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Although disorder is widely believed to be the primary distinguishing feature governing the transport
of photoinjected charges in molecularly doped polymers, disorder theory has yet to convincingly explain
why the linearity of the log of the mobility with the square root of the applied field persists over such a
wide range. In this article a theory for high-field hopping transport in strongly disordered materials is

developed which combines the elements of a continuous time random walk with existing variable-range

hopping techniques. A self-consistent integral equation is derived from which the distribution of site en-

ergies for those sites which characterize the percolation pathways is determined. The theory is applied
to an energetically disordered system and the mobility is calculated for the Miller-Abrahams form of the

jump rate. It is shown that if the site energies belong to a Gaussian distribution, the logarithm of the
mobility rises nearly linearly with &E for electric fields spanning almost two decades. The slope is tem-

perature dependent, and agrees with the Poole-Frenkel law.

I. INTRODUCTION

In time-of-Qight experiments carried out in 1970, Pai
observed that the mobility of photo-injected holes in poly
(N-vinylcarbazole) at high electric fields may be described
by the Poole-Frenkel law,

p =po exp exp[1'+E ] .
kT

In expression (1.1), the mobility p varies from 10 to
10 cm /V s, and the activation energy 5 is 0.5 eV. The
behavior described by (1.1) has subsequently been ob-
served for a variety of molecularly doped, pendant-, and
main-chain polymers, as well as for vapor-deposited
molecular glasses, and its applicability has been demon-
strated for electric field strengths E, ranging in some sam-
ples from 10" to 10 V/cm. It was shown by Gill that
the Poole-Frenkel factor y is a function of temperature
and is described empirically by

1 1
y kT k

(1.2)

with 8=4X10 (e Vcm)'~, and TO=500 II . Among
experiments on a variety of host polymers and dopants,
these parameters vary by no more than a factor of 2. In
recent years, improvements in experimental sensitivity
and in data analysis have exposed small deviations from
(1.2). But for a few exceptions, there has been essentially
no observed deviation in the gross dependence of log(p)
on the &E for changes in electric field of between two
and three orders of magnitude.

The molecularly doped polymers are ideal systems for
the investigation of the underlying transport mechanisms
because, in addition to field and temperature dependen-
cies, the mobility may be studied as a function of dopant
concentration. It has been demonstrated that the param-
eters po, 6, 8, and To are each functions of the average

dopant separation p for variations in dopant concentra-
tion from between 10 and 90%, i.e., for 10 A (p (20 A.
For example, the factor 8 increases by between 10 and
50% with a doubling of p, and To decreases by about the
same percentage. In general, when the dopant mole-
cules have a dipole moment less than 2D, 5 increases
with increasing p. In N, N'-diphenyl-N, N'-bis(3-
methylphenyl)-[1, 1'-biphenyl]-4, 4'-diamine (TPD)-doped
bisphenol A polycarbonate, 6 increases from 0.2 to 0.5
eV as p increases from 8 to 17 A. On the other hand, for
materials comprised of dopant molecules with dipole mo-
ments greater than 2.5 D, 6 is on the order of 0.5 eV, in-
dependent of concentration. ' In cases where 6 is in-
dependent of concentration, the prefactor po decreases
exponentially with p such that,

po=Qop e
2p Ipp (1.3)
0

where po=1. 5 A has been interpreted as the radius of a
localized state associated with a dopant molecule. This
behavior, together with the fact that the mobilities are
rather low, suggests that transport takes place when
charges hop from one dopant molecule to the next.

Except for the compensation factor (1/kTO), expres-
sions (1.1) and (1.2) describe the Arrhenius dependence of
the mobility which arises if moving charges must hop
over a Coulomb barrier of height 6 in energy. In such a
case, an electric-field dependence arises because the bar-
rier height is lowered in a dc electric field by an amount
B&E. For a dielectric constant tc of 3, the factor 8 is
(e'/~KEO)' =4X10 (e Vcm)' . This is, in fact, the
value typically found in experiments. Thus the standard
Poole-Frenkel model gives, at first glance, a plausible ex-
planation for the observed behaviors of these materials.
Further inspection, however, reveals several inconsisten-
cies. In particular, for typical field strengths of 10 V/cm
the peak of the Coulomb barrier is at a separation dis-

0
tance of 63 A, which is much larger than the mean
dopant separation. On the other hand, alternate at-
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(1.4))+a '

where the disorder parameter a is between 0 and 1, the
TOF current vs time curves display a property known as
universality; all experimental data fall on the same curve
when the scaled current I(t)/I(r) versus the scaled time
t/r is displayed on a plot of logI vs logt. (The time ~ is a
characteristic transit time which may be identified from
the shoulder of a logI-logt plot. ) The current is described
well by a power law, I(t)-t " ', before the shoulder,
and by the steeper power law, I(t)-t "+ ', after the
shoulder.

Following the success of the Scher-Montroll (SM)
theory in describing the relationship between current and
time, inquiries were made as to whether the same model
might also be capable of explaining the ubiquitous &E
dependence of the mobility. Such an attempt to describe
experimental data with the SM theory was made in 1977
by Pfister, who argued that the hole mobilities in tri-
phenylamine (TPA)-doped polycarbonate could be de-
scribed by the expression

%(t)-

1/a
L . epEp=vo —lo/L sinh

2kT
(1.5)

In (1.5), vo is an attempt frequency, I- is the length of the
sample, and lo sinhepE/2kT is to be loosely interpreted
as the mean distance traveled in the direction of the elec-
tric field in a single hop. Equation (1.5) follows directly
from the SM formalism if it is assumed that the hopping
rates are suppressed by the Arrhenius factor
exp( b./kT), and also if the hopping —rates in the direc-
tion of the field are enhanced by the factor

tempts to explain (1.1) and (1.2) have been shown to fail
to quantitatively describe the experiment. ' It has
proved difficult to explain why the &E dependence
should be followed so precisely over so many decades if
the basic physical principal is indeed different from the
Poole-Frenkel mechanism. It is especially puzzling that
there is such a steep rise of the mobility with field for Aeld
strengths 510 V/cm, for in this case, the energy re-
quired to move an electron from one dopant to the next
in the direction of the field, epE, is but a fraction of kT.

Although an understanding of the +E dependence in
the molecularly doped polymers has proved somewhat
evasive, other experimental observations have been ex-
plained by the application of hopping transport theories
in disordered media. From the time-of-fight (TOF)
curves of current I vs time t it was shown that transport
in these materials is anomalously dispersive, in the sense
that the ratio of the width m of the carrier packet to its
mean position / is independent of time. ' For normal
(Gaussian) diffusion, in contrast, the ratio w/l —t
In these systems apparently either w increases more
quickly or 1 increases more slowly with time. In 1975,
Scher and Montroll argued that such behavior in a ran-
dom walk occurs when the distribution of dwell times
V(t) has a divergent first moment. ' This might be the
case when small fluctuations in the interdopant spacing
cause exponentially large fluctuations in the hopping
rates. Specifically, Scher and Montroll showed that when

exp(epE/2kT), while those against the field are
suppressed by the inverse factor, exp( e—pE/2kT). For
consistency with the experimental data it was argued by
Pfister that the exponent a should increase with tempera-
ture. Such a temperature-dependent a would arise if the
origin for the broad distribution of pausing times were a
variation in dopant energy levels. Indeed, the logI vs logt
curves lend support to this notion. An increase of T is

accompanied by a decrease in dispersion, which in turn
corresponds to an increase of a. Another attempt to de-
scribe the electric-field dependence of the mobility in
terms of the SM theory was made by Crisa in 1983.' For
an oxadiazole doped polymer layer it was shown that the
current-time curves are well characterized by the SM
theory with a value of a =0.80. For high enough ternper-
atures, the hyperbolic sine in (1.5) may be replaced by its
argument, epE/2kT. In such a case, the SM theory pre-
dicts that

1 E
logp —= ——1 log —.a L

(1.6)

For the same value a=0.80, Crisa At the electric field
dependence and the length dependence of the mobility in
oxadiazole with the function (1.6) for the range
E=5X10"to 47X10 V/cm and L =5 to 30 pm. Again
it was noted that the temperature dependence of the slope
of 1ogp versus logE and the temperature dependence of
the current-time curves are correlated in a consistent
manner if it is assumed that a is an increasing function of
temperature.

Improvements in the preparation of thin polymer films,
and in experimental techniques for measuring TOF sig-
nals, have allowed for experiments with fewer carriers
and a wider range of electric fields. Accompanying these
improvements have been several changes in the basic ex-
perimental observations which have served to cast doubt
on the applicability of the SM theory. As an early exam-
ple, in contrast to the results of Pfister, investigations of
TPA-doped polycarbonate by Borsenberger, Mey, and
Chowdry' showed that the SM theory did not apply.
The current before the shoulder in the I vs t curves tends
to be Hat rather than decaying. Yet, after the shoulder,
the current retains an anomalously broad tail. At best,
on a logI-1ogt plot, data might be fit by defining two dis-
tinct disorder parameters, a, and a2, where a& describes
the decay of the current with time before the shoulder,
and a2 describes the width of the carrier distribution as
determined from the current profile after the shoulder.
Most of the recent current-time curves are not well de-
scribed with two disorder parameters, however. ' Scott,
Pautmeier, and Schein have shown that the shape of the
current vs time curve after the shoulder is best described
by a Gaussian distribution of effective carrier velocities.
Furthermore, in contrast to the reported results of Crisa,
the mobility does not scale with the sample width L,
again suggesting that the theory of SM is inappropriate. '

In spite of these experimental differences, one charac-
teristic remains invariant; the log of the mobility remains
proportional &E for a wide class of materials, and over a
wide range of field. For DEH(hydrazone)-do~ed
bisphenol-A-polycarbonate the linearity with the PE is
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maintained for the field range E=0.82X10 to 2. 1X10
V/cm.

The thesis of Pfister and of Crisa was that both the
anomalously dispersive TOF profiles and the field-
dependent mobilities in these experiments are a conse-
quence of transport in a disordered medium. To further
test these concepts while avoiding the uncontrolled ap-
proximations inherent in the Scher-Montroll theory, a
study of disordered transport based on Monte Carlo
simulations of a random walk has been carried out. '

This approach has had reasonable success in predicting
many of the general features of the mobility observed in
these experiments. For example, the Monte Carlo simu-
lation yields logI-logt profiles which strongly resemble ex-
periment. The &E dependence of the log of the mobility
has been shown to be consistent with simulations, albeit
over a limited range in electric field. ' In addition, in
some systems, the mobility has been shown to decrease as
a function of increasing field at lower fields, and the simu-
lations also show such an initial decrease. Effective-
medium theories of transport in disordered systems have
been developed which lend support to the simula-
tions. None of the analytic forms, however, give rise
to (1.1) or (1.2) over the broad range of electric fields ob-
served in experiment.

In this article a theoretical description of disordered
transport in molecularly doped polymers is developed
which combines the elements of a continuous time ran-
dom walk with the variable-range hopping theory of Aps-
ley and Hughes, and results ultimately in analytic ex-
pressions for anomalous transport which follow those of
Scher and Montroll. ' It will be shown that for reason-
able parameters, the dependence of the log of the mobili-
ty on the &E closely follows the Gill form for at least
two decades of field. An outline of the remainder of this
article is as follows. In Sec. II we describe the elements
of a continuous time random walk. In doing so we devel-
op an expression for the distribution of nearest-neighbor
hopping rates which is based on the approach of Ref. 26.
In Sec. III we show how the marginal distributions of
hopping energies, direction cosines, and dwell times may
be determined from the distribution of nearest-neighbor
rates. We develop a general expression for the mobility
as measured in a TOF experiment in Sec. IV. In Sec. V
we develop analytic expressions for the case of energetic
disorder only, when the hopping rate is of the Miller and
Abrahams form. In order to illustrate general features of
the theory we first describe qualitatively the results which
would be obtained for a uniform site energy distribution.
We then extend our approach to consider the case of a
Gaussian distribution of site energies. Assuming the va-
lidity of specific assumptions regarding relevant time
scales, the theoretical predictions are in good agreement
with experiment. We discuss approximations and exten-
sions of the present approach in Sec. VI, and the article is
summarized in Sec. VII.

II. ELEMENTS OF A RANDOM WALK
IN A DISORDERED MATERIAL

In developing an analytic form for the mobility in a
disordered material, it is useful to start from a descrip-

tion of a continuous time random walk. In order to prop-
erly scale the time to hop from one dopant molecule to
the next, we must first choose the underlying microscopic
hopping rates. In keeping with the extensive work of
Sassier, ' we will consider a hopping rate with an asym-
metric detailed balance factor; we shall take the rate R;
to hop from dopant molecule i to dopant molecule j, to
be of the form

(2.1)

In (2.1) r; is the spatial separation between molecule i
and molecule j, c, - is the energy of the donor level at mol-
ecule j, E; is the energy of the donor level at molecule i,
and P is the Boltzmann factor. The prefactor vo may be
interpreted as an attempt frequency. This hopping rate
has the one-sided detailed balance as found in the rate de-
rived by Miller and Abrahams to describe impurity
band conduction is semiconductors; hops upwards in en-
ergy (s~ & E;) are suppressed by the Boltzmann factor,
while those downwards in energy are temperature in-
dependent. Such a hopping rate between two states
comes about when the (otherwise localized) electronic
states of a statically disordered system are temporarily
mixed by vibrational distortions. A physical explanation
for the asymmetric detailed balance is that phonons can
always be emitted so that energy may be conserved in a
downwards hop, but the probability to absorb a phonon
of frequency co=(e —c,;)/iii and hop upwards in energy
will be scaled by the probability that such a phonon is
available, exp( —Pkco). We note in passing that a sym-
metric form of the detailed balance factor arises when a
small-polaron hopping rate is assumed. Although the
symmetric form is easier to work with analytically, its ap-
plicability in these systems is questionable, for the bare
transfer-matrix element J which is required to quantita-
tively describe the data in these experiments has been
found in some studies to be an order of magnitude larger
than the bandwidth of typical molecular solids.

The form of the hopping rate as expressed by (2.1) sug-
gests that fluctuations in the jump rates may be quite
large for the molecularly doped polymers. For typical
energy differences in the range 0 to 0.2 eV, the exponent
P(E~ —e;) is between 0 and 8 at room temperature. With
y=0. 7 A, a 10 A variation in separation distance im-
plies that 2yr may vary by 12. Thus the exponent %
which determines the hopping rate for hops upwards in
energy,

=2yr; ~+p(eJ —E;) (2.2)

may vary by 20, giving rise to fluctuations of up to nine
orders of magnitude in the jump rates.

In describing a continuous time random walk in the
manner in which it may be implemented in a Monte Car-
lo simulation, one must determine the dwell time, the
time to reside at a site once a random walker has arrived.
One must also select the site to which the random walker
will hop next. These two quantities are intimately relat-
ed. A typical three-step selection algorithm which might
be implemented in a Monte Carlo simulation is as fol-
lows: '
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(1) Calculate the rates R; . for a cluster of N sites,
enumerated by the index j, surrounding the presently oc-
cupied site i. The cluster should be large enough so that
there is essentially no probability of hopping outside its
boundaries.

(2) For each rate R; J, extract a dwell time t from the
associated Poissonian distribution of dwell times,

%(t)=R, e (2.3)

(2.4)

(3) Choose, as the next site to be visited, the site j, for
which the time t. is smallest, and assign this time as
the dwell time which characterizes the hop from site i
to site j.

When the hopping rates are extremely disparate, the
site which is visited next is very often the site for which
the rate R, is the largest. In 1974, Apsley and Hughes
showed how this idea may be implemented analytically to
characterize transport in a spatially and energetically
disordered system. The exponent,

% =2yr +—[(e2—E,—eEp cos8)

—
E2

—e, eEp c—os8~ ] . (3.1)

The probability that the space between a hyperradius of 0
and % contains no neighbors, given that the energy of the
site from which we make a jump is c„is

certainly the spirit in which Apsley and Hughes calculate
a distribution of nearest-neighbor A, an approximation
which we will also make at this point. We may now
proceed to calculate the distribution of nearest-neighbor
% which may be sampled in a disordered system in the
presence of an electric field. At high fields, the energy
gained in hopping in the direction of the field is an impor-
tant factor in determining which site will be nearest
neighbor. For these experiments it should therefore be
included in the calculation of the hyperradius %. We will
approximate the field energy eEr cosO by eEp cosO, since
the most dramatic fluctuations in the field energy are the
result of changes in direction. Thus we take

P~ =exp[ —V(A;e))], (3.2)

which determines the rate between site i and site j is to be
considered a hyperradius in an augmented r(sc, space.
The rule that the random walker hops to the site for
which the rate is largest is equivalent to the statement
that the random walker hops to the site which is a
nearest-neighbor in this augmented space. Under such a
rule, occasionally a random walker will hop beyond sites
which are near in r because they are more distant in c.
When distance may be sacrificed for energy in this
manner the transport process is commonly referred to as
variable-range hopping.

III. DISTRIBUTIONS FQR DWELL TIMES, DISTANCES
AND DIRKCTIQNS

It should be clear from the above discussion that each
hop in the random walk corresponds to a decision as to
which site constitutes a nearest neighbor in the augment-
ed space at the hyperradius %. The dwell time, distance,
direction, etc. , which are ultimately settled upon are to be
chosen from the corresponding distributions of those
quantities which are associated with nearest-neighbor
jumps. Calculating these distributions is the basic
difhculty in describing transport in a disordered system.
The distribution of possible rates out of a particular site
depends on the energy and location of that site, and also
on the energies and locations of the surrounding sites.
Because some of the surrounding sites may have been
visited on previous hops, the distribution of nearest-
neighbor quantities describing the jump from a particular
location can only be calculated if one can account for the
path which has been followed to arrive at that location in
the first place.

Substantial simplification arises if one ignores the path
dependence of the distribution function. That is, the dis-
tribution of nearest-neighbor hyperradii % might be well
represented by the distribution of A which are obtained
with back transfer and the overlap of environments
shared by adjacent sites completely neglected. This is

V(& E )=Nf f f 2mr' dr' i s8n'd6' l(7E)d ',s(3.3)
Jq

is a volume in augmented space which is bounded by a
surface at the hyperradius %, N= lip is the dopant
number density, and rI(E) is the site energy density. (The
details involved in calculating this surface are presented
in Ref. 26.) It follows that

P(r, 8, s2,'E, ) =N exp[ —V(A; &E)]2m.r sin8q(E2) (3.4)

(3.6)

is obtained by integrating over all angles. In (3.6) we
have specifically indicated that an additional integration
must be performed over the distribution of initial energies
g ( E, ). Note also that we have again approximated
(r cos8) by p(cos8) in calculating I, . The distribution
of dwell times,

P(t;c, , ) = f d% exp[ —V(%;e, )]V'(%;e, )

X vo exp( —% —voe +t ), (3.7)

is obtained by weighting the Poissonian corresponding to

is the joint distribution function for the probability that
the site which is a nearest neighbor is at a radius r, angle
0, and energy c2, given that the energy at the site from
which the hop was made was c.&. In what follows we will
refer to c, as the initial energy, since it is the energy of
the site from which the hop is initiated. Similarly, cz is
one of the possible final energies of the site to which a
hop is made. Integrating (3.4) over r and E2 gives

6(8;c,, )= f fP(r, 8, E2,'E, )dr dE2, (3.5)
r, 0

the probability density for finding the nearest-neighbor
dopant at the angle 0, given c&. The average distance
traveled in the direction of the field in a single hop,

1, —=p(cos8) =p fd8cos(8) f dE, 6(8;s, )g(E, )
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each value of % by the probability that A is a nearest-
neighbor distance. Finally, the distribution of site ener-
gies visited in the random walk g(e, ) can be determined
via an iterative procedure. The probability density that a
site with energy c2 will be hopped to, given that the initial
site has energy s&,

P(E,;s, )=f fP(r, e, E;,e, )dr de (3.8)

Iv. cALcULATIoN oF THE lvloBILITY
FOR A TIME-OF-FLIGHT EXPERIMENT

In a time-of-Bight experiment, a localized packet of
electron-hole pairs is produced by illuminating a light-
sensitive coating on one side of a polymer film which
forms the weak link in a closed circuit. When a voltage is
applied the electrons are quickly taken up by the anode.
However, to reach the cathode, the holes must traverse
the film. Their progress is monitored by measuring the
current in the circuit as a function of time. When the
holes reach the cathode the current begins to decrease
noticeably, which allows for the determination of a tran-
sit time ~. The drift velocity v is the ratio of the film
thickness L to the transit time ~,

is obtained by integrating (3.4) over r and 8. If we aver-
age P(e,z,'E, ) over all initial energies a, which may be ob-
tained along the random walk, we should obtain the dis-
tribution of final energies c2. Because each final energy
becomes the initial energy for the subsequent hop, it fol-
lows that the distribution g(s) must satisfy the self-
consistency condition

g(E2)= fds, P(E2;E, )g(s, ) . (3.9)

The function g(E) which satisfies (3.9) may be obtained by
iteration.

where P„(t) is the n fo-ld convolution of the distribution
of dwell times,

en(~ sl a2 e3 n ) II P(~ Ei ) (4.6)

In (4.6) g„(s) denotes the Laplace transform of P„(t),
where s is the Laplace variable. Taking the log of both
sides of (4.6), we see that for large n, the log of g„(s) ap-
proaches n times the configurational average of the log of
p„(s):

in[/ (s ei s2 E3
. E„)]=g in[(((s;E; )]

(4.5)

That there is a product of two terms in the integrand of
(4.4) is easy to understand; the probability of hopping n
times in a time between t and t+dt is given by the first,
while the second is the probability of not making yet
another hop between the time t and the transit time ~.
The distances l„and the probabilities p„(r) are correlated
because they are both influenced by the electric field. For
example, when a hop is in the direction of the field, the
dwell time, which is also a function of the field, will be
smaller. In writing (4.2) we are ignoring this correlation.
It can be shown that this is justified in keeping with the
fact that for large enough n, those carriers experiencing n
hops will have moved essentially the same distance. Each
function g(t) in the convolution in (4.5) depends on an
energy which is drawn from the distribution of visited
site energies g(e). Therefore, to calculate g„(t), we must
properly average over all possible sequences of energies.
This is best carried out in the Laplace domain.

For a particular sequence of energies, the Laplace
transform of the distribution of time to perform n hops is,

(4.1)
n(in[/-(s;s)] ), (4.7)

At the transit time, the centroid of the carrier packet will
have moved a distance L. In terms of the quantities dis-
cussed in Sec. III, this implies that

L = l,p, (r)+ l~p2(r)+13p, (r)+ = g l„p„(r),
n=i

(4.2)

l„-nl( . (4.3)

Second, the probabilities p„(r) may be determined from
the distribution of dwell times:

p„(r)=f dt's„(r) 1 —f dr'g(r')
0 . 0

(4 4)

where l„ is the average distance traveled in the direction
of the applied field by a carrier which has hopped n

times, and p„(r) is the probability that a carrier has
hopped exactly n times in the time z. With a few
simplifications, the summation indicated in (4.2) may be
performed. First, by the central limit theorem, for large
n)

where the angle brackets denote an integration over the
distribution g(E). Therefore, we substitute for (4.6) the
asymptotic form,

P„(s ) —exp [ n ( in[/(s; E ) ] ) J . (4.8)

Combining (4.8), (4.3), and (4.2), we obtain the following
expression for the width of the film as a function of the
transit time:

The integrals in (4.9) follow the Abromwich contour for
Laplace inversion. To calculate the mobility, we first
solve (4.9) for r(L ) . The mobility is then, by definition,

I
Er(L )

(4.10)

The reader will recognize that Eqs. (4.9) and (4.10) are

L =1,f ds e" g n exp[ n (1n[f(s )] ) ]
i oo s n=1

&+i~ „1— s exp ln s

r ~~ s(1 —exp((in[/(s)]) j)
(4.9)
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formally equivalent to the results of Scher and Mon-
troll. ' For example, the Laplace inverse of
expI(in[/(s;8)])) may be identified with the Scher-
Montroll pausing-time distribution function %(t). There
are several characteristics which are specific to a disorder
model which are brought out in the present approach.
First, the pausing time distribution function is defined as
the distribution of times which correspond to various
nearest-neighbor jurnp rates which may be encountered at
different locations in the sample. Second, the average dis-
tance traveled in the direction of the field per hop l„
which depends both on the electric field and the disorder,
is defined explicitly by expression (3.6). And third, for
the case of energetic disorder, the present approach ad-
dresses the question of assigning an initial energy c,

&
for

each successive hop, via an iterative solution of (3.9).

V. APPLICATIDNS

In this section we will calculate the mobility for the
specific case in which the only disorder is due to site ener-
gy differences arising from the nonhomogeneous environ-
ment; to a large extent, we will neglect the effects of spa-
tial disorder. In light of the discussion in Sec. II, the
neglect of spatial disorder appears to be absurd at first
glance. After all, extremely large fluctuations in jump
rates may be attributed to small spatial fluctuations in
dopant separation, ' and it is the tremendous disparity
among the various hopping rates which suggests that the
conducting pathways may be characterized by the largest
of the rates, i.e., the rates of defining nearest-neighbor
jumps. We should make it clear in advance, therefore,
that we will neglect the details of the spatial disorder in
what follows partly for calculational efficiency; the ap-
proximation we make below is to treat the variable r,
which describes the separation between dopant mole-
cules, as a constant. In practice, the numerical integra-
tions which must be performed to reduce the joint distri-

I

Case (i): Uniforin site energy distribution

In order to illustrate general features of the calcula-
tion, we begin by considering a uniform distribution of
site energies with full width 8'

1il(s)= —;0~e( W .8" (5 I)

We take 8'=0.7 eV. In this case, the joint distribution
function for the probability that the site which is a
nearest neighbor is at an angle 0 and energy c2 is

bution function P(r, 8, E2,'s&) to its marginals are time
consuming; we substantially speed up the computation by
eliminating the integration over r. In addition to this
practical advantage, however, we are driven to the
constant-r approximation by the experimental findings of
a temperature-dependent disorder parameter a. We will
see that the temperature dependence of a arises from the
energetic disorder, and that the essence of this tempera-
ture dependence is most clearly exhibited when the radial
fluctuations are suppressed.

In holding the variable r constant, we describe a con-
trived model in which all of the neighboring dopants
have the same separation. We will assume that each
dopant molecule is connected to M spatial nearest neigh-
bors, where M is 12, the coordination number for a hex-
agonal close-packed structure. We take the dopant sepa-
ration to be a constant, p =9 A, but we retain the angular
component of the energy fluctuation which is due to the
electric field. The interpretation is that the M neighbors
under consideration are at rando~ locations on the sur-
face of a sphere of radius p. We ignore excluded volume
effects. The present section is divided into two distinct
subsections: Case (i) is an examination of the mobility
when the site energy distribution is uniform, and case (ii)
is a repeat of case (i), but for a Gaussian site energy distri-
bution.

P(8, E2,'E, ) =
1 — 1 ——

28
M

A, (c, )1— 28'
M

sz —eEp cos8 —s, ~ 0 .
2W —Ai Ei

) 1X; c2—eEp cost9 —c,
&
&0

A, (E, )
'

M —1
A2(e2, 8;s, )

X 1—
2W —A, (E„)

(5.2)

In (5.2), A, (E, ) and A2(E2, 8;E, ) are areas on a two-
dimensional I E2, cos8I plane, as illustrated in Fig. l.
That the expression (5.2) is defined separately for two
different regions may be understood as follows: For all
sites for which c.2

—eEpcosO —c.
&
&0 the hopping rates

are equivalent, and therefore the distribution in 0 and c2
is Oat: Qn the other hand, for the sites for which
c2 —eEpcos8 —c, ~0, the hopping rates are extremely
disparate, and the distribution is of the form of Eq. (3.4).
The first factor on the bottom (top) right-hand side of
(5.2) gives the probability that none (at least one) of the
M neighbors has energy and angle such that
c2—eEpcosO —c,

&
is less than zero. The reason for this

all-or-nothing state of affairs is that if for just one of the
neighbors, c2—eEpcos0 —c.

&
is less than zero, the hop

will surely be to that site (rather than to a site for which
E2 eEp cos8 —s, )0—) and hence sz and cos8 should be
chosen from a uniform distribution.

To further clarify (5.2), we should remark that the
Miller-Abrahams form of the hopping rate has forced us
to break away from considering only the hopping rates to
the nearest neighbors in an augmented space; the hop-
ping rates for all sites for which c2—eEpcosO —c,

&
&0

clearly do not obey the criteria of being extremely
disparate. In such a case, one would normally choose the
next site by a consideration of the associated Poissonian
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= e2 —ei —eEpcos g 12

cos g= —1

dcos g

cos g =1

e2——0
82

——8&+eFp-- e2= W

FIG. 1. Shown, for a particular value of the initial energy c&,

is the two-dimensional energy-angle phase plane from which is
determined the distribution of hopping directions and energies.
The abscissa indicates the (final) site energy cz, which may lie
anywhere between 0 and W for the case of a uniform distribu-
tion, and the ordinate indicates the direction cosine (with
respect to the applied field) for the hop. Hence, the total area in
the phase plane is 28'. The plane is divided into two distinct re-
gions, above and below the line c2 —c

&

—eEp cosO =0.
If the coordinates (cz, 8) for a neighboring site fall to the left
of the line, then the hopping rate (to that particular site) is
vo,' if they fall to the right, the hopping rate is
voexp[ —P(Ei —s, eEpcos8) j.—The ratio, 3, /2W, is the prob-
ability that the coordinates of a neighboring site are to the left
of the line; the probability that the coordinates for all M of the
neighboring sites will be found to the right of the line is
(1—A

&
/28'), etc. The probability to hop to a site with ener-

gy c2 at an angle 0 with respect to the applied electric field is
given by the product of the area dc2d cosO, represented in the
figure by the black square, and the appropriate scale factor
given in expression (5.2). The area A2 is defined by the area be-
tween the line c&

—
e&

—eEpcos0=0 and a parallel line passing
through the point (c2,cos8).

0.1 0.2

e (e&)

0.3 0.4

FIG. 2. The distribution of energies of those sites which are
visited in the random walk g(c, ) is plotted versus c, for three
electric-field strengths: (a) E=1X10 V/cm, (b) E=4X10
V/cm, and (c) E=14X10 V/|".m. The underlying site energy
distribution is uniform, with width 8'=0.7 eV. We see that the
energies of the sites which are visited are crowded to the bottom
of the band, for c 5 0. 1 eV. As the electric field is increased, the
distribution broadens, but the most probable value of c, remains
at a=0.

The average distance traveled in the direction of the
field in a single hop is obtained by substituting the func-
tion g(s) into (3.6) and performing the angular integra-
tion. The relation between l, and E is displayed in Fig. 3.
Note that l& increases linearly with E for the fields under
consideration, except for the largest field strengths, where

distributions of dwell times, as described in Sec. II. Such
a procedure is not necessary here, however, for the simple
fact that the rates are equi Valent when
c2 —eEp cosO —c,

&
& 0. Consequently, as the energy

difFerence c2 —eEpcosO —
c& goes from positive to nega-

tive, the distribution of nearest neighbors goes from the
multidimensional Poissonian described by (3.4), to a uni-
form distribution.

Numerically integrating (5.2) over the angle 8 gives
P(s2, s, ) for various strengths of the electric field. With
this conditional distribution, (3.9) is iterated to obtain the
distribution of site energies g(s) which are visited on the
random walk. For the initial guess g(s) =5(E), the itera-
tive procedure converges rapidly; for all c the relative
difference in g ( E ) between successive iterations is less
than 1% after about ten iterations. The number of hops
after which the system may be said to have equilibrated is
therefore of the same order. Figure 2 shows the calculat-
ed function g(s) for several electric-field strengths. It is
peaked at c, =0, and is relatively insensitive to the field for
E ~ 50 V/pm. Because we are considering only energetic
disorder, the Boltzmann factor scales out of expression
(3.3) for the hypervolume. As a consequence, the distri-
bution g(e) only depends on the relative weights in the
two-dimensional phase space, and does not depend on
temperature.

0.4

0.3

Q0

Q 0.2
O

0

6 8

E 10 V/cm

12

FIG. 3. I'he average distance hopped in the direction of the
field is given by l&(E)=p(cos8). In this figure is shown the
average projection of a hop in the direction of the electric field,
(cos8), as a function of the field. At low fields (cos8) in-
creases linearly with field. At high fields it begins to saturate.
The points were calculated from the theory. The solid line is a
best fit to the function (cos8) =C& tanh(CzeEp/Wl, for which
the fit parameters C& =0.42 and C2 =6.7 are functions of only
M.
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it begins to saturate. Since g(s) is independent of tem-
perature, so is the function l, (E ). For the range of fields
in experiment, the l, vs E curves are well described by
the empirical form,

g(t ) = —exp[(M —1)ln(1 —invot/PW)];
M 1

pW r

1~vp~ &e~~. (5.6)

l, (E)=pC, tanh(C~eEp/W), (5.3)

where the constants C; =C;(M) may depend only on the
coordination number. For the present case in which
M=12, we find that C& =0.42 and Cz=6.7. Vfe should
note that (5.3) diff'ers substantially from the nonlinear
form for /, (E) assumed by Pfister [cf. Eq. (1.5)]. The
only quantity which remains to be calculated to specify
the relation between L and ~ is the Laplace transform of
the effective pausing-time distribution function,
exp[(in[/(s)]) J. For behavior at long times we are in-
terested in the functional dependence on the Laplace
variable s in the limit where s tends to zero. To shed
light on the expected results of this calculation in ad-
vance, we will digress at this point and examine the
representative form of the pausing-time distribution func-
tion which arises when g(s) is replaced by 5(E) and the
electric field is neglected.

Replacing g(E) by 5(s) to obtain the erat'ective pausing-
time distribution is a crude approximation, but not
without some merit. Equation (4.6) indicates that the
time for n hops across the sample is to be calculated by
adding together n times which are drawn from the distri-
bution f(t ). This is just an estimate of the average dwell
time multiplied by the factor n. Let us suppose that
g(t) —1/r'+ . Then, for a& 1 the first moment of P(t)
diverges, which leads to the result that the sum of n times
does not scale as L, but rather as L' . It is this well-
known feature which gives rise to the length-dependent
rnobilities and anomalous dispersion predicted by SM.
As the number of hops required to traverse the sample
becomes larger, the sum of times is increasingly dominat-
ed by the times for the slowest hops. These hops are
necessarily uphill in energy, and are therefore those
which have originated from c near the bottom of the dis-
tribution. %'e choose to ignore the electric field in calcu-
lating g( t ) at long times because the slowest hops
represent climbs over the highest energetic barriers,
which are necessari. ly those barriers which are not appre-
ciably lowered by the electric field. (In hindsight we will
see that this is a reasonable approximation for the case of
a uniform site energy distribution; a Gaussian site energy
distribution is another matter, however. ) In such a case,
the distribution of hyperradii is given by the one-
dimensional distribution,

M —1

CXVOg(t)=, ; 1&v r & ~,
(v t)'+ (5.7)

where at 300 K the disorder parameter,

M —1a= =0.39,
pw

(5.8)

is less than 1. At this point, the algebra follows SM. For
a & 1, the Laplace transform of (5.7),

P(s ) = 1 —I (1—o. )(s /vo) + g ( —1)
m=0

)m+i

m+1 —e

(5.9)

As s approaches zero, the integrand of the right-hand
side of (4.9) is, asymptotically,

(5.10)

Inverting (5.10) for long times, one obtains the asymptot-
ic result,

( vor)L-I,' I (1—a)I (1+a) (5.11)

Solving (5.11) for r in terms of L and substituting the re-
sult into (4.10), we obtain the mobility,

1/a
pC, tanh(C2eEp/W)

P &p E LI (1—a)I ( I+a) (5.12)

Taking the logarithm of (5.12) we see that

Because the distribution of site energies is compact, the
distribution g(t) must eventually be bounded by a decay-
ing exponential. Expression (5.6) is a valid approxima-
tion because in practice this bound is not realized. For a
site energy di8'erence of 0.5 eV, the dwell time will be on
the order of one second (for vo-10' s '); in contrast,
the time-of-fiight in these systems is typically recorded in
milliseconds. Thus, for times of interest, lnvot «P JK

Expanding the logarithm in the exponent of (5.6) to
first order in ln(vot)/PW, we obtain an approximate ex-
pression for a normalized distribution of dwell times
which is of the SM form,

0&% &PW.8" (5.4) 1
lnp — ——1 lnE+ consta

In comparison to an algebraically decaying distribution
of dwell times, the factor voexp( —A)exp( —voe t) in
the integrand of (3.7) is narrow, and may as well be re-
placed by a 5 function,

1

M —1 kT
M —1 lnE+ const (5.13)

voexp( —A)exp( —voe r)—=vo5(vot —e ) . (5.5)

Substitution of (5.4) and (5.5) into (3.7) gives the approxi-
mate distribution of dwell times,

in the range where tanh(CzeEp/W) —C2eEp/8'. Ex-
panding the factor lnE in (5.13) about an intermediate
value of the square root of the electric field, say
QEo =600 (V/cm)', we obtain
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2W 1
lnp —=

QEO(M 1—)
M —1 E +const.

(5.14)

ly, we observed that the dispersion parameter

2kT
BQE,

(5.17)

Equation (5.14) is of the Gill form, from which we may
deduce a proportionality constant

8= 2W =2. 1 X 10 (e V cm)'
QE (M 1)— (5.15)

and a compensation temperature

To= =740 K .
8'

k M —1
(5.16)

Equation (5.13) predicts a rise of the log of the experi-
mentally determined mobility with the log of the electric
field, and therefore does not describe the linearity with
+E which is observed over so many decades. Neverthe-
less, for reasonable choices of W and M we see that the
local slope of lnp vs v E is in good agreement with that
which is observed in experiment, as are the extracted pa-
rameters B and To. Thus, (5.12) lends support to the
ideas of Pfister and of Crisa —that there should be a close
link between the electric-field dependence of the mobility
and the dispersivity in the current vs time curves. Name-

is connected to the Poole-Frenkel factor, and should in-
crease with increasing temperature. Having worked out
this simplified example for its analytic value, let us return
now to considerations of a general g (e ).

It is straightforward to calculate the dependence of the
integrand in (4.9) on the Laplace variable s. For conveni-
ence we first introduce the function f(s ) = 1 —g(s ). For
small s, f(s ) ((1, and

y+g a)lif dse
( )

(5.19)

If we had true algebraic scaling of the SM type, we would
find that for small s, (f(s)) —As . In this case, the
function (f(s)) has been obtained for small s by in-
tegrating the joint distribution function P(8, e2;si) over
8, s2, and ei, weighted byg(si) and 1 f(s);—

(5.18)

Expanding the integrand on the right-hand side of Eq.
(4.9) to lowest order in (f(s ) ), we see that
[1—exp [ ( in[/(s ) ] ) ] ] —(f(s ) ), so that (4.9) becomes,

(f(s)) =f f fd8ds, deil'(8, e,;e, )g(e, )

X .

s
Q(s2 eEp c—os8 —si )(s+ voe )

(5.20)
M

, (s+nvo)
(1—A, /2W)"(A, /2W)

1 —(1—A, /2W)
[1—Q(e2 —eEp cos8 —e, )]

The two terms in the integrand of (5.20) describe 1 f(s)—
for the regimes in which r.2

—eEp cosO —c, & 0 and

c2—eEp cos(9—c, & 0, respectively; 0 is the step function.
For the latter, each entry in the sum over the index n

weights 1 —P(s ) by the probability that n of the M sur-
rounding sites are such that c2 —eEpcosO —c, &0. For
small s/vo, however, only the first of the two terms in
(5.20) makes a significant contribution to the integral,
which means that the mobility is determined primarily by
those hops which are upward in energy. The result of the
integration of (5.20) is shown in Fig. 4, where
log, o(f(s ) ) is plotted as a function of logio(s/vo) for the
case in which M=12, W=0. 7 eV, and T=300 K. Al-
though a strict power law of the SM type is not obeyed,
for reasonably small values of s the slope is much smaller
than 1. For example, when s /vo- 10 we find a slope of
0.7, whereas for s/vo-10 the slope is O.S Scher and
Montroll have suggested that, when the change in the
logarithmic slope is slow enough with respect to time, as
a working approximation, one might replace the actual
pausing-time distribution by a power law with an
effective a. ' In our case, the effective a is the slope of
the log(f(s)) vs logs curve, evaluated at a value of s
which is proportional to the inverse of the transit time.

The two curves in Fig. 4 were calculated for two
different electric-field strengths, E= 1 X 10 V/cm, and
E= 14X 10 V/cm, respectively. Although the electric
field does broaden the distribution of initial energies
g (s, ), as we have seen in Fig. 3, apparently this broaden-
ing has only a minor effect on (f(s ) ). This is in part be-
cause the dominant contribution to (f(s ) ) in the average
over c.

&
comes from the edge of the distribution, near

c.
&
=0; we see in Fig. 3 that the edge of the distribution is

not shifted by the electric field. Another reason for the
lack of field dependence, however, is that even at
E=14X10 V/cm, the energy eEp=0 leV is only. a
fraction of 8'=0.7 eV. %'ithout a strong additional field
dependence to (f(s ) ), the log of the mobility will notice-
ably follow log(E), rather than i/E, at high fields. Al-
though decreasing the width W increases the field depen-
dence of (f(s) ), at the same time it dramatically in-
creases the departure of (f(s ) ) from a power law func-
tion of s. For this reason, at this point we will abandon
further analysis of the uniform site energy distribution,
and move on to consider the case of a Gaussian site ener-
gy distribution, for which these conditions are better
satisfied.
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Show»s logio( f(s) ) as a function of log&o(s/vo) for
the case in which M=12, W=0. 7 eV, and T=300 K. The
points are calculated from (5.20); the smooth curves are empiri-
cal parabolic fits. The full width of the disorder W was taken to
be 0.7 eV (large) so that the e6'ective o,', as calculated from the
slope of the curve, might describe the anomalous transport re-
gime {a(1). The upper curve is for E= 1 X 10 V/cm, and the
lower curve is for E=14X10 V/cm. The small decrease of
logio( f(s ) ) with field is a result of the field broadening of g(e, ).
It is a small efFect for two reasons: (a) as W becomes larger the
field gradually has a smaller inhuence on the nearest-neighbor
dwell time, and (b) the logio( f(s) ) is determined by the loca-
tion of the peak of g(e & ), which, for the case of a uniform densi-
ty of states, does not shift with field.

Case (ii): Gaussian site energy distribution

The calculations above are easily repeated for nonuni-
form distributions of site energies. Here again following
Bassler, ' we will consider the case in which g(e) is a
Gaussian, centered about c=0 with a standard deviation
o. =0.1 eV. We will again assume that M=12 and p=9
A. For the initial guess that the distribution of starting
energies g(s)=5(E), the iteration of (3.9) converges
quickly to a stationary distribution with a centroid at
E= —2o'. Figure 5 shows g(E) for three diff'erent values
of the electric field; E=1X10 V/cm, 4X10 V/cm, and
14X 10 V/cm. As the electric field is increased, the left-
hand shoulder of the distribution tends to remain fixed,
while the right-hand shoulder moves to higher energies.
In this manner the distribution tends to widen at high
fields. In Fig. 6 is shown the function li(E). The depen-
dence on E is similar to that which we found in case (i) in
that I, increases linearly for small E, but then begins to
saturate for fields at the top of the range. Expression
(5.3), with a substitution of rr for W, fits the field depen-
dence of I, for the parameters C& =0.50 and C2 = 1.0. In
Fig. 7 is shown the log( f(s ) ) vs logs relation for T= 300
K for two values of the electric field: E=1X10 V/cm
and E=14X10 V/cm. For the same value of logs, the
slope is larger than in case (i), but this simply refiects the
fact that the width of the distribution is smaller. Because
the slope changes algebraically with logs, we will assume
that the concept of an e6'ective disorder parameter a
which scales with transit time is valid.

FIG. 5. The distribution g(s) is plotted versus c for the case
in which the site energy distribution is Gaussian, with o.=0. 1

eV. From left to right, the peaks of the three curves shown cor-
respond to the electric-field strengths E= 1 X 10 V/cm,
E=4X10 V/cm, and E=14X10 V/cm, respectively.

If we generate a log( f(s) ) vs logs curve at low field
with a single value of c&, rather than averaging over the
distribution g(E, ), we find good agreement with the
curves in Fig. 7 when choosing c&——-—0.2S eV. This sug-
gests that at low electric field the hops which characterize
the long-time behavior of the pausing-time distribution
are typically originating from sites whose energies are 2.5
standard deviations lower than the mean site energy (and
lower than the peak of g(e) by about o. /2). In contrast
to case (i), there is a marked tendency for the electric field
to lower the ordinate of the log( f(s ) ) vs logs curve. On
examining Fig. 7 we note that, for s /vo = 10, when
E=14X10 V/cm, (f(s)) is smaller by a factor of 3
than it is when E=1X10 V/cm. In Fig. 8 is shown
logic( f(s) ) as a function of E, for s/vo=10 at the two

0.5

0.3

0
02—

4 6

(0'
10 14

FIG. 6. The average projection of the hopping direction with
respect to the electric field, (cos8), is plotted as a function of
the field, for the case in which the site energies are from a
Gaussian distribution with o =0. 1 eV. The solid line is a best fit
to the function (cos8) =Ci tanh(C2eEp/o ), for which the pa-
rameters are C& =0.50 and C& =1.00.
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temperatures T=300 and 200 K. (The choice
s/v0=10 has been made somewhat arbitrarily to cor-
respond to a representative transit time which is still
short enough to give rise to dispersive transport. ) We
have fit the curves to the empirical form,

FIG. 7. For a Gaussian distribution of site energies, the
log&0(f(s) ) is shown as a function of log&o(s/vo), for the pa-
rameters M=12, cr=0. 1 eV, and T=300 K. The points are
calculated from (5.20); the smooth curves are empirical parabol-
ic fits. The upper curve is for E =1X10 V/cm, and the lower
curve is for E=14X10 V/cm, showing decrease in (f(s)) by
about a factor of 3 over the range of field considered. In com-
parison, there is very little change in (f(s)) for fields smaller
than E=1X10 V/cm.

The straight lines in Fig. 8 were obtained from (5.21) for
g= l. 7 and C& =0.82. The fact that the lines are parallel
for both T= 300 and 200 K indicates that the parameters
C3 and g are independent of temperature, and are there-
fore functions of only M. The lack of temperature depen-
dence of C& and g suggests that the field dependence of
the distribution of pausing times is primarily determined
by the field dependence of the (temperature-independent)
distribution g(E).

To obtain an approximate analytic expression for the
mobility, we have fit a tangent to the log, o( fz c(s) ) vs

logios curve at s/v0=10; as suggested above, we have
replaced the function (fz o(s ) ) by the power law

(fz o(s)) -=C4(s/vz) . Substituting (5.21) into (5.19) is
equivalent to reducing the length I. by the factor
exp[ Cz(eEp—jo)~]. If we. make'the appropriate substi-
tutions in (5.11), i.e., substitute L exp[ Cz(eE—p/o)~] for.
L, and C„ for I ( 1 —a ), and solve for the mobility, we ob-
tain

pC, tanh[C2(eEp/o ) ]exp[C&(eEp/o )~]

LC4 I'( I+a)

(5.22)

For small Cz, we have

1 C3
lnp, = ——1 ln(eEpjo )+ (eEpjo )~

a A

Vcicz+ ln(voeLpjo )+—ln

(f(s ) ) = (f =o(s ) )exp[ —C (eEpjtT )~], (5.21) (S.23)
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FICx. 8. For s/vo= 10 3, the log, o(f ) is plotted as a function
of E', at the temperatures T=300 and 200 K, for a Gaussian
distribution of site energies. The points were obtained from
logio( f(s ) ) vs log~p($ /vp) curves for four values of the electric
field. These lie on straight lines when plotted versus the electric
field raised to a power g—= 1.7. The slopes are not functions of
temperature, which suggests the empirical relation (5.21) be-
tween f and E.

The field dependence observed in experiment is described
well by the first two terms in (S.23). At low fields logy
scales with logE, and increases with field with the propor-
tionality factor I/a —1, as described by (5.13). However,
when logE is plotted versus &E it is soon apparent that
this functional form alone deviates substantially from a
straight line, becoming Ratter at high fields as logE ceases
to keep up with &E. In contrast to the case of a uniform
distribution, the exponential factor exp[C3(eEp jo )&] in

(5.22) becomes active at high fields and continues the in-
crease of the mobility with field which was begun by the
logarithmic term at low fields.

For a uniform distribution of site energies, we argued
that a should be proportional to the coordination number
M and inversely proportional to PW [cf. Eq. (5.8)]. For
the Gaussian distribution of site energies, we have taken
an efFective a to be the slope of the log(f(s)) vs logs
curve at s/v0=10 . We find similar behavior in that
there is good agreement with the empirical expression

where ao=ao(M). For s/v0=10 and M=12,
a0=2. 34. Because a is inversely proportional to Po, the
slope of logp versus E increases as temperature decreases,
a tendency which is in agreement with the experimental
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+const (5.25)

where const=8. 3 for p in cm /Vs, and b, =0.45 eV,

E

C)

bQ0

-4

350K
320K
290 K
260K
230K

200K

data. The parameter C4 in (5.22) depends on the coordi-
nation number and the temperature. For M=12 we find
that C4=—3.9exp( —0.23Po ).

In Fig. 9 we have graphed the log of the mobility, as
expressed by (5.22), as a function of &E, for the tempera-
tures T=200, 230, 260, 290, 320, and 350 K. We have
taken the values for the five input parameters as follows:
M=12, o.=0.10 eV, p=9 A, vo=10' s ', and
L, =1000p. As discussed above, we have used the slope
and intercept of the logio(f($)) vs logios curves at
s /vo = 10 to obtain the parameters ao =2.34,
C&=3.9exp( 0—23P. cr), C3=0.82, and /=1 7. In pass-
ing, we note from (5.24) that at T=300 K, a =0.6, which
is indicative of highly dispersive transport. For M=12,
the parameters C, and C2 describing I, (E ) were found
above to be 0.50 and 1.00, respectively. The theoretical
curves, which are indicated on the graph by points, are
s-shaped, in the direction of deviations from the straight
line fits which have been observed by Scott, Pautmeier,
and Schein. The log(E) plunges steeply as E goes to
zero, producing a substantial deviation from the observed
V'E dependence in the low-field regime. For intermedi-
ate fields, however, the theory is in reasonable agreement
with the V'E. The straight lines through the points were
all generated by the same expression,

1 1
logio(p) =logio(e ) X — +8 — E

0

8=1.9X10 (e Vcm) ~, and To=600 K. Thus our
result is in agreement with the form proposed by Gill,
and the magnitude of the quantities 6, B, and To are typ-
ical of experiment. It is interesting that the apparent
zero-field activation energy, 6, is almost a half an elec-
tron volt, while the standard deviation of the Gaussian
density of states is only 0.1 eV. We should point out that
the agreement of our result with the V'E is relatively in-
sensitive to the values of many of the parameters. Al-
though we have found the exponent, /=1. 7, the coin-
cidence of (5.22) with v'E is as good for g anywhere be-
tween 1 and 2. Also, l& may as well be linear in E; the
saturation of the hyperbolic tangent does not affect the
result except at high fields, and then the first term in
(5.23) is no longer important.

The range of electric field spanned in Fig. 9 is the range
for which the theory most closely predicts a linear depen-
dence of logy on &E. At higher fields the theory pre-
dicts that logy should increase as E~; for /=1. 7, our re-
sults begin to deviate significantly from the V'E law when
E) 1.5X10 V/cm. For E &4X10 V/cm, on the other
hand, the mobility predicted by (5.22) begins to decrease
much faster than the V'E law, approaching zero as the
field goes to zero. This is due to the SM component of
the theory. When the field is reduced, the number of
times the distribution of pausing times is sampled in-
creases. Adding up all of these times to calculate the to-
tal transit time is analogous to summing a divergent
series; the total transit time scales faster than the total
number of hops n, leading to a mobility which vanishes
as n~~.

Although the pausing-time distributions calculated in
this article appear to decay algebraically at short times,
with a & 1 (cf. Figs. 4 and 7), they are, in fact, exponen-
tially bounded at long times. Consequently, as n —+~,
the effective disorder parameter a tends to one, and the
zero-field mobility approaches a non vanishing value
which is independent of field. Further analysis of the
time dependence of the effective n is required to quantita-
tively characterize this low-field behavior. Nevertheless,
if the pausing-time distribution associated with a particu-
lar sample decays algebraically for long enough times, it
may appear that the low-field mobility approaches zero,
in agreement with (5.22). Experimental data for the hole
transport in tri-p-tolylamine-doped bisphenol-A-
polycarbonate (TPA) shows this tendency at low fields. '

VI. DISCUSSION

400 600 800 1000 1200 1400

WE (V/ cm) '

FIG. 9. The log»p is shown as a function of the &E for tem-
peratures from 200 to 350 K. The points are calculated
from (5.22). The input parameters are M = 12,
o =0.1 eV, L /p= 1000, p=9 A, and vo= 10' s '. The
calculated parameters are C& =0.50, C2 = 1.00, C3 =0.82,
C4 =3.9 exp( —0.23Pcr ), /= 1.7, and ao=2. 34. The straight
lines are generated from the G-ill form for the exponential
dependence, as expressed in (5.25), with 5=0.45 eV,
B=1.9X10 {e Vcm)', and TO=600K.

As discussed in the Introduction, one objection to the
results expressed by (5.12) and (5.22), and in fact to the
application of the Scher-Montroll theory in general, is
that the anomalous features which were explained by SM,
and which are seen in the amorphous semiconductors,
are no longer seen in recent experiments on the molecu-
larly doped polymers. In most experiments the shoulder
of the current-time curves is clearly visible on-a linear
scale, and the current is essentially a constant as a func-
tion of time. ' In addition, the theory of Scher and
Montroll predicts that the measured mobility should
scale with the length of the sample, when in fact it is
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found to be independent of thickness. ' On the other
hand, there are still some experimental signatures of
anomalous transport remaining. For example, after the
shoulder, the decay of the current indicates that the car-
rier packet is still very broad, with the width m of the
packet clearly scaling as the transit time ~ rather than the
&r, as one might expect for normal Gaussian trans-
port. ' Furthermore, the current-time curves continue
to show universality. It is indeed puzzling that, in spite
of all these differences in experimental features, the field
dependence of the mobility has remained the same. That
is, the field dependence for most experiments continues to
be described well by (5.23). We speculate below on a sim-
ple answer to this puzzle. First we remind the reader of a
well-known inconsistency in applying the SM theory to a
problem with static disorder.

The n-fold convolutions of the pausing-time distribu-
tion which enter into expression (4.4) indicate that the
time to make n hops should be found by drawing n-

independent times from the distribution and adding them
together. However, if the distribution of dwell times is

the result of static disorder, the procedure of adding the
times should strictly apply to transport in one spatial di-

mension, and even then, to the case in which none of the
old sites is revisited. For higher dimensions, there
should be a tendency to characterize transport by an ad-
dition of rates rather than an addition of times since, in
higher dimensions, the current may choose between
many parallel avenues. One wonders, in fact, why the
anomalous scaling of SM should be observed at all in a
three-dimensional system. It is possible, however, that
the procedure of adding times may be approximately
correct for systems of this type when the transport pro-
cess is looked at from the point of view of percolation
theory.

When the hopping rates become extremely disparate as
a result of spatial and energetic disorder, it is widely
recognized that only a few of the many available paths
will be of relevance to transport. According to Am-

begoakar, Halperin, and Langer such systems are to be
characterized as nearly percolating; conduction occurs
predominantly through that subnetwork of the most
well-connected sites below which a connected path fails
to exist. We know from percolation theory that about
25% of the bonds must be intact to form a connected
path in three dimensions. Since in a real system no bonds
are truly broken, the conductivity is actually that of a
network which is slightly more connected than that of a
true percolating cluster at threshold. Thus, there will be
a length scale X above which the system may be again
viewed as a three-dimensional network, each bond of
which is associated with a percolating substructure with
spectral dimension 1 &d &2. This suggests that if the
SM theory, which is based on adding the dwell times, is

to apply to a system with static disorder, it is to the cross-
over length scale X below which transport is of lower

effective dimensionality. At longer lengths the anoma-
lous transport of SM should cease. We should see
length-dependent scaling of the mobility only if the thick-
ness of the sample I. is smaller than the typical length of
a connecting pathway X. If L )&X, equation (5.11)

If L is some multiple Jk1, of the length X, then the time r
to traverse the sample should scale as Air&. In this way,
the mobility,

(6.2)

becomes an intrinsic property of the sample. Yet it still
retains exactly the same field dependence. On a larger
scale, each connect should be viewed as a geld directe-d
bond across which may be defined a macroscopic (field-

dependent) jump rate F~ I/~~. The qualitative effects of
such an intrinsic length on the current-time curves are in
keeping with experiment; after a time ~~ the current-time
curve should begin to level off, and normal transport
should resume, since the full three dimensionality of the
sample should be felt. However, if the width of the car-
rier packet increases by an amount h while traversing
each connect, then after the packet has traversed JR con-
nects its width should be proportional to hv'A4. From
SM universality, h should be proportional to ~~. There-
fore, after the carrier packet traverses the entire sample,
its width m should scale with the transit time and sample
length as

iU ~r~&JN, ~ (6.3)

That is, if there is an anomalous spreading of the carrier
packet in traversing each connect, there should also be an
anomalous scaling of m at longer length scales.

As we have already mentioned, the transport formal-
ism developed here in the absence of topological memory
does not account for parallel paths, and thus leads to the
SM result which suggests quasi-one-dimensional (1D)
transport. To correctly weight the various paths to ob-
tain an effective distribution of pausing times one should
obtain corrections to the self-energy in an expansion for
the Green function of the master equation. In practice,
however, accounting for all paths is dificult. ' To par-
tially correct the present approach we should attempt to
account for the fact that some sites may be visited more
than once. That is, we should not draw n independent-
times from the distribution of pausing times to evaluate
the time it takes a random walker to make n hops, for
many of these times should be repeats. The simplest case
in which such overlap may be characterized is for a 10
chain aligned in the direction of the electric field. It is
clear that the average number of times K that a site wi11

be revisited must be inversely proportional to E, that is,
K~ 1/E. In higher dimensions, K may be estimated
from the solution of the master equation (on an ordered
lattice) in the presence of a bias. The average number of
times a site wi11 be revisited is proportional to the infinite
time integral of the probability to remain at the origin.
For the dimensionality d )2, K is a constant, indepen-

should not give the time ~ to traverse the sample. In-
stead, it should give the time w~ to traverse a connect of
length X;

1/a

(6.1)
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dent of the electric field. However, for 1&d &2, K scales
with the field. Qne finds that

K ~ 1

E2—d
(6.4)

To correct (4.4) with (6.4) we note that, in (4.4), g„(s)
should no longer be given by g(s)", but given instead by

g(Kds) ", where n/Kd is the number of unique dwell
times sampled, and g(Kds) is the Laplace transform of
the distribution of times which has been broadened by
the scale factor Kd. Carrying through the algebra to
(5.13), we find that

in' ~(d —1)(1/a —1)lnE . (6.5)

For low dimensions, the rate at which the mobility in-
creases with field is diminished. To understand this ten-
dency we note that there is a price which is paid for suc-
cessful motion, and that is the opportunity to sample new
dwell times which might be extraordinarily long. This
cost is a stronger function of field as the dimensionality is
reduced. It is interesting that in the one dimension
(d= 1) for which the addition of dwell times (to deter-
mine the mobility) is clearly appropriate, the dependence
of the mobility on the electric field vanishes.

In writing our main result, expression (5.22), we have
characterized the mobility by a disorder parameter a
which is less than 1, in spite of the fact that strict alge-
braic scaling of the SM type is not found in the model;
for the case of a Gaussian distribution of site energies, it
can be shown from (5.20) that, as s —+0, (f(s ) ) -s, rather
than s, which would be the case for anomalous trans-
port. On plotting (f(s)) versus s, however, we note (cf.
Fig. 7) that when (f(s) ) is described by the function
s ", the exponent a(s) varies slowly, from a—=0.4 at
s/v0=10 ', to a-=0. 8 at s/v0=10 . This means that if
the time of interest is not too long, the mobility may be
appropriately characterized by an effective disorder pa-
rameter after all. Since vo is the upper limit on the hop-
ping rate, we suggest, for example, that the effective value
of a for random walks which average only ten hops will
be greater than 0.4, whereas for random walks consisting
of 10 hops the effective cx will be greater than 0.8. This
behavior is not surprising. In fact, the implications to the
current-time curves of such a "time-dependent a"' have
been investigated previously, and crosso vers from
dispersive to nondispersive transport as a function of
sample length and electric field have been discussed. ' In
none of these investigations, however, have considera-
tions been given to an intrinsic length X, or to a site-
return parameter K. Further study is needed in this
direction, therefore, in order to sharpen the concept of an
effective disorder parameter.

The rationale for examining the Miller-Abrahams form
of the hopping rate, and for choosing a Gaussian density
of states with o.=0. 1 eV, was to establish contact with
the Monte Carlo simulations of Bassler. ' As discussed in
the Introduction, simulation results are in agreement
with many aspects of experiment. Our approach has
been to follow the implementation of a computer simula-

tion as closely as possible, and to introduce approxima-
tions when needed to maintain some degree of analytici-
ty. In this manner we have sought to improve upon the
disorder-based explanations for the behaviors observed in
both simulation and experiment. Indeed, one of the pri-
mary contributions of this article is to offer an explana-
tion for a strong increase of mobility with E at high fields
when the hopping rates are of the Miller-Abrahams type.
We have found additional agreement with experiment,
however, which goes beyond agreement with simulation;
our analysis gives rise to an increase of the mobility with
V'E for the range 2X10" V/cm &E&1.5X10 V/cm,
whereas simulations do not show good agreement with an
increasing v'E law until E ) 10 V/cm. Although a
variety of approximations necessarily distinguish our re-
sults from the exact results of Monte Carlo simulations,
the difference in predicted behavior suggests that the
Monte Carlo simulations lack the mechanism for the first
of the two field-dependent terms in (5.23),
(1/a —1)ln(eEp/o). This . term, which provides for an
increase of mobility with field for small fields, is intimate-
ly tied to anomalous dispersion. In the present analysis
we have retained this effect at small fields by choosing an
effective dispersion parameter a from the slope of the
log (f ) vs logs curve at the arbitrary fixed value
s = 10 vo. As we have remarked above, however, we
should instead choose u self-consistently, from the slope
of the log(f ) vs logs curve at s =1/r, where r is the
transit time (which depends on a). The correction this
brings to (5.23) is a field dependence to the dispersion pa-
rameter, such that a decreases with increasing E. There
is then an additional field-dependent term in (5.23); the
negative term,

r

—ln
L,C„r(1+a)

becomes more negative as o. decreases. For the present
study, e varies slowly with E, and the corrections to the
results shown in Fig. 9 are small over the field
range 2 X 10 V/cm & E & 1.5 X 10 V/cm (assuming
X= 1000p). If more degrees of freedom are included,
however, the variation of o. with E becomes stronger.
Were we, for example, to consider spatial Auctuations in r
in addition to the variations in 0 and c2, the multidimen-
sional Poissonian distribution of nearest-neighbor hyper-
radii would decay more rapidly with %. As a result, the
corresponding pausing-time distribution would decrease
more rapidly with t, giving rise to a stronger time depen-
dence to the effective disorder parameter a, which im-
plies a stronger field dependence. If the rate at which o:
decreases with E were fast enough, the decrease of the
third term in (5.23) with E would begin to counter the in-
crease of the first two terms with E. Consequently, the
low-field mobility would increase less quickly with in-
creasing E, which is the tendency observed in Monte Car-
lo simulations. For this reason we expect that the results
of the present analysis will show better agreement with
the results of Monte Carlo simulations when the analysis
is extended to include spatial Auctuations in r. Converse-
ly, the results of Monte Carlo simulations might be in
closer agreement with the experimental v E law at low
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fields if the number of independent means by which disor-
der is introduced in the model (degrees of freedom) is re-
duced.

We have not addressed the concentration dependencies
and other effects related to spatial disorder. Our purpose
is to explain the &E with as simple a disorder theory as
possible, and to focus on the reported temperature depen-
dence of the Poole-Frenkel factor and the dispersion pa-
rameter a. It is known that the inclusion of spatial disor-
der generally introduces a time-dependent a, in the sense

1+c1n (t)that f(t) as given by (5.7) decays as I/r '+"""' at long
times. Combined with energetic disorder from a power-
law density of states which begins at c.=0 and increases

1+ 1 3+"(t)as s, one can show that f(t)-I/t'+"" "'. Including
spatial disorder, therefore, compels one to examine more
carefully the consequences of a time-dependent effective
a, in order to extract appropriate field and concentration
dependencies. Nevertheless, we can infer some informa-
tion about the concentration dependence of B and To in
our simple calculations if we assume that the primary
effect of decreasing the concentration of dopants is to
reduce the coordination number M. From (5.9) and
(5.17) we see that a reduction of concentration should
lower a and increase B, assuming that 8' remains con-
stant. This tendency is in agreement with experiment.
However, we see also from (5.18) that a decrease in con-
centration should increase To. This is in contrast to the
experimental results which show generally a decrease in
To as the mean dopant spacing becomes larger.

One of the most intriguing aspects of the theory is the
determination of an effective activation energy, 6, which
is inferred from (5.23) by fitting 1np versus &E to
straight lines in the field range of interest, and then extra-
polating these lines to zero field. From the straight-line
fits of the curves in Fig. 9, we find that 5-=0.5 eV, which
is rather large considering that o. is only 0.1 eV. The
temperature dependence of the mobility is, however,
determined by the parameter a, and therefore the
effective activation energy is determined by the input pa-
rameters p, X, o, and M, the derived parameters Ci, C2,
C3, C~, and g, as well as the strength of the electric field
in midrange, Eo. Hence the relationship between o. and
6 is not as direct as one is led to from the analytic form
of the underlying hopping rate. This observation has
considerable bearing on recent discussion regarding the
nature of hopping in these systems —whether it is pola-
ronic, in which case the activation energy would arise in
part from lattice distortions which accompany the mov-
ing of charge, or whether it is of the Miller-Abrahams
form, in which case it would be entirely due to static dis-
order, or whether it is some combination of each. Here
we see, for example, that an apparent activation energy of
6—=0.5 eV is not incompatible with a model in which the
Miller-Abrahams form of the jump rate is assumed, al-
though further predictions of the concentration depen-
dence of 6 will require a more complete analysis which
includes variations in r. In a recent study of small-
polaron hopping in an energetically disordered environ-
ment in which variable-range hopping techniques were
applied, it was suggested that the increase in 6 as a func-
tion of concentration in TPD-doped polycarbonate arises

as a result of selection of the most favorable conducting
path. While this may indeed be the case, that analysis
suffers from the fact that the results depend on an arbi-
trarily chosen initial energy e&, rather than on the self-
consistent distribution g(e. ). In addition, the analysis was
carried out in the linear regime, which is inappropriate if
the apparent activation energy in these systems is largel
an artifact of the extrapolation of linear fits to the E.
It will be instructive, therefore, to reexamine the applica-
bility of a disorder model in which the underlying hop-
ping rate is polaronic, in the context of the present
theory.

VII. SUMMARY

In this article we began with a description of a continu-
ous time random walk in a disordered material, and from
this, developed a theory which recovers the key features
of anomalous transport. In developing analytic expres-
sions, we began with the formulation of variable-range
hopping as presented by Apsley and Hughes and used the
distribution of nearest-neighbor hyperradii to calculate a
distribution of dwell times and a distribution of hopping
distances. For tractability, these calculations were car-
ried out under the assumption that after each step in the
random walk all topological memory is lost. We focused
on energetic disorder, and included the aspects of spatial
disorder only in the sense that the nearest-neighbor sites
may be distributed at random points on a sphere of con-
stant radius. The difficulty in addressing energetic disor-
der is that the hopping rates in general depend on both
the energy of the final site and energy of the initial site.
Whereas the distribution of final site energies is known,
or at least postulated a priori, the distribution of energies
of the initial sites depends on the history of the random
walk. We obtained the distribution of initial energies by
applying the self-consistency condition (3.9). In address-
ing the experiments in the molecularly doped polymers,
we considered a Miller and Abrahams form for the un-
derlying hopping rate. For the case of a Gaussian distri-
bution of site energies, we obtained an expression for the
mobility which closely follows a straight line as a func-
tion of +E.The temperature dependence of the logarith-
mic slope follows the Gill form of the Poole-Frenkel fac-
tor, having both Arrhenius and compensation terms.
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