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Numerical analysis of Hahn echoes in solids
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A numerical procedure for computing the Hahn echoes of half-integer quadrupole spins (I =
—,', 2, 2,

and 2) in solids has been derived from a detailed analysis of the evolution of the density operator. As the

first-order quadrupole interaction is taken into account throughout the experiment, consisting in excit-
ing the spin system with two in-phase pulses, the results are valid for any ratio of the quadrupole cou-

pling, co&, to the amplitude of the pulses, coRF. In the hard-pulse excitation condition (co&/coRF && 1), the
central-transition echo reaches the maximum when the first- and the second-pulse Hip angles are equal to
~/2 and m., respectively. On the other hand, all the echoes should be observed if the second-pulse Hip an-

gle is smaller than m/2; the optimum value of this angle depends on the spin I. The results on the
central-transition echo in the soft-pulse excitation condition (co&/coRF ~50), are presented. The two

pulse Gip angles should be optimized in order to observe the echo. Moreover, the study of the amplitude
of the central-transition echo as a function of the second-pulse Aip angle makes it possible to determine
the value of co& in a single crystal, or those of the quadrupole coupling constant and the asymmetry pa-
rameter in a powder.

I. INTRODUCTION

High-field superconducting magnets up to 11.7 T have
dramatically simplified the investigation of half-integer
quadrupole spins (I =—'„—,', —'„and —,') in solid-state NMR.
The Periodic Table is formed to the extent of about 70%%uo

by this kind of nuclei, which are multiple-energy level
systems, sensitive to the electric-field gradient (EFG) gen-
erated by their surroundings. Multiple-quantum transi-
tions occurring in these systems make their study tedious,
but, once understood, they provide valuable structural in-
formation. ' Several data can be obtained: (i) Our first
interest is the number of crystallographic sites available
for an atom in a compound. If the popular magic angle
spinning (MAS) of the sample at high speed cannot split
the absorption lines, recent techniques such as double ro-
tation (DOR) and dynamic angle spinning (DAS) pro-
vide a high-resolution spectrum in one and two dimen-
sions, respectively. (ii) The true chemical shift of a line
may be related to the mean bond angle. As the quadru-
pole interaction also shifts the line, the determination of
its contribution to the chemical shift requires the values
of two quadrupole parameters: the quadrupole coupling
constant e qg lfi and the asymmetry parameter ri. Many
techniques are available for this propose —line-shape
analysis on the static or MAS spectrum, analysis of usu-
al spinning sidebands, or those of the satellite transition
spectroscopy (SATRAS). (iii) The determination of the
relative population of the different crystallographic sites
in a compound remains a challenge. This kind of investi-
gation requires the study of the radio-frequency (RF) ex-
citation conditions of the spin systein. ' '" (iv) The pres-
ence of heteroatoms such as the proton, fIuorine, or phos-
phorus in the vicinity of the studied atom can be detected
by the cross-polarization method. Unfortunately, the line
shape is distorted in an unpredictable way. ' (v) The

heteroatom distances can be determined using the Hahn
spin-echo double resonance methods such as SEDOR,
REDOR, or TEDOR. '

The Hahn spin-echo sequence' is mainly applied for
refocusing magnetization lost in the dead time of the re-
ceiver' or distorted by spurious signals like ringing sig-
nals from the probe' when nuclei with low gyromagnetic
ratios are studied. A permanent electric dipole in a single
crystal such as LiNb03 also generates spurious signals
that can be canceled by spin-echo sequences. ' Some-
times, the spin-echo sequence is combined with the
inversion-recovery sequence to measure the spin-lattice
relaxation time T, . The main difference between the
Hahn spin-echo sequence and that of Solomon is the
following. In the first case, the interpulse delay is of the
same order of magnitude as the duration TF,D of the free
induction decay, whereas in the second case this delay
must be smaller than TFiD (see Fig. 2) in order that the
effect of magnetic-dipole interaction be neglected. As a
result, there is no echo for the central transition in the
Solomon spin-echo sequence; the echoes are satellite-
transition signals. On the other hand, the echo for the
central transition can be predicted in the Hahn spin-echo
sequence if the heteronuclear magnetic-dipole interaction
Hz~& z~ is taken into account during the interpulse delay
and the acquisition period. '

As integer spins are not numerous in the Periodic
Table, we deal mainly with half-integer quadrupole spins.
This paper presents a detailed analysis of Hahn echo for-
mation and outlines a numerical procedure valid for the
four half-integer quadrupole spins. The study of the
Hahn echo amplitude versus the second-pulse Qip angle
allows us to determine the quadrupole parameters and,
thus, the true chemical shift. The main advantage of
spin-echo sequences over sample spinning techniques is
the possibility of performing variable temperature experi-
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ments. Our numerical procedure generates results identi-
cal with our former analytical results on spin I= ', (R—efs.
21 and 22) and —', (Ref. 23) systems. Moreover, the RF ex-
citation conditions for performing quantitative measure-
ments also agree with our previous prediction. We
have to emphasize a limitation of our results: The
homonuclear magnetic-dipole interaction HD~z z~, which
is not taken into account in our analysis, must be much
smaller than H~~~ s~. The present study stems from the
fact that if the analytical expressions for the spin I=—,

'
system can be obtained in a way similar to those for the
spin I =—,

' system, ' this is not the case for the spin
I =

—,
' system, which requires the solution of a fifth-degree

equation. Until now, it has not been possible to solve it
by radicals. This numerical procedure enables us to in-
vestigate spin I=—', systems without waiting for analytical
results. In a further publication, we shall study the
efFects of HD~~ s~ during the pulses on the Hahn echo
amplitudes and compare our method with the SEDOR
approach for the determination of the heteroatom dis-
tance.
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II. THEORY

Hg '= [3I, I(I +1)], — (2a)

The energy levels of a half-integer quadrupole spin I in
a strong static magnetic field Bo are represented in Fig. 1.
Two conventions are usually used to label these energy
levels: (i) classically, using the magnetic number

~
m ) and

(ii) according to the fictitious spin- —, operator formalism

~
I —m + 1 ) . In this paper, the first one is used.

Second-order quadrupole efFects, homonuclear magnetic-
dipole interactions, as well as spin-relaxation phenomena,
are assumed to be negligible. With these assumptions,
the Hamiltonian (in angular frequency units) of the spin
system, expressed in the rotating frame associated with
the central transition, consists of three terms: a RF mag-
netic field coR„I along the —x axis, a heteronuclear
magnetic-dipole interaction HD It sI =pI, with

Poyrys
4m.(rt s)—

and the first-order quadrupole interaction,

FICx. 1. The two conventions to label the energy levels of a
quadrupole spin I in a strong static magnetic field.

with

co& = [3 cos P—1+1i sin P cos2a] . (2b)

The Euler angles a and P orient 80 in the principal axis
system of the EFG tensor. Our quadrupole coupling co&

is equal to half the standard one, which means that two
consecutive absorption lines in the spectrum of a single
crystal are separated by 2'&. For polycrystalline sam-
ples, the quadrupole coupling constant e qQ/A' and the
asymmetry parameter g are the relevant quantities.

The Hahn echo sequence consisting of two —x pulses
is represented in Fig. ~. The main di8'erences between
the assumptions in the original Hahn echo sequence'
and the present case are (i) the consideration of H&

'

throughout the experiment and (ii) in early work the
magnetic interaction QI, represented the inhomogeneity
of Bp and in our case, this term corresponds to HD~~

The spin dynamics during the detection period ~4 can
be described by the density operator

p(t i, r2, t3, r4) =exp( —iH "r4}exp( iH "t3 )exp( ——iH "r2)exp( iH "ti)—
Xp(0)exp(iH "t

1 }exp(iH "rz)exp(iH"t3 )exp(iH "r&)
with

H' '=co I +H'" H"=H"'+/I p(0)=I

Throughout the paper, the matrices associated with Hamiltonians and density operators are expressed in the eigenstates
~
m ) of I,. Using the diagonalized form A of H" and the transformation operator T related by

n= T+a"T, (5)

Eq. (3) becomes

p(ti, r2, t3, r4) =exp( —iH' rz)T exp( —iAt3)T+ exp( iH "r2)T exp( —iA—ti )

X T+p(0)T exp(iAti )T+ exp(iH"r2)T exp(iAt3)T+ exp(iH"r4) .
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FIG. 2. Hamiltonians, pulse sequence and the Hahn echoes
for a spin I=

2 system, depicted schematically by arrows whose

heights and widths are meaningless. In fact, mainly the 74 —'T2

echoes are observed experimentally. The other echoes, if ob-
served, should be located at odd numbers of the interpulse delay
72. The broadest arrows represent the echoes of the central
transition, whereas the thinnest arrow represents the echoes of
the outermost satellite transitions.

Ip& Ip-)& I q&

—i/2

(9b)

A simple-minded approach consists of calculating the
density operator at ~&=~2 to predict the Hahn echoes.
As the spin-relaxation phenomena have not been taken
into account, the numerical computation of the density
operator in the detection period r4 [Eq. (6)] yields the
contribution of the FID following the second pulse as
well as that of the echoes. In order to separate these two
contributions, we analyze the evolution of the density
operator from the initial state p(0) to the detection
period in some detail. Then we derive a numerical pro-
cedure, which is valid for the four half-integer quadru-
pole spins, to compute only the contribution of the
echoes.

The density operator p(t) ) at the end of the first —x
pulse is given by

p( t, ) = T exp( i Qt, ) T+p(0—)T exp(i Qt, )T+ .

These two matrices have only two nonzero elements. For
completeness, a matrix element located below the princi-
pal diagonal is defined by

p, b(t) )—:(I+'(t) ) )
=Tr[p(t, )I„']+iTr[p(t) )I '] .

The subscripts a and b are magnetic numbers satisfying
a &b.

After the first pulse, the evolution of the spin system is
described by

p(t), r2) =exp( —iH"r2)p(t) )exp(iH"r2),
In fact, a matrix element p (t, ) of p(t) ), located above
the principal diagonal of the matrix of p(t(), represents
the "line intensity" (Ip'q(t() ) of the corresponding tran-
sition (p~q), that is,

and the effect of the second pulse by

P(t„r„t,)=T exP( —~At3)T+P(t„q2)

XTexp(iQt3)T+ . (12)

pp q(t) )—:(Ip'q(t) ) ) =Tr[p(t) )Ip ']
i Tr[p( t)—)I~~'q],

Tr denotes a trace. The subscripts p and q are magnetic
numbers satisfying p )q. They locate the matrix element

pp q(t) ) at the (I —p+1)th row and the (I —q+1)th
column of the associated matrix. The matrices of the
operators I ' and I~'q in the eigenstates of I, have the
following form:

Xexp(iH"r4) . (13)

Only the matrix elements of p(t„q.2, t3, q.4) associated
with single quantum (m —1~m ) transitions are required
because they are observable experimentally, namely,

During the detection period, the density operator be-
comes

p(tl r2, t3, 74)=exp( iH'74)p(tl —
T2 3)

p ( (t), '72 t3 74) =exp( iq4[ ,'cot—3[3(m —1) —I(I+1)]+[m ——1]p j )

Xp ) (t), r2, t3 )exp(i'[ —,'co(3 [3m I(I + 1)]+m p])—
=p ( (t),72 t3 )exp[i &4[(2m —1 )co&+/] ] (14)

m is a magnetic number. The matrix elements p, (t„r2, t3) are those of the density operator p(t„r2, t3) at the end
of the second pulse. The subscripts (m —l, m) in Eq. (14) locate the matrix element at the (I —m + l)th row and the



NUMERICAL ANALYSIS GF HAHN ECHOES IN SOLIDS 9421

(I —m +2)th column of the associated matrix, that is, in the first diagonal line below the principal diagonal.
Our aim is to analyze the Hahn echo amplitudes. Once the matrix elements p i ( t i, rz, t 3,r4) of the echo density

operator are determined, the relative echo amplitudes for the x and y components of the (m —1~m ) transitions are
defined by

m —1,m
V'I (I'+1)—m (m —1)E ™(ti,12 t3 r )+iE~ ™(ti,r2 t3 r4) p —i (ti r2 t3 r4) ~

—,'I(I + 1)(2I+ 1)
(15}

From Eq. (14), we deduce that only a part of each matrix element p i (ti, rz, t3) in Eq. (12) containing terms such
as exp[ —nir2[(2m —1)a~&+P]] is relevant for the analysis of the echoes, where n is a positive integer. This also means
that only the matrix elements p, (ti, r2) of the density operator p(ti, r2) containing the same exponential functions
are involved. All of them are located above the principal diagonal of the corresponding matrix. As a result, we can con-
sider a simplified density operator p (t „r2) whose matrix eleinents are given by

p„,(ti, r2) =exp( —ir2[ 3 co& [3r —I(I+ 1)]+rP] )p„,(t i )exp(i r2I 3 to& [3c I(I+—1)]+cP ( )

=p, ,(t, )exp[ irz—[r —c][(r+c)c0&+P]] . (16)

The two conditions on the values of r and c are
r +c=2m —1 and r )c. The latter condition is obvious
because the matrix elements p„,(t i, r2) are located above
the principal diagonal of the corresponding matrix. Con-
sider the biggest spin, which is I=—,'. For the central-
transition echoes, that is, m =

—,', the values for r and c are
(r, —r)=(-', , --', ), (-', , —-', ), (-,', —-', ), (-,', —

—,'),
( —,', —

—,
' ); five matrix elements are involved. For the

satellite-transition echoes, these parameters and the ma-
trix elements involved are given in Table I. These values
of (r, c) also concern with the density operator p(ti) in

Eq. (16). They generate a simplified density operator

p (ti ), the nonzero matrix elements of which are located
above the principal diagonal.

Proceed one step further by including the exponential
functions contained in Eq. (14) in the matrix of p (ti, r2).
This transformation leads to a new simplified density
operator p (t„r2, r~) whose matrix is reported in Table
II. This table represents the matrix for a spin I=—', sys-

tern. Deleting the two outermost rows and the two outer-
most columns generates the 8 X 8 matrix for I=—', . The
rectangle in Table II encloses the matrix elements for
I=—'.2'

The effect of the second pulse on p (t, , r2, r4) is de-
scribed by

p (ti rz t3 rg)=Texp( iQt3)T—+p (ti, r2, r4)

XTexp(iQt3)T+ . (17)

Equations (7} and (17) have a similar form. In the first
case, the initial state is described by p(0), whereas in the
second it is given by p (t„r2,r4). The first pulse converts
the thermal equilibrium magnetization I, into "line inten-
sities" (I~'~(ti )), (I+'(t, )), and other magnetizations.
The second pulse refocuses as echoes the line intensities
(I"(ti)) (Table II) generated by the first pulse. To
reiterate, the study of the Hahn echoes requires the deter-
mination of only 2I matrix elements p i ( t i, r2 t 3 r4)
of Eq. (17) located in the first diagonal line below the

TABLE I. Matrix elements p„, of the simplified density operators p (t„~2,v4), p (t&, ~2), and p (t& ) involved in the echo fornm-

tion.

Transitions

m —1~m
1' =7/2

I=5/2

I =3/2

7/2~9/2
5/2~7/2
3/2~5/2
1/2~3/2

—1/2~1/2
—3/2~ —1/2
—5/2~ —3/2
—7/2~ —5/2
—9/2~ —7/2

9/2
7/2
5/2
3/2
1/2

—1/2
—3/2
—5/2
—7/2

r~ r+8
r, —r+6
r, —r+4
r~ r+2

7; r
r, r 2
r, —r —4
r, —r —6
r, —r —8

9/2, 7/2
9/2, 3/2

9/2, —1/2
9/2, —5/2
9/2, —9/2
5/2, —9/2
1/2, —9/2

—3/2, —9/2
—7/2, —9/2

7/2, 5/2
7/2, 1/2

7/2, —3/2
7/2, —7/2
3/2, —7/2

—1/2, —7/2
—5/2, —7/2

5/2, 3/2
5/2, —1/2
5/2, —5/2
1/2, —5/2

—3/2, —5/2

3/2, 1/2
3/2, —3/2

—1/2, —3/2
1/2, —1/2
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P3/2, 1/2( ti, T2, T4}=(I ' (ti ) )

X exp[i(r4 —r2)(2ai&+p) ],
P5/2, —1/2( t „T2,T4) = (I ' ' (t, ) )

(19a)

Xexp[i(T4 —

3T2)(2'&�+�&I)

)], (19b)

respectively. They occur at ~4=~& and ~4=3~@ and
represent the refocusing of (I / '/ (t, ) ) and
(I ' ' (ti ) ), respectively. The three matrix elements,

Pl/2, —1/2(tl&T2&T4} l (Iy (tl }

X exp[i(T4 —r2)p],

P3/2, —3/2(tl T2 T4} l (I (tl }~

X exp[i(T4 3T2)ltd]

P5/2, —5/2(tl&T2&T4} l (Iy

Xexp[i(r4 —5T2)p],

(20a)

(20b)

(20c)

principal diagonal of the matrix associated with
E

P (ti T2, t3.4}
It is worth noting that each matrix element of

p (ti, r2 T4) is associated with one particular Hahn echo,
the nature (central-transition echo or satellite-transition
echo) and the location (in the detection period r4) of
which are already indicated in this matrix, explicitly for
its location but implicitly for its nature. For a spin I sys-
tem smaller than —'„as already mentioned above, only a
part of this matrix is useful. For example, if I=—,', the
echo of the ( —,'+-+—,') satellite transition represents the re-
focusing of the line intensity (I ' (t 1 ) ) involved in

P5/2, 3/2( 1&T2 T4} ( — (t1}~

Xexp[i(r4 —T2)(4'&+ p )], (18)

which shows that the echo is located at ~4=~2. Similarly,
the two echoes of the ( —,'~—', ) satellite transition originate
from the two matrix elements,

are associated with the three echoes of the central transi-
tion ( —

—,
' ~—,

' ). These echoes are located at T4 =T2,
v4=3~z, and v.4=5~2 and correspond to the refocusing of
(I' ' ' (tl))& (I (ti))& and (I (t )) re-
spectively. The two matrix elements p 1/2 —3/2(ti T2 T4)
and pi/2 5/2(ti, r2, T4) describe the two echoes of the
( —

—,'~—
—,') satellite transition, and p 3/2 5/2(ti T2&T4)

characterizes the echo of the ( ——',~——', ) satellite transi-
tion. From a theoretical point of view, for the
(m —1~m ) transition, I&I ( =I+ —,

' —
~
m —

—,
'

~ ) echoes lo-
cated at r4=(r —c)T2 should be observed. The quantum
numbers r, c, and m are related by r+c =2m —1 and
r & c, as already mentioned above.

III. NUMERICAL PROCEDURE AND RESULTS

From now, we focus on the maximum value
Ey ' (ti, T2 t3 T4 (r —c)r2) of the relative echo am-
plitude, which is proportional to the area of the associat-
ed absorption line. Knowledge of the echo positions,
T4 = ( P C )T2, allows us to compute Eym 1™(t1,r2 t3 T4
=(r —c)T2) using p (ti)=p (ti, r2=T4=0) instead of
p (ti, r2, T4) As a. result, Eq. (17) reduces to

p (t„t3)=Texp( iQt3)T —p (ti)T exp(iQt3)T+ .

(21)

Equations (17) and (21) and the way of writing
p (t„r2,T4) (see Table II) are the key points of our nu-
merical procedure. Once the two matrices Q and T [see
Eq. (5)] are computed by a numerical matrix diagonaliza-
tion method, the matrix of p(tl ) is obtained using Eq. (7).
Then, the matrix multiplications in Eq. (21) are carried
out with p (t 1 ) containing a single nonzero term
(I"'(ti)) extracted from p(ti }. Finally, the value of
Fy -1™(ti,r2, t3, T4=(r —c)T2) can be obtained by taking
the imaginary part of p, (ti, t3), times a constant
term, as in Eq. (15). We represent these results by

&I(I+1)—m (m —1)E„' (t„r2, t3 T4 (r —c)T2)=, (Iy"'(t, ))%' ' '(t3, T4=(l C)T2) .
3

(22)

Therefore, Ey ' (ti, r2, t3, T4=(r —c)r2) is the product of two quantities: The first one is the imaginary part
(Iy'(tl) ) of the single nonzero matrix element of p (t, ), which depends on the first-pulse duration t„the second quan-
tity, 4 '(t3, T4=(r —c)T2), generated by Eq. (21), depends on the second-pulse duration t3

To our knowledge, mainly the v4=~2 echoes are observed experimentally. The ~4=3~2 echoes in a spin I =—', system
have been detected in a ferromagnetic material and explained by Abelyashev et al. From a practical point of view, we
restrict ourselves to the study of the ~4=v.2 echoes, postponing the investigation of the other echoes until experimental
results are available. This means that the (m —1~m) transition echo is the refocusing, by the second pulse, of the
single-quantum line intensity (I ' '(t, ) ) located in the first diagonal line above the principal diagonal of p (t, ). The
2I maximum echo amplitudes,

Ey (ti T2 t3 T4 T2) (Iy (ti ) )0 (t3 T4 T2) (23)
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must be computed independently. Then, adding the re-
sult together yields the total amplitude of all the ~4=~2
echoes. In other words, for the spin I=

—,
' system, we

have to apply Eq. (7) once and Eq. (21) nine times.
Figure 3 represents the functions E~ ' (t„r2, t3 74

=rz) for the four half-integer quadrupole spins I =
—,', —'„

—'„and —', versus the second-pulse flip angle coRFt3. The
first-pulse fiip angle is coR„ti =m/2. The excitation of the
spin system is supposed to be nonselective
(co&/coR„« 1)," and it is also called the hard-pulse exci-
tation condition. From a theoretical point of view, the
e8'ect to the first-order quadrupole interaction can be
neglected during the pulses. The spin dynamics during
the pulses can be described simply with the Wigner rota-
tion matrices. ' The graphs of the total ~4=~2 Hahn
echo amplitudes for these four spins are shown in Fig. 4.
The amplitude of the central-transition echo reaches a

0.4
-- l=3/2

0.2

0.3

CU

0.15-
)I

0

0.2
I

LLI

0.1

0.16

0.08-

x/2

Second pulse flip angle coRFt3

FIG. 3. Graphs of the ~4=~2 Hahn echo amplitudes in the
hard-pulse excitation condition (e&/coR„(&1) vs the second-
pulse Qlp angle coRFt3. ( }: ( —2 2 ) echo; ( ———):

2 2 and ( 2 2 echoes; ( ~ ~ '
2

( ——~——) echoes ( —- ——~ ): ( —~—) and ( ——~——)—3 5 7 7 5
2 2 2 2 2 2

echoes; and ( —- ~ —~ ~ —~ ~ ): ( —
2 ) and ( —2

—
2 ) echoes. The

first-pulse flip angle coRFt &
is ~/2.

II

CU

E
I

LU

0 4.

0.2

Second pulse flip angle mRFt3

maximum if the first- and the second-pulse Hip angles are
equal to m /2 and m., respectively. This is the well-known

16t90o-7 -t 180 o 27 pulse sequence, t90 being the pulse dura-
tion defined by coRFt90. =n/2. On the other hand, the
detection of all the ~4 =~2 Hahn echoes requires a
second-pulse fiip angle smaller than m/2, corresponding
to the first maximum of the graphs in Fig. 4. The graphs
in Figs. 3 and 4 are exactly those reported by Mehring
and Kanert. ' These results prove the correctness of
our numerical procedure. These graphs are characteris-
tic of a sinall co&/coRF ratio. For example, consider the
case of I=

—,': The maximum echo amplitude of the cen-
tral transition goes through three maxima for
0& coRFt3 & m, those of the ( —,'~—,

'
) and ( ——,'~—

—,
'

) satel-
lite transitions have two maxima, whereas those of the
( —',~—,

' ) and ( —
—,'~—

—,
'

) satellite transitions have only one
maximum. As a result, the study of the ~4=~& Hahn
echo amplitudes versus the second-pulse Rip angle allows
us to detect the presence of a small quadrupole coupling
co& generated by defects in a crystal. ' In contrast, the
study of the central-line intensity obtained with a one-
pulse sequence versus the pulse fiip angle (see Fig. 5) is
inefficient for detecting the presence of a small quadru-
pole coupling if the absorption lines are not resolved.

As the hard-pulse excitation condition is not always
fulfilled, we extend the investigation to the soft-pulse
case, that is, the co&/coRF ratio can take any value rang-
ing from 0 to 50 or more. Now we deal with the ~4=~2
echo of the central transition acquired with two soft
pulses. From a theoretical point of view, the first-order
quadrupole interaction must be taken into account dur-
ing the two pulses. Therefore, this interaction is present
throughout the experiment, as shown in Fig. 2. We do
not study the echo amplitudes of the satellite transitions,
which decrease towards zero when the co&/coRF ratio in-
creases; furthermore, they are not always observed in a
powdered sample. As mentioned above, see Eq. (22),
E '~ '~ (t„r~, t3, r~=rz) is the product of two func-
tions, which can be analyzed separately.

Figure 5 represents the function (I» ' ' (t i ) ), which
is related to the central-line intensity generated by the
first pulse, versus the first-pulse Rip angle cuRFt1, for the
four half-integer quadrupole spins and for several
~&/~RF ratios. The well-known results are that the first

FIG. 4. Graphs of the total ~4=~2 Hahn echo amplitudes of
Fig. 3 vs the second-pulse flip angle ~RFt3. ( ): I=—'„.
( ———): I=—(. ~ ): I=—and ( ——.—.): I= —.2' 27 2'
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FIG. 6. Graphs of the function %" ' (t3,~4=~2) vs the
s«ond-pulse flip angl~ ~„pt„ for I= —,', —,', —,', and —,'. The num-

bers correspond to co&/coRF ratios.

maximum of the line intensity and the associated pulse
flip angle decrease when the co&/coR„ratio increases, but
both reach limiting values that are 1/(I + —,

'
) of those ob-

tained with the hard-pulse excitation condition. The
dependence of these line intensities on the pulse Hip angle
is more or less sinusoidal. When the pulse Hip angle is
stnall, the line intensity (I'~ ' '~ (t, ) ) depends linearly
on this angle but becomes independent of the

co&
/coR„ra-

tio. Therefore, with a powdered sample, which presents a
distribution of co&, a small pulse Hip angle must be ap-
plied in order to get rid of the effect of the first-order
quadrupole interaction on the line intensity.

Figure 6 represents the functions 4' ' (t3, r&=wz)
versus the second-pulse Hip angle coRFt3, for the four
half-integer quadrupole spins and for several co&/coR„ra-
tios. The graphs of the spins I=—', and —,

' are exactly
those obtained previously by us using analytical expres-
sions. ' These two numerical results support, once
more, the validity of our procedure. The graphs of the
spins I=—,

' and —,
' are new results. All of the functions

(t3, r~=~z) are negative. In fact, alternating the

phase of the second pulse does not change the sign of
these functions. ' Two facts have to be noted: (i) The
dependence of 4'~ ' (t3,~4=hz) on the second-pulse
Hip angle presents more extrema than does the function
(I'~ '~ (t, ) ) except for high co&/co„„ratios; see Fig. 4.
(ii) When the second-pulse Hip angle is small, this func-
tion also becomes independent of the co&/coR„ratio. In
fact, it depends on the pulse Hip angle quadratically.
When the co&/coR„ratio is larger than 10, mainly the
echo of the centra1 transition is detected. Figures 5 and 6
show that the echo amplitude is at a peak if the first- and
the second-pulse Hip angles are equal to t90 /(I +—,

' ) and

2t9o. /(I+ —, ), respectively. These excitation conditions
are the quadrupole generalization of the Hahn echo se-

quence applied to the central transition, valid for a strong
co&/coR„ratio. ' With a powdered sample, to get rid of
the e8'ect of the first-order quadrupole interaction on the
central-transition echo amplitude, the two pulse Rip an-

gles must be small. Moreover, as the interpulse delay ~2

is in the same order of magnitude as the duration TF,D,
the spin-echo relaxation time T2E must be determined in
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order to correct the experimental echo amplitude for
quantitative results.

So far, the numerical procedure has concerned single
crystals where the important parameter is the quadrupole
coupling co&. In practice, the sample is in powder form.
As a result, to apply this procedure, the powder pattern
of co&, which depends on the quadrupole coupling con-
stant and the asymmetry parameter, has to be used.

IV. CONCLUSIONS

A numerical procedure for the Hahn echoes of half-
integer quadrupole spins in solids has been derived from
a detailed analysis of the evolution of the density opera-

tor. The presence of the heteronuclear magnetic-dipole
interaction QI, between the two pulses and in the detec-
tion period is required to predict the echoes for the cen-
tral transition. As this interaction has been neglected
during the pulses, its e6'ect on the echo amplitudes has
not been predicted. However, there is no difhculty in tak-
ing into account this interaction throughout the experi-
ment in the numerical procedure. In this case, the
analysis of the Hahn echo amplitude as a function of the
second-pulse Qip angle should allow us to determine the
quadrupole coupling co and the heteroatom distances via
the value of P in a single crystal, or the quadrupole cou-
pling constant e qQ/A, the symmetry parameter g and
the heteroatom distances in a powdered sample.
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