The situation is analogous
with the famous case of the sine-Gordon breather. It
appears therefore expedient to formulate the theory in
terms of solitons alone (cf. Ref. 21).

The thermodynamic potential (free energy) of the in-
teracting soliton gas is given by

p» = jer s—, ~» ~ ~{r), (3.1)

where P = JS /ki3T is the dimensionless inverse temper-
ature, I is shorthand for the point (ur, k) in the soliton
parameter phase space, and the phase space element dI'
is defined by the measure (2.6). The density of states
Rp(I') refers to the noninteracting soliton gas [with our
choice of units (cf. Sec. IIB) equal to K/(2vr)S ] and
the occupation probability n(I') = exp( —Pe) defines a
characteristic (fiel- and temperature-dependent) quasi-
particle energy e(I'). The latter is determined by the
integral equation

Pe(I) = PE(I') + — dl"A(I", I')e
27r

(3.2)

A further quantity of interest is the density of available
states at any given point in phase space expressed as
fraction of Rp(l ), i.e., R(I ):—R(I )/Rp(I'). In the IHFF
case, Eqs. (3.1) and (3.2) take the form

Pf = —— dk dip
—P~(~, I )

vr p p (cosh 2ip —cos 2k) 2

(3.3)

and

(cosh 2ip' —cos 2k') 2 cosh 2(iv' —ip) —cos 2(k —k')

respectively, where f is now the free energy per site. Fur-
thermore,

1 fBP (,k))R ip, k
Ep(~) & ~P ) p~

(3.5)

The derivation is straightforward, and involves use of

I

(2.6) and (2.7). Some special attention must be paid to
the analogy of (3.5) with Eq. (19) of Ref. 20; in this case,
the crucial symmetry refers to the exchange part of the
energy of a free soliton (cf. above); hence the denomina-
tor Ep(u/) = Sip in (3.5). Moreover, the derivative with
respect to P must be taken at constant Ph.

The thermodynamic functions we are interested in, i.e.,
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1
Pf = —— dkC (k)

27l 0
(3.6)

energy, soliton density, and magnetization, can be ob-
tained by difFerentiation of (3.3) with respect to (9, p,
and 6, respectively. The soliton chemical potential must
vanish, since the soliton density is not a priori 6xed. The
details are presented in the Appendix. The important
feature is that we do not require detailed knowledge of
the solution of (3.4) at all points in the two-dimensional
region de6ned by 0 & m & oo, 0 & k & m. The thermo-
dynamic behavior of the soliton gas is controlled by the
asymptotic properties of (8.)) in the limits (() —i 0 and
m —+ oo. In particular, the &ee energy is given by

transform the two-dimensional integral equation (3.4) to
a set of one-dimensional integral equations in which k
appears as a parameter:

Pe(u), k) = PE(v), k)
OO

() (v)' + sin k)

d2 e—x —PhM(t, k)
= -8'

dt2 (1 + at2)2 (4.3)

The integral equation (4.2) can be transformed to a
second-order differential equation for x—:Pe(v), k):

and the soliton density per site by

2vr () (BV

where

BPe(v), k)

(3.7)

(3.8a)

where a = sin k/S and we have used a rescaled in-
dependent variable t = S(()/sin k, in terms of which
M(t, k) = —2t/(1 + at )/S. Equation (4.3) must be
solved subject to mixed initial and Anal conditions, i.e.,
x(0) = 0, dx/dt(oo) = v = 8(P/S) sin k. [Note the
rescaling with respect to V of (3.8b).]

The remainder of this section specializes to the case
h=o.

In the classical limit, S + oo, P finite, the quantities
V —= lim V(v), k) = 8P, (3.8b)

v = 8P sin k/S (4 4)

(3.8c)

C (k) =— lim [Pe(((), k) —PE(v), k)] . (3.8(l)

It follows that the internal energy u and magnetization
m per site can be obtained by direct difFerentiation of
(3.6) with respect to P and h, respectively, i.e. ,

X

dt2
———8 e (4.5)

which, for the given boundary conditions, has the exact
solution

and a become infinitesimally sinall. Equation (4.3) can
be further simplified to

(BPf) 1 ((9C (k) i
E»)~ 2~ ~ &» )~

(3.9) n(t) = 2 in sinh + sinh ( ) . (4.6)v~ 2 4

(OPf ) 1 (OC (k) (

t9h j (i
27'' () ( t9h

IV. SOLITON THERMODYNAMICS:
ANALYTIC APPROXIMATIONS

(3.10)
Two remarks are in order here. First, that exactly the
same equation (4.5) controls the classical limit of the sine-
Gordon breather gas. Second, that if one regards (4.3),
with h = 0, as a mechanical system, (4.5) represents its
"autonomous" limit. The asymptotic properties of (4.6)
are particularly simple (cf. definitions above):

A. Classical, zero-Beld, low-temperature case
and

vo ——/16+ v2 (4.7)

A(v), k;(()', k') = min(v), (()') S(k —k') (4 1)

Note that the above approximation preserves the sym-
metry (2.9) of the soliton-soliton phase shift and satisfies
the sum rule (2.8); so we can reasonably expect it to ex-
hibit at least the salient features of the exact solution of
(3.4). Introducing (4.1) in (3.4), it is possible to decou-
ple the statistics of solitons with different k values, and

At low temperatures we expect thermodynamic prop-
erties to be dominated by solitons whose exchange en-
ergies are lower than 1/P, i.e. , with parameter values
m && l. If, in addition, k & m, it is possible to approxi-
mate the exact phase shift (2.7) by

(4.8)

It follows that

(4.9)

In the classical limit under consideration, t9vo/())v ~ 0.
This means [cf. Eq. (3.7)] that the magnetic lattice will
be equally populated with solitons of all k, producing a
total density of 1/2 solitons per site, as expected from
counting the classical degrees of freedom. The internal
energy density can be found by inserting (4.9) and (4.4)
in (3.9) to be equal to k~T, as demanded by the equipar-
tition theorem.
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B. Finite S, sero-Beld, P -+ oo limit

The core of the approximation scheme developed in
the preceding subsection remains valid away &om the
classical limit if the temperatures become extremely low.
More precisely, for S finite and P large, consider the range
of k de6ned by

v = 8(P/S) sin k ( A, (4.10)

where A )) 1 but finite. As P -+ oo, this range is bounded
by a characteristic k oc 1/~P. For such k's, the parame-
ter a is smaller than 1/P. In the limit P ~ oo this allows
us to substitute (4.3) by (4.5). On the other hand, values
of k outside this range are (in the limit P —+ oo) irrele-
vant. The argument for this is as follows: Such k values
lead to v ) A )& 1; numerically large values of v lead
in turn to comparably large values of vp, in the context
of both (4.5) and (4.3). In the former case this can be
proved by inspecting (4.7). Moreover, it is in both cases
clear that a v » 1 can only come &om a vp &) 1. This
however means that z(t) grows very rapidly from its ini-
tial value x(0) = 0. As this happens, the right-hand sides
of both (4.5) and (4.3) vanish, dominated by the expo-
nential factor. Since the "acceleration" vanishes before
it has any time to act, the "velocity" stays at its initial
value, i.e., v vp,

dvp1— -0,
dv~

(4.11)

and therefore such solitons are not thermally excited [cf.
(3.7)j. As a consequence, in the limit P ~ oo, it is le-
gitimate to use (4.5) in lieu of (4.3) for all k, and thus
exploit the properties (4.7)—(4.9) of the solution (4.6).

Inserting (4.10) in (3.7), and approximating sink by
its argument, we obtain the leading-order contribution
to the soliton density,

1 S 1'

2p 0

/2m f k~T l '~'

'r(-,')' &» r

gi+ x4p

(4.i2)

The corresponding result for the energy density, obtained
by making use of (4.10) in (4.9), is

&kgyTI' '
'll = 2 1(i)' (4.13)

A few remarks are in order here. First, Eq. (4.12) means
that the soliton gas is dilute. Not all solitons are ex-
cited. This is a characteristic of the quantum regime.
In the classical limit (cf. previous and following subsec-
tion) solitons must exhaust all degrees of freedom. (It
should be remembered that no provision for linear exci-
tations has been made. ) Second, solitons carry an aver-
age energy of 2k~T each, as suggested by equipartition.
Numerical solution of (4.3) indicates that this result is
only valid in the limit P ~ oo. Third, the reason the
approximation (4.1) works is that the conditions for its
validity are met by thermal solitons; characteristic m val-

ues of 1/P are much lower than the typical k values of
O(k, ) (quantum case) or O(1) (classical case, preceding
subsection). Fourth, the numerical value of the prefactor
of the energy, 0.3814, is close to the spin-wave result of
0.3684. Comparable results have been obtained in the
S = 1/2 case in terms of the Bethe ansatz. ~2 2s In view
of the soliton-magnon duality at low amplitudes, this is
not unexpected.

C. Classical, zero-field, high-temperature limit

In the high-temperature regime P ( 1, narrow solitons
which carry large amounts of exchange energy, i.e., with
values of m ) 1, become predominant. As long as the
characteristic parameters tu, m' of two such solitons do
not come very close to each other, the hyperbolic cosines
in the exact soliton-soliton phase shift (2.7) can be ap-
proximated by exponentials, leading to

A(w, k; w', k') = —min(w, w') . (4.14)

The above approximation is the exact opposite of (4.1):
Instead of a b function in k space, which decouples soliton
modes corresponding to different k's, (4.14) is indepen-
dent of k, k', ensuring that all soliton modes couple to
each other. It should be further noted that (4.14) satis-
fies the sum rule (2.8), just like the low-T approximation
(4 1)

Substitution of (4.14) in (3.4) yields

1285'
Pe(w, k) = 8Pw+.

x dk' dw'e-' 'min(w, w' )e-~'( '"'l,
0 tDp

(4.i5)

d'x = -128S: -(*+4-~.
dtU

The most general solution of Eq. (4.16) consistent with
the condition lim ~ dx/dw—:V = 8P is

(4.16)

where again the hyperbolic cosine in the denominator of
(3.4) has been approximated by an exponential, to ensure
consistency with (4.14). It should be emphasized that
these approximations are crude, and that they cannot be
expected to yield accurate results for values of m &( 1.
The point is that such low-energy solitons are irrelevant
at high temperatures.

In accordance with this argument, we temporarily ex-
clude soliton modes with very low values of m from any
further consideration by introducing a lower cutofF in
(4.15). This will be useful in controlling singularities,
although the value of the cutofF will be set to zero at the
end of this calculation.

Since the right-hand side of (4.15) is k independent,
e can only depend on va; integration over k' can be per-
formed trivially, and reduction to an ordinary difFerential
equation follows the steps of the previous subsection. The
result is
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4
T(w) = 21n —e Ssinh (2Aw+ i)),A

(4.17)
V. CONCLUDING REMARKS

where A = 1 + 2P. We do not know the value of b, since
we have no knowledge of the exact behavior of x(iu)as
m ~ 0. The following procedure will be adopted instead:
b will be set equal to zero, and the value of the cutofF
will be fixed by demanding x(iu()) = 0. This leads to
iu() ——1/(8S), which vanishes at the classical limit. The
solution (4.17) has the asymptotic properties

Vu = V
~

= —4+16S (S)) 1)(8S (4.18)

and

C = —21ni
(1+2P)

~

+ 21nS.
)

(4.19)

Both (4.18) and (4.19) are valid for all k. In the limit

S -+ oo, Vo diverges, but lims~ dVu /dV = 0,(s) . . (s)

and thus, from (3.7), the soliton density must equal 1/2.
Furthermore, from (3.9) and (4.19), the internal energy
per site,

2j
1+ 2j /(kiiT) ' (4.20)

can be calculated, in agreement with the exact result
obtained by the transfer integral method.

Although this completes the derivation of soliton ther-
modynamics at the classical high-temperature limit, it
is instructive to examine the basic features of the ana-
lytical solution (4.17). For example, using (4.17) in the
alternative definition of the soliton density (cf. Ref. 20)
allows us to examine the m distribution of thermal soli-
tons (with the understanding that no conclusions should
be drawn about details in the region 0 & zu « 1):

2Am
n, =2A dm —1 . (4 21)

sinh (2giu) tanh(2Aiu)

Equation (4.21) implies that solitons which are thermally
excited have values of iu & 1/A. In other words, typical
thermal solitons cannot become narrower than a lattice
constant. Since each such soliton carries an energy of
order j, the total energy per site is of order unity at high
temperatures, as expressed by (4.20).

We have presented an "advanced phenomenology" of
the interacting soliton gas for an isotropic ferromagnetic
chain. The theory is in principle exact but requires solv-
ing a two-dimensional integral equation, i.e. , in efFect has
the same degree of complexity as the quantum mechani-
cal Bethe ansatz. In the case of vanishing magnetic field
it has been possible to develop valid approximations in
the high- and low-temperature regimes and derive ana-
lytic expressions for thermodynamic quantities. The re-
sults presented provide detailed information about the
manner in which nonlinear modes accommodate them-
selves at Gnite temperatures.

In the low-temperature regime, the fortunate occur-
rence of a gapless spectrum allows a semiquantitative un-
derstanding of the quantum, T ~ 0, limit of the Heisen-
berg chain with essentially classical techniques. The be-
havior of the soliton density suggests the presence of a
"dilute" soliton gas. The quotation marks imply that
the term should be used with some caution. It refers to
typical distance between the centers of two solitons. At
low temperatures, this is indeed large ( of order T i~2);
however, the spatial extent of a thermal soliton is of
order 1/T, i.e. , much larger. There is therefore signif-
icant overlap between solitons, suggesting the presence
of strong interactions. It is interesting to digress at this
point and consider the analogous situation in the Toda
lattice. There, the typical intersoliton distance at low
temperature is of the same order as the spatial extent of
thermal solitons, i.e., T

It appears that a properly formulated soliton phe-
nomenology has a range of validity which far exceeds the
limits imposed by the original conceptual &amework.
In the particular case of the quantum low-temperature
regime, marginal uncertainties in the Bethe ansatz make
it presently impossible to decide whether the soliton re-
sult is asymptotically exact. It is, however, clear that
soliton theory presents a better alternative to spin waves:
The magnetization obtained Rom the soliton theory van-
ishes at any finite temperatures (cf. the divergent mag-
netization obtained from spin-wave theory).

At high temperatures it appears that in spite of the
crudeness of our approximation, the theory again de-
scribes leading-order corrections. The exact agreement
of (4.20) with the transfer integral result should be re-
garded as fortuitous. In this case the soliton gas is dense
in the traditional sense. Intersoliton distances and soli-
ton spatial extent are both in the range of the lattice
constant.

APPENDIX

In order to derive (3.6), we subtract the "bare" part of the soliton energy, PE(iu, k), from both sides of (3.4) and
integrate both sides over all k. The result is

f

ear

(3O 2
dk (Pe —PE(iu, k)) = 8S dk diu' , , 2min(~, ~')e —)'(- "1,

0 (cosh 2iu' —cos 2k') (A1)

where we have made use of the sum rule (2.8). In the limit iu ~ oo, the integrand of the left-hand side of (Al) is C
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whereas the right-hand side coincides, except for a prefactor I/(2m), with P—f [cf. Eq. (3.3)j. This proves (3.6).
In order to derive (3.7), we differentiate both sides of (3.4) with respect to to. In the limit to ~ 0, this yields

Vp(k) = V + dk dt's'
I 4 sinh 2m'

1 —cos 2k ~ p p (cosh 2ur' —cos 2k') z cosh 2'' —cos 2(k' —k)

Differentiating both sides of (A2) with respect to V at constant Ph, we obtain

QtUsv J &„m jo 0 (cosh 2m' —corn 2k')~ cosh 2m' —cos 2(k' —k)

(A2)

(A3)

where we have used (3.5) for the density of states R. Equation (3.7) can now be obtained by integrating both sides
of (A3) over k.

A further by-product of (A3) is that, in the limit k ~ 0, the integrand in the right-hand side expresses the total
magnetization in soliton component form. This implies that the total magnetization per site (in units of S,) can be
alternatively expressed in terms of the asymptotic properties of (3.4), as

(c)Vp(k) i
p( )9V

(A4)

The above alternative can be useful in situations where the integral (3.10) cannot be calculated exactly. In all limiting
situations which we have treated analytically (cf. Sec. IV), (A4) guarantees a vanishing magnetization.
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