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Nonlinear transport of polarons
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A method is presented to calculate the nonlinear mobility of a Frohlich polaron in high electric fields
for arbitrary strength of the electron-phonon coupling. It is based on an eikonal expansion of the exact
Feynman influence functional for the nonequilibrium Wigner distribution function. The method be-
comes exact both in linear response and for large transport velocities. The nonlinear mobility is ob-
tained from a momentum balance equation containing a systematic frictional force and the field-
dependent fluctuations due to the eliminated phonon degrees of freedom. For weak coupling we recover
the standard results of Stratton and Conwell. For strong coupling, however, the current-voltage charac-
teristics are quite difFerent from those obtained by Thornber and Feynman. Our results are in good
agreement with measurements of high-field transport in InSb and AgCl.

I. INTRODUCTION

The nonlinear transport of electrons in polar semicon-
ductors or ionic crystals is a subject of long-standing in-
terest. ' The basic model to describe the dominant pho-
non scattering in an otherwise perfect lattice is due to
Frohlich. There an electron couples to the linear dis-
placement induced by longitudinal optical phonons. In
spite of the single-particle nature of this model, even the
equilibrium problem cannot be solved exactly unless the
coupling is treated in second-order perturbation theory.
Therefore a major breakthrough was the Feynman path-
integral formulation. It allowed one to eliminate the
phonon degrees of freedom exactly for arbitrary cou-
pling, leading to an effective single particle with a retard-
ed self-interaction. For equilibrium properties like the
ground-state energy or the effective mass, this method
proved to be extremely powerful. Indeed, while the exact
path integral is not soluble, a simple variational ansatz in
which the electron couples to an effective single oscillator
turned out to give excellent results for arbitrary values of
the coupling strength. In a nonequilibrium steady state,
however, which occurs in a transport situation with a
finite electric field, there is no variational principle allow-
ing one to determine the parameters of the effective oscil-
lator model. As a result, Feynman et al. and Thornber
and Feynman in their treatment of linear and nonlinear
polaron transport were forced to assume that these pa-
rameters retain their equilibrium values even in the pres-
ence of a finite external field, at least in the reference
frame moving with the electron on average. Clearly, such
an assumption is dificult to justify. The aim of our
present work is therefore to develop a method which does
not rely on applying equihbrium properties in a transport
situation. It is essentially based on the eikonal method in
scattering theory where the exact propagators are evalu-
ated at a path moving with a definite drift velocity.
Specifically a Gaussian expansion around a given average

motion of the center-of-mass coordinate allows one to
evaluate the exact collision term of the quantum-
mechanical Wigner distribution in a steady state. As ex-
pected, this method becomes exact for large transport ve-
locities. In turns out, however, that it is also correct in
the linear response regime at least for small coupling.
Thus we expect that our approximation is reliable for ar-
bitrary fields. This is supported by the fact that experi-
mental data on the nonlinear mobility in InSb and AgC1
are in good agreement with our results.

The paper is organized as follows: In Sec. II we use the
Feynrnan-Vernon inhuence functional to derive a for-
mally exact equation of motion for the time-dependent
Wigner distribution of an electron coupled to optical
phonons within the Frohlich model. The associated
momentum balance in a steady state requires the calcula-
tion of a complicated double path integral. Using an
eikonal approximation, the problem is reduced to the
evaluation of conventional integrals. It is shown explicit-
ly that the asymptotic steady state is independent of the
precise initial condition. In Sec. III the momentum bal-
ance is first evaluated analytically for weak coupling.
There it turns out that our results coincide with those of
Stratton and Conwell, which are generalized to the case
of a finite Brillouin zone. Measurements of the nonlinear
mobility in the weakly polar semiconductor InSb cover-
ing more than two orders of magnitude are shown to be
in very good agreement with our results. In the strong-
coupling case, the implicit relation between current and
field is determined nurner'ically. The results deviate
strongly from those obtained by Thornber and Feynman.
In particular, the current-voltage characteristics are
highly nonlinear at the threshold for single-phonon emis-
sion, which is determined by the bare mass even for large
coupling. Qualitative agreement is obtained with mea-
surements on the high-field mobility in AgC1. Section IV
contains a brief discussion of our results and their rela-
tion to previous and alternative treatments. Finally, a

0163-1829/95/52(13)/9406(12)/$06. 00 52 1995 The American Physical Society



52 NONLINEAR TRANSPORT OF POLARONS 9407

discussion of the well-known —,'kz T problem in the linear

mobility is given in the Appendix.
Here V~ 00 is the volume, q the electron coordinate, and

(4)

II. INFLUENCE FUNCTIONAL THEORY

A. General formalism

We start from the standard Frohlich model in which a
single electron with band mass M is coupled to longitudi-
nal optical phonons of a harmonic lattice. Taking the
phonon frequency coo to be independent of momentum k,
the unperturbed Hamiltonian is

o 2~ +~Piog~k &I

HI = V ' gAk exp(ik q )xk .
k

(3)

with the usual phonon creation and annihilation opera-
tors Qk and ak. The coupling to the linear dimensionless
displacement,

Xk =Qk+Q

associated with the ionic polarizability, leads to an in-
teraction of the form

the coupling constant. The parameter k is related to the
standard Frohlich coupling constant

8 1 1 Ma (5)
iii e ~ ep 2AQ)p

by

A, = —(4ma ) ficop
2Mmo

' 1/4

Since we are interested in nonequilibrium properties and
moreover want to eliminate the phonons, we introduce
the reduced time-dependent matrix p(t) =Tr~p«, (t) as a
trace over the bath degrees of freedom. As has been
shown by Feynman and Vernon, its position space ma-
trix elements can be calculated-from their initial value

&qplp(0)lqp & via

In the presence of a uniform and static electric field
E =F/e (e )0), the total Hamiltonian is

H =Ho+H~ —F q .

&qlp(r)lq'&= J d'qpd'qp&qplp(0)lqtI &~ q(, q', r;q pq o),

provided that the total density matrix p«, (0)=p(0)p~(0) factorizes initially. The associated propagator

J= D q, D q'*exp —S q
—S q' "F q, q'

q& qo

is written as a double path integral with the classical action

(10)

of the uncoupled electron. Here D q is the usual Feynman differential for discretized paths,

M
D q= lim

2Miht

3N/2N

+d qj, ht=t/N .
j=1

Moreover, the elimination of the phonons leads to a nontrivial influence functional F [q, q ], which couples the paths

q(t, ) and q'(ti ). Defining an expectation value for the phonon degrees of freedom with their initial equilibrium density

matrix as &. . . &
=

Trodi [.. .pz(0) ], the influence functional can quite generally be written as

F [q,q']= & U-, U-& . (12)

Here U- is the unitary time evolution operator for the Hamiltonian Hz+Hl [q ] in which a given electron path q(ti )

acts as a c-number source for the phonon system Mz. Introducing the influence phase P byF [q,q'] =exp {iP[q, q']] and

the equilibrium correlation function of the phonon-induced displacements,

PRCOpS(t)= &xk(t)x k & =coth coscopt i sincopr— (13)

the inhuence phase arising from the driven oscillator system is known exactly as

(14)
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It is convenient to introduce the center-of-mass and relative coordinates

x =(q+q')/2, y =q —q',
and define a function

(x+y/2lp(t)lx y/2) =p(x,y, t) .

Its Fourier transform with respect to the off-diagonal elements y,
3

f(x,p, t)= f p(x, y, t)e
(2rrA)

(17)

is then precisely the Wigner distribution function which generalizes the classical phase space distribution to a quantum
system. Similarly to the classical case, this function obeys an equation of motion of the form '

8, + r)„-+F8- f(x,p, t)= [8,f (x,p, t)]„„. (18)

This may be derived by considering the double propagator J for an infinitesimal time interval between t and t +dt, simi-
lar to the derivation of the Schrodinger equation from the standard path-integral representation of the single propaga-
tor. Formally, (18) has the form of a one-particle Boltzmann equation; however, the collision term

[B,f ]„»=f e '~ ~~"f'd xod3yop(xo, yo)

X f D x f D y exp —f dt, (llfx y+F y)+iP[x,y] r),ip[x, .y)
Xp Po 0

(19)

is extremely complicated, depending explicitly on the initial distribution and all times between 0 and t. It can be shown
that the standard Boltzmann collision term is obtained from (19) by evaluating the factor B,ig at ballistic paths
x(t)=xo+tp/M. '

In principle, Eq. (18) provides a complete description of the nonequilibrium dynamics of a single electron where the
phonons have been eliminated exactly for arbitrary coupling and which still contains the full quantum-mechanical
behavior. For the case of high-field dc transport, it is sufticient to consider time-independent steady-state solutions.
Multiplying Eq. (18) with p and integrating, we obtain an exact momentum balance condition

F= Jd'x d—p p lim [B,f(x,p, t)]„», (20)
f~oo

which is the basis for determining the nonlinear current-voltage characteristic. Clearly, in order to obtain explicit re-
sults, we need to evaluate the double path integral in (19).To this end it is convenient to split the influence phase P into
real and imaginary parts via

i/=i/, —
p~ .

Then, expressing everything in terms of x and y, we obtain from (14)

(21)

and

4 i &i d3k, k y(t, ) k y(t, )
y, =, f dt, f dt's f 3 ~Ak~ sink[x(t, )

—x(tz)]sin cos ImS(t, —t~)fi' o o (2~)' 2 2
(22)

4 i 'i d'k, - k y(t&) k y(t&)
Pz= f dt, J dt's J ~Ak~ cosk[x(t&) —x(tz)] sin sin ReS(t, tz) . —

fi' o o (2~)' 2 2
(23)

Because of the nonlinear trigonometric functions, the path integrals D x and D y cannot be calculated exactly. There-
fore, in the following, we will discuss two simple approximations which allow one to determine the nonlinear current-
voltage characteristic explicitly for arbitrary fields and coupling strength.

B.Classical limit

As has been shown in the context of quantum dissipation, " the limit in which the electron may be treated classically
is obtained by expanding the influence phase P up to quadratic order in the off-diagonal elements y of the density ma-
trix, which are formally of order A. The resulting real and imaginary parts can then be written as

P)'= ——f dt, y(t, )F~[x,t, ] (24)
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and

f dr, y (r, )f dr, ( g~[x, t, ]p&[x, r2] )ys(r2)
o o

(25)

(a and P are summed over). Here

Fs[x, ti]= ——f dt2 f 3 ~Ak~ k sink[x(ti) —x(t2)]lmS(t, t2—) (26)

is the systematic frictional force which a classical electron "feels" as a result of its coupling to the lattice. The contribu-
tion P2 in turn may be interpreted as the effect of an associated fluctuating force g[x, t]. To see this, the factor
exp( —P2) is written as an average over a Gaussian stochastic process, "'

e '= exp — dt j x, t& t&

with a fluctuating force g which has zero average and variance

d k
(g [x,t, ]pi[xi, tz])= f ~A, „~ k k&cosk[x(t, ) —x(t2)]ReS(t, t2) . —

(2n. )

(27)

(2&)

Note that both Fs and g are functionals of the diagonal
path x (t, ). Since the off-diagonal element y now occurs
only linearly [use (27)], the path integral D y can easily
be evaluated. Indeed, integrating the kinetic energy term

~ ~

Mx.y by parts, its discretized version factorizes and leads
to a product of 5 functions which require that x(t) obey
the classical generalized Langevin equation

Mx F+Fs [x,—t]=g'[x, t] . (29)

Obviously, the frictional force is retarded and nonlinear
in the velocity. Moreover, the Gaussian noise term does
not have a white spectrum as is usually assumed (it is not
even stationary in general) and in particular is also state
dependent. It should also be pointed out that equations
of the type (29) are sometimes called quasiclassicai, "be-
cause the bath is still treated quantum mechanically and
thus, e.g., the noise g[x, t] remains finite at T =0. Never-
theless, (29) does not contain quantum effects of the parti-
cle, like interference or tunneling, and thus is really an
equation of motion for a classical particle in a quantum-
mechanical environment.

In the context of high-field transport, equations of this
type have previously been studied by several authors. ' '
In particular, it has been realized that it is important to
include the velocity Auctuations 5x in an expansion
around the average path (,x (t) ) =xo+vt Indeed, if.fluc-
tuations are neglected, the associated frictional force

Fz [x =Ut, t ~ ao ]

=Fbi(v)

d k=—f "dt f ~Ak~ k sink. v sincoot,
(2m)'

(30)

and therefore the current-voltage relation obtained from
the stationary averaged Langevin equation F=Fs ( v ) will
be completely independent of temperature. Moreover, for
the Frohlich model it turns out that

A, cooF (U) = ln(v/V)8(v —V).e
2MU

U
(31)

is only nonzero if the velocity is larger than 8=coo/'k
where k,„)~k~ is the maximum k vector in the Bril-
louin zone. This is due to the fact that a classical electron
with fixed velocity v interacts with the lattice only if the
Landau condition k v =coo is obeyed, which is impossible
to fulfill for ~k~ &k,„ if v &K Quantum mechanically,
the threshold is at Rcoo=Mv /2; see below. In reality, of
course, the velocity fluctuates, leading to a nonzero fric-
tional force even for small v and thus a finite mobility
p= /UF in the limit U, F~0.

The generalized Langevin equation (29) is only valid
classically; however, it turns out that for large velocities
it becomes exact quite generally. The reason for this may
be seen from the general result (19) for the collision term.
In fact, because of the factor exp[(i/i}i)F fdt, y(ti )], the
double path integral for large F may be calculated in a
stationary-phase approximation around y =0 since the
main contribution comes from paths in which Jdtiy is

near zero. Thus quantum effects become irrelevant for
large fields or transport velocities. It should be pointed
out, however, that in this regime the Frohlich model is
strictly speaking, insuScient since the frictional force
F~(u) due to phonon scattering decreases with increasing
velocity. As was already pointed out by Thornber and
Feynman, this prevents one from determining a unique
inverse u (F) from the calculated F (U) and leads to a max-
imurn field F, beyond which no steady state is possible.
Moreover, the regime U )v„where F(U) decreases with
v, is unstable with respect to an unlimited increase in ve-
locity. This problem can only be avoided if one includes
umklapp processes or other additional sources of scatter-
ing like impact ionization at high fields. ' It is interest-
ing to see how the instability for v )v, shows up in the
fluctuations around the steady state. From the explicit
solution of a simple model, it maybe shown' that a gen-
eralized Langevin equation of the form (29) with a fric-
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tional force which has negative slope for u & v, leads to
difFusive fluctuations.

terms of generalized Langevin equations and thus is able
to cover both the low- and high-field regimes.

&(z (t) —vt) & =2DII(v)t (32) C. Eikonal expansion

and

(33)

around the average drift with anisotropic and state-
dependent diffusion constants D~~(v)AD~(v) (we have tak-
en F and thus v in the z direction). The instability of the
motion for v )v, is revealed in the longitudinal diiT'usion

constant Dl, which diverges like (v, —v) as v ap-
proaches u, from below. ' In the following we will devel-

op a method to treat the nonlinear polaron transport
problem which goes beyond the classical description in

I

5x(t) =x(t) —(xo+vt), (34)

neglecting terms of order 5xy . By contrast, the time
derivative of the exact inhuence phase, which may be
written as

Similar to the corresponding approximation in scatter-
ing theory, the basic idea is that the average motion of
the center of mass is characterized by a fixed velocity u.
It is therefore natural to expand the inhuence phase in
the exponent of the double path integral (19) for the exact
collision term to linear order in the fluctuations,

B,i/= dt' ~A, I, . ~
sin e'" ( " ') cos ImS(t —t') —sin ReS(t t')—k'.y(t')

(2~)' 2

+ [k'~ —k'I,
is kept in its full generality. Using a partial integration of the kinetic energy term in the form

~ ~

dt, x.y =(x.y xo.yo) — —dt, x y

(35)

and

f d x expi y, +k' x=M. '3
2M

~
Rk'

6 y, +

it is straightforward to show that the resulting momentum balance (20) can be written as

d k' d3F= fd —xod yap(xoyo)f dt'f 3~XI ~ fd ppf 3e

i [(M/A)u(y —y&)+ k'. v(, t —t')] . g '
y y 3X e sin D y A jyj5 y, +

3'p

X f D'5x exp ——'M f dt, z[y] 5x(t, ) ..+ Ik'~ —k'] .
0

(36)

Here we have defined functionals of the off-diagonal path y(t& ) by

(37)A [y]=exp Fdt&y(t, )+—iP[x =vt, y ] cos ImS(t —t') —sin ReS(t t')—k' y(t'), . k' y(t')
0 2 2

and

Ak'
z[y]=y(t, )+ 5(t, —t')+y[y], (38)

with

4 d3k ~, k.y(t, ) k y(t2)
y[y ]=—

~AI, ~
k ' dt2 cosk v(t& —tz) sin cos ImS(t& —t2)

(2n. )' 0 2 2

k y(t2 ) k.y(t,.)+ dt2 cosk. v(t, t2) sin cos Im—S(t, t2) ' . —
1

(39)
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Obviously, the path integral D 5x is now trivial, giving a
product of 5 functions, ff+:,'5lz ), of the discretized
variables z . This in turn fixes the off-diagonal path y(t, ),
which must obey the equation of motion z [y ]=0, i.e.,

y(t, )+ 5(t, t')+—y[y ]=0 .
haik'

(40)

In addition, the integrals over p and the final value
y =y(t) may be expressed in the form

3

f d3 f y —p.y/sG( )
— .g y

(2m%') By y =o

From

.y i[(M/s)v(y —y&)+k' v(t —t )]'
sin e + k~ —k

2

this gives a contribution

A'k' sin[k'. u(t t') M—U yo/—fi],
while all the remaining quantities may be evaluated at
y =0. Therefore, in order to calculate the collision term
explicitly, we need to solve the equation of motion (40)
with final conditions y(t) =0 and y, = —A'k'/M. More-
over, it is necessary to evaluate the functional deter-
minant of the transformation from the variables y,
which appear in D y to the z . However, because of the
nonlinearity of y[y], this is not possible in general. To

I

proceed, two further approximations beyond the eikonal
expansion have to be made

(a) Take

—F t&y t, +i
&

x=vty =0 (42)

in A [y]. In order to justify approximation (b), we ex-
pand P, [x =Ut, y ] to linear order in y, which gives
iP, = (i/h—)Fz(v) Jdt, y(t, ), with F~(u) the frictional
force defined in (30). Since this will cancel the external
force F on average, assumption (b) is valid at least for
large velocities. As a result, there is no explicit depen-
dence of the collision term on F and thus the field only
enters implicitly through v. It is important to point out
that the expansion in y which is valid for large u and is
equivalent to the classical limit is only made in the ex-
ponent. By contrast, no approximation is made in the
B,ig term, which is indeed crucial for obtaining the
correct quantum-mechanical behavior in the low-field re-
gime at least for small coupling. To see the origin of the
approximation (a), we assume that y(t, ) is slowly varying

in time. Then, with y(t, ) y(t2—)/(ti —t2)=y, we find

F[y j= —)'y

with y =y(U) the collision rate calculated in second-order
perturbation theory.

(b) Assume

d ky[y]= —f 3 ~Ak~ k cosk y(t, )f dr[sink[u+y(t, )/2]r —sink[U —y(ti)/2]r] ImS(r)/M . (43)

Working again to lowest order in y, we may replace cosk y (t, ) by 1. We then obtain

My[y ]=Fs(U —y/2) F~(u +y/2—) .

Using Eq. (31), this indeed reduces to (41), with

A, coo
y(U) = ln(U/V) e(v —

U ),
2MMu

(44)

(45)

provided that y « v. As will be shown below, this effective damping constant y for large velocities is identical with that
obtained from a second-order perturbation calculation of the momentum balance. While (45) vanishes for v (U, we ex-
pect that fluctuations in the velocity, which are negligible for large u, will lead to a finite damping for all velocities.
Therefore we use the approximation (41) quite generally, but take y(U) =F' '(v)/Mv as the corresponding result ob-
tained from a golden rule calculation; see (58) below. For large u the resulting y then coincides with (45).

With this approximation (40) can be solved explicitly using the ansatz y(t, )=(haik'/M)f (r r, ). The co—rresponding
equation for f (s) =f (t t, ), —

f(s)+yf(s)+5(s —r) =0, r=(t t'), —

with initial conditions f (0)=0 and f(0)= 1, is solved by

(46)

f (s)=—[1—e r'] ——g(s —r)[1—e r' '] .
y y

Moreover, the functional determinant of the transformation y ~z is given by f,(t) such that
~'

Ak'f D'y A[y]5 y, + f D'5x exp M f dr, z[y].—5x—(t, )
Po

(47)

Ak'

27Th
[f.(r)J '5 y, + ~ A [y ], (48)
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where

A [y]= cos ImS(t t'—) —sin ReS(t t—') e
k .y(t ) . k .y(t ) 4&—(~=»R

2 2
(49)

is now evaluated at the trajectory y (t') defined by (47). Using yo = y,f,—(t), the 5 function may be expressed as

I:f,(t)] '~ y + =& yo-Ak' lk'
(50)

Now for any yAO the fact that f„(t) vanishes exponentially with t implies that yo(t ~~ ) =0. Because of the normali-
zation

f d xop(xo, yo=O)=l, (51)

which holds for an arbitrary initial density matrix, we have thus shown explicitly that the asymptotic value of the col-
lision term is independent of the precise initial condition as expected on physical grounds. We mention that for this ar-
gument it is important to keep the coupling finite also in the influence phase iP appearing in the exponent of (19).
Indeed, in a naive perturbation theory in A, to second order, which neglects i/ because the factor B,i/ is already propor-
tional to A, , the initial condition will not be forgotten. The limits t —+ ~ and X~O are therefore not interchangeable, a
problem which will be discussed in more detail in the Appendix.

The final equation for the momentum balance in the steady state then reads

F= ——f dr f IAk I
k'sin(k' vr)e ' '

cos ImS(r) —sin ReS(r)2 ~ d'k' &-, . -, e, (X=Ut—7) k' y(t —r) k' y(t —r)
(2~)' 2 2

(52)

For the numerical calculation, it is convenient to introduce dimensionless variables K =k/k„with ko =(™o/&)
z =&or, and y =y/~o. Moreover, we define a dimensionless velocity

U
U

v
(53)

with v =(2g~ /~)'~~ the threshold velocity, where the kinetic energy of a free electron is equal to the energy of an op-
tical phonon. Consistent with our expansion to lowest order in y of the influence phase in the exponent of (19), we
evaluate pz[x =vt, y ] approximately by using sink. y /2=k y/2 in (23). Performing two time and one angular integra-
tion, we then obtain, in dimensionless units,

4a, , ~&~o
pz[x =vt, y]= K' coth dx[(1 —x )(1—x' )+2x x' ]2 —1

sin (2xKvo —1)z/2
x dE E'

0 (2xKvo —1) (2xKvo —1) +y
(54)

~he~e A=k, „/ko. As pointed out above, Pz describes the effect of the fluctuating force due the eliminated phonons.
Obviously, this is strongly dependent on the average velocity and vanishes in the limit U0 )&1.Finally, we introduce a
dimensionless external force F=F/Acooko. Then in the limit t~ ~ the momentum balance equation (52) can be ex-
pressed as

A, , 1F=—a z E'E' x'x'sin 2x'E''zv0 exp —
z

7T 0 0 —1

PRcoo
X cos[K' d (z) ] sinz+sin[K' d (z) ] coth

2
cosz (55)

with d(z)=(1 —e r )/y and pz from (55). This is our final result for the nonlinear relation between field and velocity,
which will be discussed in detail in the following section.

III. RESULTS

A. Weak coupling

In the limit where the interaction may be treated by second-order perturbation theory, we may neglect Pz-a and re-
place d (z) by z, since the prefactor in (55) is already of order a. In terms of the original units, the momentum balance
can then be written as
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coscvo(r i—13k/2)

(2~)3 " —~ sinhPficoo/2

Ak
expi —k.v

2M (56)

As was noted by Thornber and Feynman, this result is identical with that obtained from a golden rule calculation,

d kF' '=2m. iAk i k[N„h5(e- zk e-—fico—o)+(N „+1)5(e ~-„e—-+%coo)] (57)

for the loss of momentum of an electron with p =Mv due to phonon absorption and emission. Here
N h =(exp''cvo —1) is the equilibrium phonon occupation number at temperature T, consistent with our assumption
that the lattice remains in equilibrium during the transport process. The evaluation of the integrals in (57) for arbitrary
v in the case of a finite Brillouin zone ~k

~
& k,„ is somewhat tedious' and will not be presented here. Assuming that

A =k,„/ko & 1, the resulting dimensionless relation between velocity and force may be written in the form

F' '(u)=a[A (u)N h+E(v)(N h+1)] .

The associated absorption term A (v) is given by

(58)

Vo
Quo+1— 1 . . & A —1

2 arcsinh(vo) if vo ~
Vo 2A

A(v)= '
2

2 2
2 [A —(uo —+un+1) ]— [lnA+arcsinh(vo)] if uo &) A —1

4vo 2V 2A

(59)

while the emission coefficient E (u) reads

A+1
uo —1+ arccosh(uo) if 1~uo&

Uo Uo 2A

) A+1
z [A —(uo —Qvo —1) ]+ [lnA+arccosh(vo)] if vo &

2A

(60)

Clearly, E(u)%0 only if the velocity is larger than the
threshold v, for single-phonon emission. As may be seen
from Fig. 1, where the analytical result (58) is plotted,
this threshold leads to a strong increase in the field neces-
sary to produce steady-state velocities larger than v, . In
addition, we find that F' '(u) exhibits a discontinuous

0.04

0.03

F 0.02

0.01

0.5 1.0
Vp

1.5 2.0 2.5

FIG. 1. Dimensionless field I' vs normalized velocity
vo=v/v, obtained from the second-order momentum balance
(58) at different temperatures pkco0=0. 5 (solid line), piricoo= 1

(dashed line), and Ph'coo= 10 (dotted line). The dimensionless
cutoff is A=4.

derivative at vo=(A —1)/2A and un=(A +1)/2A. The
physical origin of these discontinuities is related to the
fact that for uo & (A —1)/2A or uo & (A + 1)/2A energy
conservation restricts the angle between v and the pho-
non momentum k to a finite range. In particular, for
vo &) 1 we need k U ~0; i.e., phonons can be absorbed or
emitted only transversely to the direction of the moving
electron. The associated vanishing of the phase space
for possible interactions with the lattice leads to
F' '(u »u, )~0 and thus is the basic origin for the insta-
bility phenomenon, i.e., c),F(v)(0 for v &u, . In fact,
this behavior is generic for general electron-phonon in-
teractions of the form (3). For velocities v »u„we have
E = —2 =in(2uo)/2uo and thus the temperature-
dependent factors N h drop out, giving
F' '(u »u, )=My(u)v with y(v) as in (45). It is impor-
tant to point out that for this result it is necessary to keep
the maximum phonon wave vector k,„ finite. Indeed, if
k,„were set equal to infinity, as is usually done, ' one
obtains E = A = 1 for u »u„' i.e., F' '(u »v, ) would ap-
proach the finite and temperature-dependent constant
a cothPtrtcvo/2.

The weak-coupling expression (57) is valid in a strict
one-particle description for a single electron. In practice,
of course, there is a finite electron density with a distribu-
tion of velocities v. Assuming that the gas of carriers is
nondegenerate, this effect may be incorporated in the
one-particle description by taking an average over a
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Maxwell distribution with mean drift ve
'

ylocit u. Starting
from the general expression (14) for e -pr the one- article
inhuence p ase y, is

'
h y th is equivalent to the replacement

—k t /2PMS(t)~S(t)e (61)

Ak 2 pal

2M PA 4

is then identical with the weak-coupling result obtained
~Ve note that for arbitrary

terms in the eneral result (19). Moreover, a ydeca of the
phonon correlation function S(t) would also arise intrin-
sically from a ni e p

~ ~ ~

however, suc e ec s ah ff t are neglected since the lattice is as-
sumed to be perfectly harmonic.

In the following we will show that the result 62 is in
d reement with high-field transport experi-

ments in InSb performed many years ago. ' n
kl olar semiconductor with Frohlich constantwea y po ar

a=0.022, optical phonon energy Scop=0. 02 e
M =0.0138m . ' The associated

threshold velocity is thus v, =7.57X10 cm/sec, w i e
F =A'ru k =2.09X10 eV/cm is the characteristic fie d.

f rrned at a temperatureBoth experiments were per. orrned a
T=77 K, i.e., g cop=, g9A' =3.4S. The experimental data are
shown in ig. inF' 2

'
dimensionless units F=

o versus
theuo = u /u . Here the small dots which go beyond t euo —u /u, .

Xe —ik.u(~+i'/2)

~ ~

h honon correlation function. Shiftingfor t e p on
r iPfi/—2 +r, t—he resulting averaged golden ru pn rule ex res-
sion

Gj k
(2 )'

X dv
COSCOO+

sinhPA'coo/ 2

threshold up = 1 are eth results of Glicksman and
nd Be r' atSteele, w ie oh'1 those of Fujisada, Kataoka, and Beer at

two di eren ca'u t rrier concentrations are eno e
open or closed dots, respectively. It is evident t a
theoretical result (62), which is the solid line in Fig. 2,

d d scription of these experiments over
more than two or ers o md of magnitude in field or veloci y.

iricall the linear response regime w ereereF u —vis
valid up to about u=0. 1u, . It s ou e s
there is no ingfittin procedure involved here since all neces-

ex eriment.t
'

1 parameters are taken from experimen .sary ma eria p
The ood agreement between experiment an
hows that the dominant source for scatte

'

g
'

e goo
rin in InSb ats ows a

hi h fields is indeed optical phonons.ns. For comparison,
h n the strict one-particle result (58) as a

dotted line. It exhibits a very sharp thresho a u = „
ex ression (62). Inwhich is washed out in the averaged exp

h
'

d ted the result obtained for theaddition, we have in ica e
20 '

hlinear mobility using the Kubo formu aa as a straig t
line between ot curve .b th rves. This mobility differs from the

from (62) by a well-known factorone obtained rom
s are stron lyk T/2%co . ' Evidently, the measurements are strong y3 g cop.

in favor o ef the Thornber-Feynman result, w ic i
ix thisobtaine ere. sd h e. As will be shown in the Appendix,

gives indeed the correct mobility in a situation w ere
steady-state distribution is spread over all momenta.

B.Strong coupling

For strong interaction between electrons and optical
phonons, pertur a ionb t' theory is not applicable and thus
th f 11 momentum balance (55) has to be evaluate nu-e u

ose ofmerical y. n or er
'

o1 . I d to compare our results with t o
Thornber and Feynman, we have chosen a= . e re-
sulting dimensionless relation F(u in the vicinity of the
threshold uo= 1 and at Pairs&=5 is shown in Fig. 3 to-

h ith the corresponding Thornber-Feynman result.get er wi
1 the current-voltage characteristic yObvious y, e cu

'vel . It is onlydi eren, off t both quantitatively and qualitative y.
cannot beat unphysically large velocities u &&u, —which ca

1Q -2-
~ ~ ~

~ ~ ~ ~
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1p0
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10-5
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Vp

1p0 1P1
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FIG. 2. Dimensionless-field —velocity rela
'

relation (solid line) ob-
taine rom ind f (62) in comparison with the experimental results on
InSb at 77 K (Refs. 17 and 18). The dashed hne is e s
one-particle result 5 . e u( 8) Th Kubo result (A5) for the linear mo-
bility is indicated by the straight line.

Vp

Flax. 3. Dimensionless-field —ve1ocity rerelation for a=3 and
%co =A=5. The dotted line is the corresponding Thornber-'flcoo

Feynman result.
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seen on the scale of our figure —that both methods give
identical results. In particular, our method predicts a
rather sharp threshold around the bare value v =v„
while in the Thornber-Feynman theory this is strongly
washed out and also shifted to lower velocities. The
reason for this is that Thornber and Feynman have used
the equilibrium effective polaron mass M*, which is con-
siderably larger than M and thus leads to a reduced
threshold velocity v, -M ' . In our present theory
such an effect does not occur. Indeed, we believe that at
velocities of order v, the phonon polarization cloud,
which is the physical origin of the mass enhancement in
equilibrium, is stripped off and the electron's inertia is
essentially that of a bare particle. This conclusion
remains unchanged if we include the averaging via (61),
which increases somewhat the necessary fields for a given
velocity, and, in contrast to the weak coupling case, does
not wash out the threshold as long as Pficoc is much larger
than 1. As a second point, it is striking that the
Thornber-Feynman method predicts maximal fields F, at
low temperatures which are about twice as large as those
obtained here.

A comparison between theory and experiment for sys-
tems with large coupling constants a is dificult since it is
hard to generate free carriers in such systems and to
avoid heating effects in strong fields. Thornber and Feyn-
man have compared their predictions qualitatively with
experiments on A1203where a=2.7. They give an esti-
mate for the maximum field F, which is correct in order
of magnitude; however, because of considerable uncer-
tainties in the parameter values, a quantitative compar-
ison is di%cult. In particular, there are no detailed
velocity-field curves for such systems. We have thus
chosen indirect measurements of the drift velocity of car-
riers in AgC1 which are estimated from the Hall mobility
in weak magnetic fields. ' The experimental results for
the drift velocity (and the photocurrent Q„, open dots)
are shown in Fig. 4. They exhibit a sharp increase in field
around a certain threshold velocity. The horizontal line
in the figure, which is denoted by 2 v

p
is the average ve-

locity expected for the so-called "ideal streaming
motion. " ' This is based on the simple picture that elec-
trons are freely accelerated from v =0 up to v =v, where
they emit one optical phonon and thus are back at v =0.
If the time interval between successive accelerations and
phonon emission is shorter than all other scattering
times, the associated average velocity is just v, /2. Obvi-
ously, this is a highly oversimplified model and indeed
our results show that the actual threshold where F ( v )

starts to increase strongly is near v =v, . Noting that the
velocity scale in Fig. 4 is logarithmic, this is in fact con-
sistent with the experimental data. In any case the mea-
surements show a fiat plateau in v (E) in agreement with
our very steep F(v) relation (see Fig. 3). By contrast, in
the theory of Thornber and Feynrnan, v (F) starts to level
off much below v, and does not exhibit a Hat region. As a
second point, we estimate the characteristic field
Fo =A'cockc, which is about 1.2 X 10 eV/cm. From Fig. 3
the field at the beginning of the sharp rise is approximate-
ly 2X10 F0=240 eV/cm, which also roughly agrees

108
AgCI

106—

I

101 102
E„(V/cm)

103 i04

FIG. 4. Measurements of the drift velocity vs field (solid
dots) and the photocurrent (open dots) in AgCl taken from Ref.
21.

with the measured value (the difference between cr =3 and
the estimated value a=2 for AgC1 as well as that be-
tween pficoc=5 and the much larger experimental value
PA'toe=60 is rather small around v =v„see also Thornber
and Feynman). We therefore believe that the experi-
ments indeed support our results, but clearly a more de-
tailed comparison is required to draw more definite con-
clusions.

IV. DISCUSSION

In this paper we have presented a method to calculate
the nonlinear mobility of polarons with arbitrary strength
of the electron-phonon coupling. Our main objective was
to reexamine the Feynman path-integral formulation for
nonlinear transport, avoiding the application of the equi-
librium variational principle. Our method is based on an
eikonal expansion of the exact collision term of the
Wigner distribution function. For weak coupling our re-
sults coincide with those of Thornber and Feynman.
However, for strong coupling there are large differences,
in particular regarding the value and sharpness of the
threshold velocity v, as well as the magnitude of the max-
imum attainable field F„which allows a steady state with
optical phonon scattering only. Our prediction that the
phonon-induced mass renormalization is no longer
relevant at velocities of order v, is supported by measure-
ments of high-field transport in AgC1.

A crucial feature of our approach is that it includes the
velocity-dependent fluctuations around the average tra-
jectory. Such Auctuations have been discussed widely in
the context of the generalized Langevin equation ap-
proach. ' Indeed, the v-dependent and anisotropic
diffusion constants D(v) and D~(v) introduced in (32)
and (33) are effectively equivalent to an imaginary contri-
bution —iDk to the phonon frequencies. ' The result-
ing "collision broadening" effects lead to a reduction of
the mobility obtained from Eq. (29). ' As was explained
in Sec. IIB, however, the Langevin equation treats the
electron classically. In general, this is valid only for



9416 N. JANSSEN AND W. ZWERGER 52

large fields or velocities. Qualitatively, the classical limit
may also be justified for large coupling a)&1, since
expt —$2[x,y ] J then strongly suppresses the off'diagonal
elements y. " It is difficult, however, to make this argu-
ment more precise. In the present approach, we go
beyond the classical description by keeping the full
quantum-mechanical expression for the time derivative of
the infiuence phase B,i/ in the exact collision term (19).
An alternative quantum treatment of nonlinear polaron
transport was proposed several years ago by Su, Chen,
and Ting. It is based on the Keldysh technique, which
is formally equivalent to the Feynman-Vernon inhuence
functional method. Using a Gaussian approximation for
the velocity fluctuations, they derive an energy balance
equation which leads to F(U) curves in close agreement
with those of Thornber and Feynman. In view of our
present quite different results, this is surprising since the
basic approach to the problem appears to be similar. At
present, we do not understand the precise origin of these
differences. Further investigations and in particular
more detailed comparison with experiments are therefore
necessary.
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APPENDIX

Here we want to discuss the problem of the "correct"
linear mobility p& =lim, ou/F of a Frohlich polaron to
lowest order in the coupling constant o.. We start from
the weak-coupling result (62), which is the drifted
Maxwellian average of the single-particle expression (S6).
Splitting this into an emission and an absorption contri-
bution and taking the momentum cutoff k,„~ao, an ex-
pansion to first order in v gives the inverse linear mobili-
ties as

pkcoo

3 2 sinhPA'coo/2

' 1/2
trito 0

This work was supported by the SFB 345 "Festkorper
weit weg vom Gleichgewicht" at the University in
Gottingen.

' 1/2

p, '(T»TO)=p. '(T»To)= 4, aMcoo
7T p

(A4)

In the following we will concentrate on the low-
temperature regime T« Tp. There it turns out that the
absorption contribution (A3) is identical with the total in-
verse mobility, which is obtained from a strict single-
particle calculation with no averaging. Indeed, in the
linear response limit Do~0, we obtain from (S8) that
F(UO) =—', aN~huo since phonon emission does not contrib-
ute. A similar result is obtained by evaluating the exact
quantum-mechanical Kubo-formula for pI perturbatively
in a, which gives

p
" '=(2aMco~ )ph (AS)

It differs from the single-particle or the averaged absorp-
tion contribution to p by a factor of 3. In the litera-
ture p " ' is usually called p because the identical ex-
pression follows from a relaxation time approximation of
the classical Boltzmann equation. ' Since the Kubo for-
mula gives an exact expression for any linear transport
coefficient, however, we prefer to call it p " '. Evidently,
the Thornber-Feynman and Kubo results (A2) and (AS)
difFer by a factor 3kii T/2fitoo The .reason for this
discrepancy is usually attributed to the problem in which
order the limits A, ~O and t~~ are taken. ' As has
been shown explicitly in Sec. II C, this is in fact a subtle
point since taking limA, ~O+rst, the initial condition will
not be forgotten in principle. In the following it will be
shown that the confiicting results (A2) and (AS) describe
different physical situations. In particular, we will see
that the disagreement between both expressions is due to
the different way in which thermal averaging enters in
the calculation of either the inverse mobility p ' or the
mobility p itself. As a result, phonon emission does not
contribute to p&

" ' as T~0; ' however, it does
contribute —or is even dominant —in the Thornber-
Feynman theory. To see this it is instructive to derive
the result (A2) for the total inverse mobility by calculat-
ing p ' from a force-force correlation function to second
order in A, . ' Introducing the force operator

piitcoo primo
X EC(

2
+sco (A 1)

P, = i V ' g—Akk, exp(ik. q )xk,
k

(A6)

where Ko, (z) are modified Bessel functions. At low tem-
peratures T «Scop/kg = Tp we find that

we have

pt '=lim f dt e "J da(P, (t)P, (t =ilia)),
@~0 0 0

(A7)

p, '(T « To)= ,'PA'co 2a0Mco()N h—, (A2)

while

'(T «T, ) = ', aM~~, „-. (A3)

Obviously, the absorption contribution is negligible com-
pared with the emission term, which therefore determines
the ful/ inverse mobility. By contrast, at high tempera-
tures T && Tp, emission and absorption contribute equally
with

e
—Pp /2M (A8)

Zg

It is then straightforward to show that

with P, (t) the usual Heisenberg time evolution. Since P,
is already of order A, , the expectation value may be calcu-
lated with the uncoupled Hamiltonian Hp ~ The associat-
ed density matrix is therefore

pH~
. 3/2

e p
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3/2

&
—Pp /2M

X[X h5(e- &k
E-—fi—coo)+(Nph+1)5(e- &k

e—-+%coo)] . (A9)

Evaluating this we find that p, '=p, ' at all temperatures. The resulting total inverse mobility is identical with (Al)
(i.e., the +%0 contributions are absent here). It is now evident that the Thornber-Feynman result is obtained by
thermally averaging the inverse mobility p . By contrast, in the Kubo formulation one averages p. As a result, only
absorption contributes to p ""', while both absorption and emission enter in (A9). The absence of emission contribu-
tions in linear response is usually argued to indicate that p ""' is the correct result. ' In practice, however, the actual
nonequilibrium distribution function for a finite density of electrons may lead to a difFerent situation. Indeed, Thornber
and Feynman assume that this is a drifted Maxwellian, which may be established, for instance, by electron-electron
scattering. If this is the case, there is a steady population of electrons with sufBciently large momenta such that phonon
emission is possible even for a very small average drift velocity. In such a situation —which appears to be realized ex-
perimentally (see Sec. III A)—the result (A2) of Thornber and Feynman gives the "correct" linear mobility.
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