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Nonlinearity and trapping in excitation transfer: Dimers and trimers
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We study the interplay between nonlinearity in exciton transport and trapping due to a sink site for
the dimer and a chain trimer by a numerical integration of the discrete nonlinear Schrodinger equation.
Our results for the dimer show, that the formation of a self-trapped state due to the nonlinear coupling
increases the lifetime of the exciton substantially. Self-trapping can be enhanced by the sink for short

times, but for long times it disappears due to the presence of the sink. In the trimer consisting of a sub-

dimer extended by a sink site there exists a transition between states localized on the two sites of the sub-

dimer before for larger nonlinear coupling self-trapping on one site of the subdimer is observed. Very

large trapping rates lead to an increasing lifetime of the excitation on both the dimer and the trimer.
The sink site is then effectively decoupled. We explain this effect using an asymptotic theory for strong

trapping and demonstrate it by numerical computation.

I. INTRODUCTION

The purpose of this paper is to study the interplay be-
tween a coherent transfer regime of an exciton and the
two processes leading to the loss of the linear character of
the exciton transfer, namely trapping of the particle and
transport nonlinearity. The system under study is a mov-
ing quasiparticle interacting strongly with polarization
vibrations. At one of the sites of the configuration trap-
ping with a prescribed rate y can occur. Although the
infiuences of nonlinearity and trapping on transport
properties have been investigated separately in detail, the
combination of both, which can be important in the ap-
plication of transfer theory, has not yet been quantitative-
ly evaluated.

Trapping of quasiparticles constitutes an important
phenomenon in many areas of physics. In photosyn-
thesis, for instance, an exciton in a harvesting antenna
transfers its energy to a reaction center, where it can be
trapped. Electron transfer processes then follow. Having
in mind systems of this kind, the initial conditions are
chosen throughout this paper such that the excitation is
initially located outside the sink site.

Much work has been done on the exciton transfer
theories in the last decades. Beginning with the micro-
scopic treatment by Haken and Reineker' and Grover
and Silbey a number of theories such as the general mas-
ter equation (GME), the stochastic Liouville equation
(SLE), the Pauli master equation, and the continuous
time random walk (CTRW) were developed and mainly
directed to obtaining equations which describe the cou-
pled coherent and incoherent motion of the excitation.
Only recently ' the problem of a rigorous description,
leading to positive occupation probabilities of the trap
(modeled as a sink) in the coherent and near coherent re-
gimes of the excitation transfer has been solved using the

GME, SLE, and CTRW methods.
Using the SLE, ' it was shown for more extended sys-

tems that an excitation generated outside the sink site
behaves as though it would like to avoid this site. This
effect has been observed also in the case of a semi-infinite
linear chain" and results in an effective decoupling of the
sink site from the rest of the configuration. In this case
the decay of the whole occupation probability P(t) with
time is slower for larger y. In particular, in a linear tri-
mer with a sink introduced at one end and for a very
large trapping rate y the rest (dimer) could be taken as
decoupled. The exciton moves from the very beginning
approximately in the dimer avoiding the place influenced
by the sink. Analogously, in the hexagonal model of the
photosynthetic unit the reaction center seems to be al-
most decoupled from the antenna system for a very large
trapping rate y. Still there is no doubt that after a long
time the whole occupation probability P (t) of the exciton
disappears due to the trapping term.

In the last few years much attention has been paid to
the problem of nonlinear interactions in coupled exciton-
vibration systems. ' ' A possible approach to it is the
so-called discrete nonlinear Schrodinger equation
(DNLSE, sometimes also called discrete self-trapping
equation) which —though not yet rigorously justified-
has the advantage of allowing for a simple modeling of
the quasiparticle transfer. In this equation, besides the
transfer-matrix element V, a nonlinear coupling constant

y describing the site energy lowering due to quasiparticle
formation is contained. One encounters this equation in
the context of modeling numerous phenomena from vari-
ous fields of physics.

Although the DNLSE was already mentioned in early
papers on the polaron problem (see, e.g. , Ref. 13), and
much physics has been extracted through numerical
analysis, ' exact solutions are not known in general.
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However, it has been found recently, that considerable in-
sight can be gained into essential physics of the system
through the exact analytical solutions when the system
has only two sites. This case of the nonlinear dimer has
been investigated during the last few years from many
points of view. Kenkre with his collaborators' ' and
Szocs and Banacky have tackled the problem with the
occupation probability difference as the most important
quantity in mind. The exact time evolution for the occu-
pation probability difference was given in terms of Jacobi-
an elliptic functions for arbitrary initial conditions. Set-
ting the occupation of the first site initially to one, the
transition to a self-trapped state was obtained by Kenkre
and Campbell' in a dimer with y~4V. However, one-
sided oscillations in the occupation difference appear for
some initial conditions already for g) 2V. This can be
related to the appearance of a homoclinic structure on
the Bloch sphere, which was shown by Esser and Hen-
nig. ' For increasing g the separatrix of this homoclinic
structure grows and at y=4 V starts to include the poles
of the sphere which correspond to states completely lo-
calized at one of the sites.

Excitation transfer in trapless dimers and trimers can
be described by Hamiltonian Aows located on the surface
of the Bloch sphere for the dimer and its higher-
dimensional analog for the trimer case. This allows one
to use the methods of nonlinear dynamics in the analysis
of the transfer properties, in particular to prove thy ap-
pearance of bifurcations in the Bow-line pictures. '"' '

Esser with his collaborators ' pointed out another in-
teresting feature: the possibility of chaotic behavior due
to a perturbation of the homoclinic structure which con-
stitutes a route to chaos. In this case one has to leave the
description of the problem in terms of occupation proba-
bilities only and must include the evolution of all Bloch
variables, i.e., one must follow precisely the time develop-
ment of the non-diagonal elements of the corresponding
density matrix.

For the dimer the limiting behavior for t ~ ao has been
treated with and without dissipation which was modeled
in the framework of the stochastic Liouville equations
with diagonal and nondiagonal Haken-Strobl parame-
ters. Attention has been paid to the inAuence of symme-
try in the dimer, trimer, and n-mer. The DNLSE ap-
proach has also been used to consider the nonlinear trap
problem by Dunlap and Kenkre and Chen et al. , in
which impurities embedded in a linear host are modeled
by a real nonlinear site energy containing the shift due to
coupling to vibrations.

The aim of our contribution is to investigate the inter-
play between the nonlinearity and the trapping of the ex-
citation. The trapping of the exciton is modeled by an
imaginary part y of the site is energy, which leads to a
finite lifetime of the excitation. We shall follow the
inhuence of both nonlinearity and trapping on the
transfer properties. The paper is organized as follows. In
Sec. II the formulation of the problem and the basic
equations are given. Sections III and IV contain equa-
tions which describe the dynamics of a dimer and a tri-
mer, respectively, including nonlinear coupling and the
inhuence of a sink placed at one end of the configuration.

We present their numerical solutions and derive some an-
alytic expressions for the case of very strong trapping. In
Sec. V conclusions are drawn.

II. FORMULATION OF THE MODEL
AND BASIC EQUATIONS

A. The DNLSE

p „(t):=c (t)c„"(t), (2)

we describe the system evolution by the density-matrix
equation

. a
(~n m )Pnm +X ( Vnkpkm Pnk Vkm )

Here

~n ' ~n +nPnn

is an effective site energy.

B. Inhuence of the sink

Trapping at a particular site s, consistent with the con-
dition p„„(t))0 for any time t, can be introduced into
Eq. (3) by supplementing the right-hand side (rhs) with
the terms

i (y /2—)p„, (n Ws )

for the nondiagonal and

i 7Pss (6)

for the diagonal matrix elements connected with the trap
site s. This description, which was called the fu11 sink
model, guarantees that the occupation probabilities are
non-negative as was first shown in Ref. 7. It is equivalent
to introducing into the Hamiltonian the matrix element
H„=—iy/2 for the sink place and replacing e„—e by
e„—e* in (3).

C. Perturbation theory for a large y

In the case of a large trapping rate y at site s, i.e., when

y exceeds by far all the other energies entering the rhs of
Eq. (3), one can simplify the system (3)—(6) by assuming
quasistationarity in the equations for matrix elements

p „ involving the trapping site. This corresponds to
neglecting times smaller than y

' in the evolution of the

As the basic equation describing the excitation transfer
in our systems we use the discrete nonlinear Schrodinger
equation

i c„(t)=(c,„—y„~c„~ )c„+g V„c. d
dt "

where c„ is the probability amplitude of the exciton to oc-
cupy the molecule at the nth site, e„ is the exciton site en-

ergy, V„(n&m ) is the transfer-matrix element, and y„
is the nonlinearity parameter describing the lowering of
the site energy by exciton occupation. Introducing the
density-matrix elements
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system and is formally achieved by setting p „=0 for
m =s or n =s(mWn) and m =n =s. This procedure is
quite analogous to that used for the transition from the
stochastic Liouville to the Pauli master equation in Ref. 5
when quasistationarity is assumed for the nondiagonal
density-matrix elements due to the fast phase relaxation
connected with the stochastic sources. Here we apply
this approximation to only a part of the nondiagonal
density-matrix elements, namely those connected with
the trap site. As we will show, this results in analytical
expressions for the density-matrix elements connected
with the sink site in the case of large y. One finds for the
nondiagonal elements n Ws

1
Pns ~ i i2) g (Pnk Vks VnkPks )

s l lX/2 k

and for the diagonal elements connected with the trap

(7)

lP„=—g (P,k Vk,
—V,kpk, ) .

From the rhs of Eq. (7) it is evident that the p„, are of the
order of the small parameter ( V/r ) «1 where V is the
typical value for the transfer-matrix elements entering
the rhs of (7), i.e, the sink site effectively decouples from
the other sites. Evaluating (7) and (8) in this small pa-
rameter iteratively one obtains approximations to p„, and

p„ for the case of large y which complement our numeri-
cal results and are considered below. We shall now treat
the dimer and the trimer separately.

III. THE DIMER WITH A SINK

A. Equations of motion

Restricting the transfer to the two sites of a dimer with
V12 = Vz1 = —V(0 one arrives at

iP 1 1 + V(P12 P2i )

1P22= —V(P12 —p») —
1 rP22

'P12 + V(P11 P22) '(r/ )P12+(el e2)P12

1P21
= —V(p» —

P22)
—1(r /2) P21

—(el —e2)P21 .

B. Previously obtained results

(2V—yx 1 )x3 =0 . (13)

For y & 2 V the only solution of Eq. (13) is given by x 3 =0,
whereas for y & 2 V the new solution x1 =2 V/y appears,
resulting in two fixed points with xz =0,
x3=+)/1 —(2V/y) . These points correspond to the
new ground states arising from the polaronic effect which
holds the quasiparticle preferentially at one of the two
sites of the dimer. The solution x3 =0 for g )2 V corre-
sponds to an unstable hyperbolic point at the center of a
separatrix. Into this homoclinic structure the new
ground states are embedded.

Kenkre and Campbell were able to rewrite the system
(12) into a closed equation for the probability difference
x3=p(t)=P, (t) —P2(t). The analytical and numerical
solution leads for the case of the localized initial condi-
tion P, (0)= 1 to the so-called self-trapped states for
~ &4V15

We now turn to investigating the inhuence of the non-
linearity on the trapping process of the exciton in the di-
mer. We shall point out changes in the dynamic proper-
ties due to the trapping rate y.

C. Analytical results for strong trapping

From (7) and (8) we know that strong trapping leads to
the expressions

P12
( /2) P22 Pl 1(

—
)

Ez l

(p, =p*, ) and

(14)

In the absence of trapping, i.e., for y=0 the system
(12) reduces to the nonlinear Bloch equations considered
in Ref. 21. In this case, besides the energy, there is a
second integral of the motion restricting the Bloch vari-
able to the surface of a sphere.

In Ref. 21 the fixed points of the trapless system (12)
were analyzed. One finds that for y=2V a bifurcation is
realized which follows for the symmetric dimer (E, =E2)
from xz =0, i.e.,

Passing to the Bloch variables

+ 1 P12+P21
x2:= i(P12 P21)

P11 Pzz ~

and introducing the norm as a separate variable

P11+pzz ~

one obtains the equations of motion

x, = —(r /2)x, + b,e(t)x2,

x2 = —(r/2)x2 b,e(t)x 1 +2Vx3, —

x3 = —(r/2)(x3 n) —2Vx2—,

(10)

l'V
P22 (P12 P21 )

y

from which an explicit expression for the occupation of
the sink site pzz can be derived. In the case without non-
linearity (y=0) one finds

0 V2 0
P22

( )2+( /2)2 Pll ~

which demonstrates that due to the strong trapping the
occupation of the effectively decoupled sink site is very
small, namely p22-( V/r ) p» «p». The effect of non-

linearity in the perturbation series for strong trapping is
to modify the energy difference in the denominator:

n = —(r /2)(n —x3 )

with be(t):=(e2 —e, )+yx3.
V2

e2 Xpli) +(r/2)' (17)
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D. Numerical results

We have calculated the time dependence of the Bloch
variables in the presence of nonlinearity and trapping by
a direct numerical integration of the nonlinear equation
(1) including the trapping as described in Sec. II B.

Our results are displayed in Figs. 1 —4 for different

FIG. 1. Occupation probability difference x3(t) for the trap-,
less dimer (y=0) and various nonlinear coupling strengths y
(given to the right of the plots). The transition to a self-trapped
state at site 1 (x3 —1) is obvious.

trapping rates y and various nonlinearity parameters y.
We have chosen for all figures a symmetric configuration
(e&=Ez) with V= 1 and the initial condition P&(0)=1.

In Fig. 1 the formation of a self-trapped state for

y ~ 4V is shown. The occupation difference oscillates be-

tween x3= —1 and 1 with mean value zero for y(4V.
For y & 4 it remains in the vicinity of x3 = 1, i.e., the exci-

ton is preferentially located at site 1 of the dimer. For ex-

actly y=4V the initial condition P&(0)=1 is located on

the separatrix between trapped and detrapped states and

approaches a very unstable hyperbolic fixed point ' (due

to the numerical inaccuracies the curve actually shown

corresponds to y a little bit below 4.0).
For both, y and y different from zero we show in parts

(a) of Figs. 2—4 the time dependence of the total occupa-
tion probability n(t) and in parts (b) the occupation
difference x3(t) rescaled with the total occupation proba-

bility.
In Fig. 2 the inhuence of the small trapping rate

y =0.5 is displayed. The total occupation probability de-
cays slowly. Strong nonlinearity (y ) 5) leads to an
effective switching off of the trapping. In this case the to-
tal occupation remains almost constant until t ) 10/V.

In Fig. 3 the intermediate trapping rate @=2 has been
chosen. The lifetime of the exciton in this case is smaller
than for the large trapping rate y =10 (Fig. 4) and in-
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FIG. 2. Total occupation probability n (t} (a) and normalized
occupation probability difference x3(t)/n(t) (b) for a dimer with
weak trapping y=0. 5 and various nonlinear coupling strengths
g (given to the right of the plots). Again the formation of a
self-trapped state for y ~4 can be observed. It is, however, not
stable and decays after some time (t —10 for y =4).

0 10

FIG. 3. Total occupation probability (a) and normalized oc-
cupation probability difference (b) for a dimer with intermediate
trapping y=2. 0. The decay of the total occupation is faster
than for y =0.5. A tendency to form a self-trapped state can be
recognized even for y & 4, but it disappears earlier than for a
small trapping rate.
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IV. THE TRIMER WITH A SINK
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A. Previously obtained results

In the past some attention has been given to the solu-
tion of the nonlinear Schrodinger equation for the trimer.
Preferentially symmetric trimers with symmetric initial
conditions have been studied.

Eilbeck, Lomdahl, and Scott investigated the station-
ary solutions of the symmetric cyclic trimer (Fig. 2 in
Ref. 14). They derived a bifurcation point and discussed
the stability of the obtained solutions. Kenkre with his
collaborators were able to obtain an equation for the
probability difference x3 =p (t) =P, (t) —2P2(t) for a sym-
metric trimer with symmetric initial conditions. '
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10
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FIG. 4. Total occupation probability (a) and normalized oc-
cupation probability difference (b) for a dimer with very strong
trapping y=10. The total occupation falls off slower than for
intermediate trapping rates. The oscillations of the occupation
differences have disappeared and the exciton is almost com-
pletely localized at site 1. The influence of the nonlinear cou-
pling is very small.

creases further as the trapping becomes stronger. This is
due to the effective decoupling of the sink site which be-
comes important for y)4. It leads to a very large
difference in the occupation probabilities of the sites 1

and 2.
A concise inspection of the probability difference

P, (t) —P2(t), scaled to the whole occupation probability
[Figs. 2(b) —4(b)] reveals, that for growing trapping
strength the transition to the self-trapped state takes
place for y (4V already [but compare Fig. 2(b) in the pa-
per by Tsironis, Kenkre, and Finley' ]. It is formed at
the beginning of the time development and after some
time it disappears. The self-trapped state is not stable be-
cause the whole probability decays completely [P(t)~0
for t ~ ~ ]. Self-trapping leads to a considerable
enhancement of the lifetime of the exciton, e.g., for inter-
mediate trapping rates (Fig. 3) and strong nonlinearity
g=6 it is approximately four times longer than in the
linear case g=0.

A very large trapping rate removes the inhuence of the
nonlinearity almost completely (Fig. 4). The transfer
probabilities for the exciton are reduced so much, that
the occupation probability P2(t) is very low and the de-
cay of the whole occupation probability P (t) is almost in-
dependent on the nonlinearity parameter y.

x 1 ' P12+P21

X2' 1(P12 P21)

x3' P11 P22

x4 p3i+pi3 ~

XS:='(P13 P31)

x6:=P23+P32

x 7 ' 1(P23 P32 )

(18)

xs: Pii P33

x9-'=P22 P33 ~

Pl i+P22 ~

P11 P22 P33

In addition to a set of linearly independent variables we
have introduced x9=x8 —x3 as well as the occupation
sum of the sites 1 and 2, n and the total trimer occupa-
tion N. The variable n will be useful for considering the
sink infIuence at site 3. We obtain the generalized system
of Bloch equations

x, =+(e2 —6', )x2 —V'x5,

x2 =+(e,—6'2)x, + V'x4+2Vx3,

x3 = —2Vxz+ V'x7,

x4=+(e3 61)x5+ Vx7 V x2 (y/2)X4,

X5 +(El E3)x4 Vx6+ V x1 (A/2)X5

X6 +(~3 ~2)x7+ VX5 (y~2)x6 (19)

B. Equations of motion

We consider a trimer (chain of three sites) with
V,2=V»= —V and V&3 V32= —V'&0. A sink is in-
troduced at site 3. Similarly to the case of the dimer one
can pass to generalized Bloch variables x

& 8 containing
also the variables x, 3 which were previously introduced
for the dimer. The procedure of introducing the general-
ized variables x, 8 is explained in the Appendix. One
obtains
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x7 =+(e2 —e3)x6 —Vx4+2V'x9 —(y/2)x7,

xs = —Vxz+ V'x7 —(y/3)(N —x8 —x9),
x9 =+ Vx2+2V'x7 —(y/3)(N —xs —x9),
ri = —V'x7,

N= —(y/3)(N —xs —x9) . RRw/x~~~m~~~~

C. Analytical results for strong trapping

According to (7) and (8) strong trapping leads to

1
Pi3 = ( VPz3 V'—P iz),i&3 l 'y /2

1
P~3

= . ( V'P33 V P22+ VP13),
F~

—
E3

—l' y/2

and

&V'
P»= (P23

—P3z) .
y

(20)

(21)

(22)

P w~
10 15 20 25 30 35 40 45 50

(b)

This means that all density-matrix elements with one in-
dex 3 are of the order 0( V/y ) and therefore small, P» is
even of order 0( V /y ). Keeping only terms of leading
order one can express x4 7 through x, 3 and obtain a
closed system of equations for the latter:

x i
= —(y/2)x, + (e2 —e, )x2,

x2 = —(y/2)x~ —(e2 —e, )x, +2 Vx3,

x3 = —(y/2)(x3 n) —2—Vx2,

ii = —(y/2)(n —x3) .

(23)

(2 V')'y:= (24)

The effective sink rate y in Eq. (24) becomes small com-
pared to V' for y » V' and this shows again that the sink
site in the trimer is effectively decoupled in this case.

Comparing this to (12) we notice that the equations of
motion for the trimer reduce for very strong trapping to
the dimer equations with the effective sink rate

0 5

0 5

10 15 ?0 ?5 30 35 40 45 50

(c)

10 15 20 25 30 35 40 45 50

(d)

D. Numerical results

We have calculated numerically the time dependence
of the site occupation probabilities in the presence of
trapping and of a nonlinearity. With respect to the non-
linearity we consider two different cases:

Configuration (I): The nonlinearity y is the same for
all three sites;

Configuration (II): The sink site is linear, i.e.,
g3 0. Our data were obtained through a nu-

merical integration of the nonlinear Schrodinger equation
(1). We have chosen for all figures V= 1 and the initial
condition P, (0)=l. The sink influences site 3. In the
analysis we will concentrate on self-trapping, the decou-
pling of the sink site for large y and regular vs chaotic
time dependences.

A moderate nonlinearity (up to y —2) has little
influence on the decay of the exciton (Fig. 5). As for the

0 5 10 15 20 25 30 35 40 45 50

FIG. 5. Decay of an exciton on a trimer with small nonlinear
coupling g=2.0 for different sink rates and configurations: (a)

y =0.2, conf. (I); (b) y =0.2, conf. (II); (c) y =2; (d) y= 10, both
conf. (I). Conf. (II) shows irregular behavior for a small sink
rate due to the destruction of symmetry (b). For a larger sink
rate conf. (II) is not displayed because it behaves very similar to
conf. (I). Comparison of (c) and (d) shows the decoupling of the
sink site for large y.
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The nonlinearity effects must decrease for large time
since the occupation probabilities entering the effective
site energies (4) then become negligibly small.

In contrast, the lowering of the occupation p33 due to
strong trapping does not depend on time. The sink site is
almost decoupled and the behavior of P j and P2 can be
interpreted as a perturbed dimer [Figs. 5(d), 8(a), and
8(b}]. We note the interesting effect, that the time depen-
dence looks quite regular as well for y & 3 [Fig. 5(d)] as
for y ~ 5 [Fig. 8(b)] but much more chaotic for y =4 [Fig.
8(a)]. We relate this to the fact, that for y=4 the initial
condition P&(0)=l is just on the homoclinic orbit (cf.
Fig. 1) which encloses the self-trapped states for the sys-
tem without trap. Time evolution will therefore take the
system in the perturbed dimer very close to the hyperbol-
ic 6xed point where it is very unstable and as a result one
observes chaos (see Ref. 21).

In the last Fig. 9 we present a numerical check for Eq.
(24). We compare the time evolution for a trimer with
the large sink rate y=10 (full lines) to a dimer with
@=0.4 (dots) according to this equation. We find good
agreement in particular for y =0 (a). For y =3 the result
is still reasonable, but not as good as in (a) since (24) was
derived also under the assumption y &&g.

0 5 10 15 20 25 30 35 40 45 50

t

(c)
(a}

0 5 10 15 ?0 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

(d)

AR~rm~.

0 5 10 15 20 ?5 30 35 40 45 50

FIG. 7. Formation of a self-trapped state for a trimer with
the small sink rate y=0.2: (a) y=3, conf. (I), (b) g=3, conf.
(II), (c) y=4, and (d) g=5, both conf. (I). For conf. (II) self-
trapping on the dimer occurs for smaller nonlinearities. The
self-trapped state on the dimer in (c) disappears for t ~ 35.

0 5 10 15 20 25 30 35 40 45 50

t

FICi. 8. Transition to a self-trapped solution on site 1 for
strong trapping y =10. The nonlinear coupling is {a)y=4 and
(b) y=5. The self-trapped state is unstable for t ~ 30. The oc-
cupation of site 3 is always very small, it is effectively decou-
pled. The time dependence for y=4 is very irregular.
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reduced so much that the lifetime even increases with
growing sink rate. For small trapping rates there was a
clear change in the behavior when the nonlinearity of the
sink was dropped, while this e6'ect was suppressed by the
effective decoupling of this site for strong trapping.

ACKNOWLEDGMENTS

15 26 Support by the Deutsche Forschungsgemeinschaft
(DFG) is gratefully acknowledged. One of us (I.B.)
wishes to thank the Deutscher Akademischer Austausch-
dienst (DAAD) for support and the Humboldt Universi-
ty, Berlin for the kind hospitality.

APPENDIX: GENERALIZED BLOCH REPRESENTATION
FOR THE TRIMKR

0 5 10 15 ?,0

t

FIG. 9. Reduction of the trimer with strong trapping to an
effective diner with weak trapping. The full line shows the oc-
cupation probabilities of the sites 1 and 2 for a trimer with
y=10 and (a} y=0, (b} y=3. The dots show according to Eq.
(24) the corresponding effective dimer with the sink rate y =0.4.

0
01—

1

1 0 —i 1 0
0 ' 2 i 0 ' 3 0 —1

(A 1)

which are the generators of the Lie algebra SU(2). In this
case one defines

The Bloch variables for the dimer are derived from the
state vector c =(c„c2) by employing the Pauli matrices

V. CONCLUSIONS
x;:=c o;c (i =1,2, 3) . (A2)

In the present paper we studied the combined effect of
trapping due to a sink and transport nonlinearity due to
excitonic-vibronic interactions on the transfer dynamics
and the lifetime of an exciton. The specific systems we
have analyzed were the dimer and the trimer with a chain
topology. A sink was introduced at one end of the
configuration using the formalism given in Ref. 7. The
initial condition for the numerical integration of the
DNLSE was always a state localized at the end opposite
to the sink site.

The main effect of the nonlinearity is self-trapping. In
the dimer with sink a tendency to form a self-trapped
state could be observed for y(4V, i.e., for smaller non-
linearity than in the isolated dimer. In the trimer self-
trapping on the sinkless subdimer for an intermediate
nonlinearity was found besides states which are localized
on one site only for strong nonlinearity. The transition to
a self-trapped state was accompanied by relatively irregu-
lar time dependencies. Though self-trapping was
enhanced by the sink for short times, the decay of the to-
tal occupation probability destroyed the localized states
for long times. Self-trapping was shown to have a crucial
inAuence on the lifetime of the excitation which grows for
increasing nonlinearity.

For large sink rates the sink site becomes effectively
decoupled as it was shown using an asymptotic approxi-
mation and in this case the occupation of the sink site is

Analogously, one derives generalized Bloch variables for
the trimer from the state vector c =(c„c2,c3) using the
Gell-Mann matrices A,;, which are generators of the Lie
algebra SU(3), in the form

0
'0
0
1

1 0 0
0 0, Az= i

0 0 0

0
0 0, A5= 0
0 0 l

—i 0
0 0
0 0

0 l

0 0
0 0

1 0 0
0 —1 0, ,
0 0 0

0 0 0
0 0 1

0 1 0

0 0 0 Q 0 0 0 0
0 0 —i, A 8= 0 0
0 i 0 0 0

0 0 1 0
0 0 —1

They generate the variables

x. =c+k.c (i =1 9) (A4)

These variables x, are by definition real. We have chosen
ks in a modified form convenient for our calculations and
added A, 9 which is linearly dependent (A,9=A,s

—
A,3). Our

variables xs and x9 are therefore generalizations of the
variables x 3 and have the form of differences between oc-
cupation probabilities.
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