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The structural and electronic properties of expanded liquid rubidium are studied at 350 K, near
the triple point, and 1400 K by means of a first-principles molecular-dynamics (MD) simulation,
where the Kohn-Sham energy functional is minimized for each ionic configuration of the MD step
using the preconditioned conjugate-gradient method. The results for the static structure at both
temperatures and the diffusion coeKcient near the triple point are in good agreement with exper-
iments. While near the triple point the electron density p(r) spreads over whole space, at high
temperature p(r) tends to localize due to a large spatial fiuctuation of atomic density. The electron-
ion correlation function is calculated using p(r) and its temperature dependence is discussed.

I. INTRODUCTION

Interest in the study of structural, dynamic, and elec-
tronic properties of liquid alkali metals arises from the
following two points: (1) collective behavior of ions im-
mersed in the sea of electrons, and (2) the correlation
between conduction electrons and the highly disordered
state of ions. The dynamic properties of liquid alkali met-
als have been extensively investigated by means of clas-
sical computer simulations and approximate theories
to complement recent experimental progress. We have
also studied the dynamic correlation functions and the
associated memory functions of liquid sodium by means
of a molecular-dynamics (MD) simulation and a mode-
mode coupling theory. However, these theoretical stud-
ies used the effective pair potentials for ions based on the
pseudopotential theory, where the interaction between
conduction electrons and ions is treated by second or-
der perturbation. Thus ion-ion correlation functions were
discussed, but not electron-ion correlations.

However, the recent remarkable progress in theoreti-
cal studies of electron states of condensed matter makes
it possible to combine the electronic structure calcula-
tion and the MD simulation. Since the pioneering theory
was invented by Car and Parrinello, various theoretical
methods have been proposed. In almost all studies us-
ing these methods, which are often called first-principles
or ab initio MD simulation, the electronic structure is
calculated within the Born-Oppenheimer approximation
which separates the degrees of freedom of ions and elec-
trons. Typically the plane-wave pseudopotential formu-
lation is used, within the local density approximation
to density functional theory. Since the forces acting on
ions are calculated from first principles via the Hellmann-
Feynman theorem, ionic trajectories are obtained nonem-

pirically. In principle, we can numerically investigate
the correlations between the electronic structure, such
as electron density distribution, and the disordered ionic
configuration in liquid metals.

For liquid alkali metals, several first-principles dynamic
simulations have been reported. Qian et al. i2 first cal-
culated the activation energy for self-diffusion in liquid
sodium, using the Car and Parrinello method. They
showed that the coeFicient of self-diffusion and the acti-
vation energy were in good agreement with the experi-
mental values. Bylander and Kleinman also performed
a first-principles MD simulation for liquid sodium, using
an iterative technique for the electronic structure calcu-
lation rather than the Car-Parrinello method. They ob-
tained the diffusion coeKcient and pressure as a function
of the temperature and volume. Theihaber presented a
scheme for dynamic simulation based on time-dependent
density functional theory, and used it for calculating var-
ious properties of solid and liquid sodium. Lynch et al.
have computed the pair distribution functions and the
diffusion coefFicient for liquid lithium, sodium, and potas-
sium, using the semiempirical extended Huckel method
as well as using the local density functional theory. Fo-
ley, Smargiassi, and Madden have calculated the dy-
namic structure factor of liquid sodium based on a mod-
ified Car-Parrinello method using an orbital-free density
functional. More recently, Cabral and Martins have
simulated several states of liquid rubidium and cesium
with first-principles MD, which is similar to the method
used in this paper. They have found that the pair distri-
bution functions and the diffusion coefFicients obtained in
the simulations are in good agreement with experiments.

In the present paper, we report on the results of our
first-principles MD simulation for expanded liquid rubid-
ium. The purposes of this paper are as follows: (i) to ob-
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tain the static and dynamic ion-ion correlation functions
of liquid rubidium from first-principles calculation, (ii)
to compare the structural results obtained by our simu-
lation with the neutron scattering experiment, and (iii)
to elucidate the relation of the electronic structure to the
characteristic features of ionic structure of expanded liq-
uid metals along the liquid-vapor coexistence curve.

There are two reasons to study liquid rubidium. (1)
Among expanded liquid alkali metals, liquid rubidium
has been studied by experiments most extensively. Neu-
tron scattering experiments reporting the static and
dynamic structure factors have been performed over a
wide range of temperatures from the triple point up to
the liquid-vapor critical point. (2) Expanded liquid ru-
bidium has been extensively studied theoretically by clas-
sical simulations and approximate theories, and so
we can compare our results with those results.

In Sec. II the method of first-principles MD simulation
used here is briefly described, with more details appear-

ing in the Appendix. The results of our simulation and
discussions are given in Sec. III. Finally, Sec. IV summa-
rizes our work.

II. METHOD OF CALCULATION

According to density functional theory, the total
ground-state energy of a system of interacting electrons
and ions is a unique functional of the electron density
p(r). In terms of occupied Kohn-Sham (KS) orbital

(r), the charge density p(r) can be expressed by

OCC

p(r) = 2) .f-I&-(r) I'
m

where f is an occupation number of the mth state, and
the factor of 2 stands for double-spin occupancy. The KS
total-energy functional can be written as

E[(g~},(Rr},(f~}]= 2 ) f~ l

@* (r) ——V' Q (r)dr + Q' (r)Ve„t(r)g (r)dr
l

j' . 1

(2)

where V,„t(r) is an external potential, E„,[p] the
exchange-correlation functional, and Zy the valence of
the Ith ion. Only the minimum value of the KS energy
functional has physical meaning. At the minimum, the
KS energy functional is equal to the ground-state energy
of the system of electrons with ions in position (Ri }.

In our simulation, the KS energy functional is min-
imized after each MD step using an iterative scheme
based on the preconditioned conjugate-gradient method.
This type of MD simulation is usually called conjugate-
gradient molecular dynamics (CG-MD), which was re-
cently developed by several authors. While some au-

I

thors employ a band-by-band scheme, we use the all-band
technique in our calculation, because it provides rapid
convergence and consists of several simple steps. ' For
preconditioning, we use a modified version of Fukumoto's
method. 3~

In applying the first-principles MD simulation to liquid
metals, the fractional occupancy of each state must be
taken into account, as was introduced by Gillan. When
the variable occupation numbers are explicitly included,
it is required that an additional term be added to the
energy functional:

F[(@-}(Rr} (f-}]= E[(@-}(Rr} (f-}]+ &E
= E[(@ },(Rr},(f }]+ k~T, ~ ) (f ln f + (1 —f ) ln(1 —f )}

where E is the Kohn-Sham energy functional Eq. (2), k~
the Boltzmann constant, T ~ the Fermi temperature, and
f the &actional occupation number of the one-electron
state @ . We minimize this functional, taking into ac-
count the efFect of the fractional occupation.

Though Eq. (3) is formally the same as the free en-
ergy in finite temperature density functional theory,
the additional term AE is introduced so as to make the
energy functional behave properly when fractional occu-
pancies are allowed and, therefore, LE and T ~ should be
considered as disposable parameters rather than physical
quantities.

In this calculation we use the norm-conserving pseu-

I

dopotential proposed by Troullier and Martins. The
s component is treated as a local potential, while the
p component is treated as a nonlocal potential using
the Kleinman and Bylander form. For the exchange-
correlation functional, the parametrized form of Perdew
and Zunger is employed. The core corrections 9 are not
considered in our simulations.

Using the Nose-Hoover thermostat technique, ' the
equations of motion are solved via the velocity Verlet
algorithm with time step Lt = 2.4 x 10 s. The super-
cell contains 54 rubidium atoms with periodic boundary
conditions. Two simulations are carried out at difFerent
densities along the liquid-vapor coexistence curve: one
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at 1.459 g/cm and 350 K near the triple point and the
other at 0.970 g/cm and relatively higher temperature
1400 K. These densities correspond to supercell sizes of I
= 17.38 and 19.92 A. , respectively. Only Bloch functions
at the I point are used and the KS orbitals are expanded
in plane waves with an energy cutoff of 6 Ry, which leads
to 8829 and 13205 plane waves at 350 K and 1400 K,
respectively.

The electronic energy minimization by the all-band
conjugate-gradient method is terminated after the quan-
tity

~

(P("+ ) —E( ) ) ~/~P(")
~

becomes smaller than 10
where n is the iteration number. However, at higher tem-
perature, the convergence rate of the energy functional
becomes worse due to the large displacements of ionic
positions. This difEculty comes from the difference of
the length of the gradient vector for each band, which is
defi.ned as

I

(a)
350K

~~L~~"2 6
r (A)

10

g{n) (II (n))@(n)

In reported all-band calculations, the preconditioner can
adjust the length of each g~ to the same order as well(n)

as change the direction of each g to point to the min-
irnum of the energy functional. In disordered systems,
especially in liquid metals, it sometimes happens that
the wave functions of a few bands are far from their re-
spective eigenfunctions. In order to solve this problem,
we employ a combination of the all-band method and
the band-by-band method. For each all-band iteration,
an additional specified band minimization is carried out
so that errors of all bands are of the same order. Using
this stabilizing procedure, our CG-MD technique is well
suited to calculate the electronic structure of disordered
systems. From near the triple point up to the critical
point, our calculation is quite stable.

In any CG-MD simulation, the initial charge den-
sity is also important. In our calculation, it is esti-
mated by extrapolating the charge density at previous
steps. Moreover, the initial wave functions are esti-
mated from the wave functions at previous steps by sub-
space diagonalization.

As an initial configuration of ions for first-principles
MD simulation at each temperature, we use the final re-
sult of a classical MD simulation based on the effective
pair potential generated from the pseudopotential per-
turbation theory. The system is equilibrated during the
initial 1 ps in every simulation. The quantities of interest
are obtained by averaging over about 3 ps after this equi-
libration. During the simulations, the conserved quanti-
ties in the Nose-Hoover dynamics are kept constant with
fluctuation being less than 1 mRy.

— (b)

1400K
1.5—
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Franz et al.
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FIG. 1. Pair distribution functions g(r) at 350 K (a) and
1400 K (b). Solid line shows g(r) obtained by this calculation,
and the dashed and dotted lines show the experimental results
of Franz et aL (Ref. 18) and Waseda (Ref. 42), respectively.

III. RESULTS AND DISCUSSION

A. Pair distribution function

In Figs. 1(a) and 1(b), we compare the calculated pair
distribution functions g(r) at 350 and 1400 K, respec-
tively, with the experimental results. ' The calcula-
tion of g(r) is extended up to distances equal to the half-
diagonal of the supercells. From these figures, we see

—0.50
I 1 I I I I I 1 I I I

0.5
t (ps)

FIG. 2. Velocity autocorrelation functions at 350 K (solid
line) and 1400 K (dashed line).
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tion function (VAF) and the mean square displacement

From Fig. 2, it is seen that the VAF at 350 K shows an
~ ~

1
oscillating e avior, while it decreases monotonicall t

400 K. The oscillating behavior of VAF near the triple
point was also observed in the classical MD simulation
by Tanaka, although his result showed that the ampli-
tude of oscillation is smaller and the oscillation continues
to longer time than the present VAF. The self-di8'usion
coeKcient D is one of the most important transport coef-
ficients, and can be obtained from the integration of VAF
or from the slope of MSD in a long time region, where
MSD is proportional to 6Dt. The values of D obtained
at 350 K are 2.4 x 10 s and 2.6 x 10 cm /s &om MSD
and VAF, respectively, which are in reasonable agreement
with the experimental value 2.5—3.8 x10 cm /s.

Near the triple point each rubidium ion is surrounded

(5 )') fy a cage of otner ions, the members of which remain
the same for a relatively long time interval, like ions in
a solid. Each ion shows thermal vibrating motion in the
cage, which causes the vibrating behavior of VAF as dis-
played in Fig. 2. On the other hand, at 1400 K, we can
expect rubidium ions to move more freely, because the vi-
brating behavior of VAF is absent and the large diffusion
is observed in MSD. It should be noted, however, that we
can see highly correlated motion of ions even at 1400 K
from trajectories of ions. The discussions of the atomic
dynamics related to the electron density distribution will
be presented in the next subsection.

C. Electron density distribution

Figures 4 and 5 show snapshots of contour plots of the
pseudovalence electron density distributions p(r) at 350

FIG. 5. Contour lots of the va
d

p s o he valence electron density distribution p~r~ at 1400 K. The
with equal distance, and p(r) on the 1on e p anes are plotted. The contour lines a

p~r~ a . e supercell is cut by four parallel planes

lines mean p = 1 x 10 a.u.
r ines are drawn xn interval, 2 x 10 a.u. The dashed
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and 1400 K, respectively. The supercell is cut by four
parallel planes with equal distance, and p(r) on these
planes are plotted from the bottom (a) to the top (d) of
the supercell. The contour lines are drawn in intervals
of 2 x 10 a.u. in both figures. The dashed lines mean
the average electron density p = N, ~/V = 1.5 x 10 s and
1 x 10 a.u. in Figs. 4 and 5, respectively, where N, ~ is
the number of electrons and V the volume.

As expected, we see from the figures that the fluctu-
ation of atomic density becomes large with increasing
temperature, that is, the rubidium ions distribute ho-
mogeneously at 350 K, while at 1400 K there are wide
areas where no ions are found, and the ions distribute
in other areas. It is also found that the valence electron
density distribution p(r) at high temperature is very dif-
ferent from that near the triple point. As shown in Fig.

4, near the triple point p(r) spreads over all space except
in the neighborhood of atomic positions, since the core
states are not taken into account in p(r). On the other
hand, at high temperature p(r) tends to localize due to
the large spatial fluctuation of atomic density. Figure
5 shows that the electronic charge piles up in the areas
where the ions come together, which are recognized by
dense contour lines.

In order to clarify the change in p(r) with increasing
temperature, we calculate an artificial electron density
p (r) by superposing the pseudovalence electron densi-
ties obtained &om the pseudized atomic 58 wave func-
tion, and obtain the difference hp(r) = p(r) —p (r) as
shown in Figs. 6 and 7, where contours are plotted for
bp(r) ) 0 since the areas for h' p(r) ( 0 are only near
the atomic positions and drawing contours in these areas

FIG. 6. Contour plots of the difference, hp(r) = p(r) —p (r), at 350 K, where p(r) is the valence electron density obtained
self-consistently and p (r) is an artificial electron density obtained by superposing the atomic Ss electron densities. The contour
lines are plotted for hp(r) ) 0 with interval, 1 x 10 a.u.
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makes the figures confusing. The contour lines are drawn
in intervals of 1 x 10 a.u. By comparing Fig. 6 with
Fig. 7, it is seen that bp(r) at 350 K spreads and has
small values, while b'p(r) at 1400 K are extremely large
[indicating a large p(r) as shown in Fig. 5] in a narrow
region, where a few ions come together.

It is interesting to discuss the electron density dis-
tributions as already shown in Figs. 4—7 in connection
with atomic dynamics, which was discussed in the pre-
ceding subsection. Near the triple point, each rubidium
ion in the liquid is surrounded by other ions, which sel-
dom change. In p(r), a homogeneous distribution is ob-
served, and this distribution does not change much with
time. On the other hand, at 1400 K, binarylike colli-
sions at short distances are observed. We can see p(r)
at the instant of the collision in Figs. 5 and 7, that is,
the extremely large bp(r) and p(r) between the two ions.
The large inhomogeneity in p(r) is not only caused by

thermal fluctuations but is also related to the fact that
there are few ions around a central ion with the distances
of about 5 A. The latter can be understood as follows.
The values of p(r) at 1400 K along the line between two
ions with a distance of about 5 A. are almost the same as
those at 350 K, which means the local electronic struc-
ture at high temperature is not diferent &om that near
the triple point. As the density decreases with increas-
ing temperature, rubidium ions become surrounded by
some ions at distances of about 5 A. in order to keep the
local electronic energy low, which causes the decrease of
the coordination number and the large inhomogeneity in
p(r).

D. Electron-ion correlation function

The correlation function. between the valence electrons
and ions is defined as

(c) (d)
FIG. 7. Contour plots of the difference, 8p(r) = p(r) —p (r), at 1400 K. The contour lines are plotted for bp(r) ) 0 with

interval, 1 x 10 a.u.
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(5)

where (n„(r)) is the average number of valence electrons
in a spherical shell, centered on an ion at the origin, with
a thickness Ar Rom r —b, r/2 to r + Ar/2. The brackets

( . .) denote the average over all ions. The electron-ion
correlation function g„(r) i.s interesting not only theoreti-
cally but also experimentally, since it can be estimated by
comparing the structure factor obtained by neutron scat-
tering with that of x-ray scattering. Recently, two of us
calculated g„.(r) of liquid sodium near the triple point
within the linear screening approximation based on the
pseudopotential theory and discussed its characteristic
features in comparison with the experimental results.

In Fig. 8, we show the g„(r) of t.he liquid rubidium at
350 K (solid line) and 1400 K (dashed line) calculated by
Eq. (5) using the electron densities shown in the preced-
ing section. At both temperatures, the position of the
first peak of g„(r) is abou. t 2.1 A. , which corresponds to
the middle point of the average distance between neigh-
boring pairs of ions and is larger than the position of the
peak of the atomic 5s electron density, 1.8 A. . It was also
pointed out in the previous work that the Grst peak of
g„(r) comes . from the first peak of the screening charge
density around an ion and the position of the first peak
shifts outward in comparison with that of the atomic va-
lence electron density. The position of the Grst minimum
of g„(r) is almost the same as that of the first peak of the
ion-ion pair distribution function g(r), since the valence
electron density p(r) does not include the core states and
therefore has a low value in the core region of each ion.

As for the temperature dependence of g„(r), we can
see the following characteristic features: (i) The positions
of the first peak and the first minimum of g„(r) do not
change with increasing temperature. This feature results
from the fact that the position of the first peak of g(r)
of expanded liquid alkali metals does not change when
the temperature is increased &om the triple point to the

~ / ~

l
f / ~

t
I / ~

)
~ $ ~

critical point along the liquid-vapor coexistence curve.
(ii) With increasing temperature, the first peak of g„(r)
becomes higher and the second peak becomes less clear,
which suggests that the distribution of valence electrons
is more localized between ions at higher temperature.
(iii) The average number of valence electrons in a sphere,
centered on an ion at the origin, with a radius r; can
be estimated by N, (r„) = Jo "4mr pg„(r)dr. If r„is.
taken to be r~s, where r~s is the radius of the efFective
Wigner-Seitz (WS) sphere and is equal to the electron-
sphere radius r„ then N, (rws) = 1.09 and 1.37 at T =
350 K (rws = 2 85 L) and T = 1400 K (rws = 3.27 A)
respectively. The radii r; which give rise to N, (r„)=.
1 are almost the same irrespective of temperature, i.e.,
2.8 A. at 350 K and 2.9 A. at 1400 K, which are larger
than the position of the first peak of g„(r), 2.1 A. . While

r,- Is almost equal to r~s near the triple point, r,.(i) ~ ~ ~ (~)

deviates &om r~s at higher temperature, on account of
the localized nature of valence electrons due to a large
spatial fluctuation of ionic density.

IV. SUMMARY

The temperature dependence of the structural and
electronic properties of expanded liquid rubidium is stud-
ied by means of a first-principles molecular-dynamics
simulation, in which the Kohn-Sham energy functional is
minimized for each ionic configuration, using the iterative
scheme based on the preconditioned conjugate-gradient
method. Our simulations are carried out at 350 K, near
the triple point, and 1400 K.

The radial distribution functions at both temperatures
and the difFusion coefBcient near the triple point are in
good agreement with experiments. It is shown that while
near the triple point, the electron density distribution
p(r) spreads over all space, at high temperature, p(r)
tends to localize due to the large spatial fluctuation of
atomic density. Some discussions on the electron den-
sity distributions in connection with atomic dynamics are
given. The electron-ion correlation function is calculated
using p(r) and the characteristic feature of its tempera-
ture dependence is discussed.
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APPENDIX

In this appendix we describe the CG-MD scheme which
was employed in the calculations presented in this paper.
Probably the most well-known CG method in reciprocal
space is the band-by-band type CG method developed
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and successfully applied by Teter, Payne, and Allan.
One of the characteristic features of this method is the
use of a simple preconditioning process in the minimiza-
tion; i.e., the following matrix is applied to the steepest
descent vector g

(n)

(~) 27+ 18'+ 12x + 8x
27 + 18x + 12x2 + 8xs + 162:4

(71 )
G,G'

(n)EG G I

Itc gg + (I K~ CI)Tm /Q
(n) (~) (~) (A2)

where n is a scaling parameter. In Eq. (A2), we use
the average of the kinetic energy for o.,

where x =
z ~k+ G

~
/Tm, and T

= f ( 1(
"

~

—2V'
~
g ) is the kinetic energy of the

state @
" . Keeping the wave function orthogonal to both

the gradient and the conjugate direction, the band-by-
band calculation has two steps; the local iteration to up-
date a single band, and the global iteration. In each iter-
ation, we need to calculate the nonlocal pseudopotential,
which. is the most time consuming part, and therefore it
is expensive unless the separable form is used in the
pseudopotential calculation.

On the other hand, in an all-band calculation, an up-
date procedure is simple in the sense that all of the wave
functions are updated only by the global iteration. How-
ever, Fukumoto pointed out the diKculty of the above
preconditioning process when we apply it to the all-band
type calculation, because the length of each precondi-
tioned g is not of the same order. He proposed a
simple modification of the preconditioner to improve the
convergence of the all-band calculation,

this hyperbolic trigonometrical function, because we fre-
quently come across numerical Quctuations in an all-band
calculation, especially for a disordered system. 3

The updated wave functions are given by

y(n+1) ~~ y (n) + p(n) h (n)
j (A6)

where C)A' is the normalization operator together with
Gram-Schmidt orthogonalization, and the scalar A( ) is
obtained by a one-dimensional minimization along the
orthonormal constraint line. In our energy minimiza-
tion, the convergence of each band is checked. Although
our CG is based on the all-band method, additional spe-
cific band minimization is applied to states which do not
reach convergence. This minimization is carried out with
a fixed Hamiltonian for the nth iteration. When we use
the fractional occupation number f, it is necessary to
obtain the eigenvalue c ",which is obtained from the di-
agonalization of the Hamiltonian matrix in the subspace
spanned by the updating wave functions:

(A7)

Using Eqs. (4), (A4), and (A6), the wave function and
the potential are updated. This process guarantees the
correct occupation number for each eigenstate. Besides,
to avoid charge sloshing, we use Kerker's simple mixing
scheme. In our experience, it is quite suKcient, and
more sophisticated schemes are not necessary.

In the MD simulation, this CG energy minimization
based on the all-band method is used for each MD step.
In order to reduce the number of iterations in each mini-
mization, we extrapolate the wave function for the initial
guess at the next time step t +~, using the values of the
wave functions at t and t

OCC

(A3) @ (t +~) = 2'{(' (t ) —@ (t —~) . (A8)

The conjugate-gradient directions h, are given by

h(n) g (n) (n) + p(n) h(n 1)—
where the mixing ratio P( ) is taken as

(A4)

In Eq. (A8), g (t„) and Q (t„~) denote the wave func-
tions which can be obtained by the unitary transforma-
tions in the respective subspaces spanned by (g (t ))
and (g (t q) j, so as to minimize the difference be-
tween two sets of wave functions S:—P f ~

~vP (t„)—
(t q)~~2.

2s In addition to the wave functions, the
charge density for the initial guess is also extrapolated
to first order,

and P(') =O.

( —
)~ ( —

))~

(A5)
&(t +~) = 2&(t ) —&(t —~) . (AO)

In this expression, g' ) = K( ) g . It is necessary to
maintain the value of P( ) to be less than unity using

By these extrapolations we can reduce the average num-
ber of iterations: Two to four iterations were used in our
calculations.
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