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Sixteen [0011 twist boundaries in CusAu spanning a wide range of misorientation angles are
investigated at T = 0 K using the molecular dynamics and Monte Carlo techniques within the
framework of the coincident site lattice approach. Grain boundary (GB) energies vary smoothly
with misorientation angle and are described satisfactorily by formulas derived from the theory of
dislocations. The equilibrium volume expansion at the GB, and relaxations parallel and normal to
the GB plotted against misorientation angle 8 all follow Read-Shockley type behaviors. The energies
of the unrelaxed GB's are found to be essentially independent of misorientation angle. The structure
of low-angle GB s is found to be in agreement with theoretical expectations. Relaxation parallel
to the GB works complementarily to relaxation normal to it so as to optimally fix the destroyed
stacking at the GB due to twist.

I. INTRODUCTION

Dislocation models have long been known to provide
a good description of the structure, energy, and phys-
ical properties of low-angle grain boundaries (GB's) in
terms of dislocation arrays (edge dislocations for pure
tilt GB's or screw dislocations for pure twist GB's). This
theoretical approach, however, breaks down for misori-
entation angles greater than 15 to 20, above which
dislocation cores start to overlap and there ceases to be
a meaningful distinction between a dislocation's strain
Beld (which is described by linear elasticity theory) and
the core region. Moreover, within the framework of the
coincidence site lattice (CSL) approach there have been
many arguments concerning the occurrence of cusps in
the energy vs angle curves of twist GB's (among others,
Refs. 1—3). Whereas in the case of tilt boundaries such
cusps have been demonstrated to occur centered around
specia/ misorientation angles, the situation is not as clear
with twist GB's. It seems that the occurrence or not of
such cusps is determined to some extent by the potential
used in the calculations and that the smoother the po-
tential used, the smaller the cusps observed. ' Based on
the limitation to low-angle GB's there are two basic ap-
proaches to obtaining a first-principles formula describing
the GB energy, p, as a function of misorientation angle

(i) The Read-Shockley (RS) approach and (ii) the
Van de Merwe (VM) (Ref. 6) approach. Attempts have
also been made to describe cusps within the framework
of linear elasticity and secondary dislocations.

The basic relationship obtained by the RS approach
1s

Since for low angles 2 sin — 0, we can write the above8

as
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where po is a constant that depends on the elastic con-
stants of the material. For twist GB's pp

——Kb/2vr, where
K is the shear modulus. For crystalline systems K is
given by elasticity theory of anisotropic media. 6 is the
magnitude of the Burger's vector of the dislocations. Pa-
rameter A = ln(2' "

) depends on rp, an effective radius
defining the extent of the core of the dislocations. The
energy contribution of the inelastic strain field inside the
dislocation cores is ignored. This approximation is justi-
fied in the low-angle limit since the spacing D between
consecutive dislocations (given by Frank's formula and
discussed below) is large enough compared to rp. The
RS formula is derived based on linear elasticity theory
of continuous media in the sense that it ignores the dis-
creteness of the lattice in the region of the GB. The RS
formula describes GB energies well for misorientation an-
gles 0 ( 5, deviating considerably from experimental
results at higher angles.

At the same time as Read and Shockley, Van de Merwe
derived a similar formula based on the Peierls-Nabarro
dislocation model. Stresses normal to the boundary are
ignored (as they are in the RS approach). The formula
for the energy for a twist boundary is

ef. e)
p(8) = 2+p sin — A —ln

~

2 sin—
2 ( 2)

where P = Atan(2) sec(2) with A = 2vrp/pp. Here, pp
is the shear modulus of the perfect crystal and p is an
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effective shear modulus of the relaxed structure, which
is different from po due to the presence of dislocations.
From parameter A one obtains the effective radius, ro,
of the core of the screw dislocations: ro ——bA/4vr E. qua-
tion (3) describes GB energies better than (1) for angles
greater than 5 but fails for angles greater than 15 .
An empirical extension of Eq. (2) can be arrived at by
replacing 9 by sin(m8):

p(8) = po sin me[A' —1n(sin me)], (4)

where m is an integer whose value depends on the symme-
try of the CSL describing the boundary and determines
the maximum of the curve of Eq. (4). m is equal to 2 for
[001] GB's in cubic crystals due to the fourfold symme-
try of the CSL. po and A* are fitting parameters. This
empirical formula was first introduced by Wolf in the
simulation of symmetrical tilt and twist grain-boundaries
in Cu and Au. He found Eq. (4) could fit energy vs angle
simulation data in the entire range of misorientation an-
gles and proposed that low angle data could be used to
predict grain-boundary energies at high misorientation
angles. However, the disadvantage of Eq. (4) is that it is
difBcult to assign physical significance to the parameters
po and A*, in contrast to the corresponding parame-
ters calculated from first principles in the RS and VM
formulas.

It is important to mention that both the RS and the
VM equations can fit the energy vs angle curve in the en-
tire misorientation angle range almost as well as Eq. (4)
provided that one accepts the loss of physical signifi-
cance of the fitting parameters. We discuss this further
in Sec. III.

In this work:
(1) We obtain energy vs misorientation angle simula-

tion data of [001] twist GB's in the CusAu alloy at T = 0
K in a broad angle range (6.7'—43.6') and CSL multiplic-
ities Z5—2145.

(2) We test the applicability of the RS and VM equa-
tions in the angle range 7 —20 .

(3) We discuss the volume expansion at the GB in a
direction perpendicular to the GB.

(4) We compare and contrast the relaxed structures
obtained for low- and high-angle boundaries as well as
the fine structure of the energy vs angle curve.

The simulations were performed using the Monte Carlo
(MC) and molecular dynamics (MD) methods on CSL's
ranging from Z5 to 2145. In the past MD, lattice stat-
ics, and conjugate gradient were almost exclusively the
methods of choice for relaxation simulations at 0 K. In
contrast, the computationally more expensive MC meth-
ods have been favored in situations where MD is impossi-
ble or diKcult to apply, such as the simulation of order-
disorder transitions in alloys and constant temperature
situations among others. However, by exploiting the fact
that from one MC step to the next there are only local
changes to the lattice, one can significantly speed up the
MC calculations to a point that they become competitive
to MD. With this in mind we have performed a compar-
ative study of p(0) using both methods. The use of both

methods provides us with (as a by-product) a consistency
check of our results.

II. SIMULATION DETAILS

The development of high-performance computers has
made possible the use of many-body interaction poten-
tials that have been proven more realistic in simulations
of metals and metal alloys than the simpler in calculation
but also more simplistic pair potentials. The potential
used in this study is a many body potential of the Finnis
and Sinclair type and is given by the sum of a repulsive
term Egg and an attractive one, EN.

E —E~ + E~

respectively given by

and

In the above expressions o. and P denote the atomic
species (in our case Cu and Au), A, p, q, and ( are the
potential parameters of the respective interaction terms,
d is the nearest neighbor distance for the respective ma-
terial, and N, which depends on the cutoff radius, is the
number of neighbors considered for each respective atom.

Parameters appropriate to the above potential have
been previously determined and published, most recently
in Refs. 12—14. These parameters were found to satisfac-
torily reproduce material parameters such as the lattice
constant, cohesive energy, and bulk modulus for the Cu-
Au alloy system over the entire range of relative concen-
trations.

Many body potentials are probably the most realistic
for the simulation of covalent metals and alloys. Their
main drawback is their complexity and the large number
of neighbors that have to be included into the calcula-
tion. However, most of the effort to calculate the poten-
tial at some (noninitial) step is repetitive and, therefore,
superHuous and can be avoided by carefully calculating
changes to the potential from one step to the next. There
are two cases where such modifications can result in dra-
matic speed increases in its calculation, both applicable
to MC simulations. The principle that applies is the same
in both cases, namely a change in the coordinates of one
atom or an exchange of the coordinates of two atoms
of differing species, and is that for small changes in the
lattice it is possible to correct the potential calculated
for the original state of the lattice by the amount cor-
responding to the change in state. The computational
effort for such a correction is much less than that re-
quired for calculating the potential of the lattice anew.
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The 50 to 500-fold speed increase (depending on the size
of the lattice) is well worth the extra programing effort
and resulting code complexity.

The MD experiments were performed using the clas-
2

sical Hamiltonian given by II = P,. ' + E, where the
summation extends over all atoms i in the lattice, m, and
p; are the conjugate masses and momenta of atom i, and
E is the potential as defined in Eq. (5). The equations of
motion were integrated using the finite difference scheme
of Verlet

Typical periodic boundary conditions were used in all
simulations. The sizes of the systems considered ranged
from 1200 to 13920 atoms. In all cases 12 atomic planes
were included on either side of the boundary in order to
avoid interactions with its image GB formed because of
the periodic boundary conditions in the direction [001].
The size of the lattice in the plane of the boundary is
determined by the size of the CSL, which can be quite
large for large values of Z. The basis of the lattice is
composed of two atoms (Cu, Au). As a result, the size
of unit CSL for the alloy is double of that corresponding
to a single element. The cuttoff radius for the potential
was B = 1.7a, where a = 3.748 x 10 is the average
latice parameter of the Au-Cu perfect lattice structure.

Runs were stopped when AE/E & C/N, where AE/E
is the &actional change in the running average of the
energy (within the last 10 MC steps), C is a "tolerance"
which is the same for all runs, and N the number of atoms
in a particular computational cell. In MC runs C was set
equal to 2 x 10 (a quite stringent condition) for all runs
resulting in satisfactory equilibration after about 1500—
2000 moves per atom. A similar termination criterion
was used for the MD experiments.

The simulations were performed using initial structures
with atoms at their nominal coordinates. In the case of
monatomic metals and nonmetallic systems the existence
of a local volume expansion at the GB in a direction nor-
mal to the GB has been experimentally veri6ed by micro-
scopic observations ' and computer simulations.
In this work local volume expansion at the GB was han-
dled by realizing constant volume experiments at a range
of initial volume expansions, LV0, where LV is de6ned
by4 d/do —1, do being the nominal distance between
atomic planes in the crystal in the direction normal to
the boundary and d the width of the expanded GB. No
account was taken of rigid body translations of the two
parts of the bicrystal in a direction parallel to the bound-
ary. This choice is justified in [001] twist GB s by previ-
ous simulation results ' in which such relaxations are
energetically of far less importance than those perpen-
dicular to it with the exception of E5 for which previous
careful simulation studies have shown that initial con-
6gurations produced by relative parallel translation of
the two crystallites in the CSL structure by primitive
DSC lattice vectors may result in slightly lower relaxed
GB energies than when the CSL is used as the initial

The minimum energy and the corresponding value of
the equilibrium volume expansion, LV;„, were deter-
mined by least-squares polynomial fits. It is interesting

III. RESULTS AND DISCUSSION

A. Energy and voluxae expansion vs twist angle

In the present work, both the MC and MD runs were
performed at a range of grain-boundary widths, d, in or-
der to determine the value of LV corresponding to the
minimum in grain-boundary energy, p(EV;„). For each
CSL 6ve difFerent values of initial volume expansion LV0
in the range 0.0—0.4 were used. Figure 1 shows the re-
laxed grain-boundary energies, p, as a function of AV0 for
various CSL's (MC results). Second and in some cases
fourth degree polynomial 6ts were performed to deter-
mine LV;„.The values of the energy and corresponding
volume expansions are shown in Fig. 2 for MC and MD
runs. One sees that the energy vs twist angle curves are
essentially smooth with no indication of cusps at low Z
CSL's (e.g. , Z5 or Z13). The results show a monotonous
increase up to approximately 33, above which the energy
levels off. The fit to the Wolf relation is excellent. We
observe that LV;„ follows the same qualitative behav-
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FIG. 1. Dependence of grain-boundary energy p on AV
for each Z. Some data sets at the top of the plot have been
horizontally displaced for clarity (MC runs).

to note that the RS and VM formulas do not consider
the volume expansion at the GB because they assume
zero stresses normal to the boundary. This assumption
is justified for very low-angle GB's since the magnitude of
the expansion there is indeed small. At higher angles the
assumption breaks down, a fact that constitutes an extra
discrepancy factor with respect to experimental data.
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ior with respect to angle as the energies with an anomaly
appearing in the MD data at Z53, Z65b, and 2109. The
runs for these systems were repeated at stricter tolerances
(almost down to machine precision) but to no avail. Even
though there is no significant eKect on the respective en-
ergies, the discrepancy, if real (as opposed to numerical,
such as insufficient equilibration), is puzzling and is re-
lated perhaps to the transition into the plateau region
of the p(0) curve. There is remarkable agreement in the
energy obtained by the two methods with both sets of
results following an RS-like behavior. The small discrep-
ancies that appear at 253, Z65b, and 2109 are presum-
ably related to the respective discrepancies in the volume
expansions. The parameters of the above fits are summa-
rized in Table I. Errors from the fits were insignificant.

Equation (2), as already mentioned, provides a good
description of the energies p(0) for angles less than about
5 . Such low angle boundaries are described by CSI 's of

large multiplicities (Z ) 145) which are difficult to siinu-
late. However, Eq. (2) can be fitted to energy data quite
well for higher angles with fit parameters that lose their
physical significance in terms of the shear modulus, K,
and magnitude, b, of the Burger's vector. Because the
boundaries in the present work are all above 5 in an-
gle, we attempted, following the method by Doni and
Bleris, z a linear least-squares fit of p(8)/[2 sin(8/2)] vs
in[2 sin(0/2)] (using the MC results) in the angle range
5 —20 in order to determine the deviation of the fit pa-
rameters &om the expected theoretical values of the RS
formula. The resulting curve is shown in Fig. 3 extrap-
olated over the entire misorientation range. As seen in
Table I, Rom the fit parameters we extracted a value
for b = 0.855a, where a the average lattice parameter.
For this calculation we used an efFective value of the
shear modulus K which we calculated &om the val-
ues of the anisotropic elastic constants of the Cu3Au
system reported for 0 K in Ref. 13. The expected
value of b is 0.707a (the magnitude of b =

z [110], the
Burger's vector of the screw dislocations characteristic
of fcc structureszs). A fit to the VM formula for angles
less than 20 was also performed. The result is shown in
Fig. 3 whereas the Gt parameters are included in Table I.
We notice that there is almost exact agreement between
the RS and VM fit parameter po in the low angle range.
The values of ro, however, slightly disagree because the
radii of the cores of the screw dislocations are obtained
by difFerent approaches in the two theories. The value
obtained by the VM fit is larger than the value obtained
by the RS fit. (See the discussion in Sec. III D.)

As in Ref. 25, we attempted a comparison of the RS
and VM curves for the parameter values obtained from
the fits to low-angle data with the energy data in the en-
tire angle range. The comparison is shown in Fig. 3. For
the RS curve we used the exact RS relationship [Eq. (1)],
since we plot the formula in the entire angle range. We
observe that both fits (RS and VM) are almost identical
at angles less than 20 . At larger angles the RS curve has,
as expected, an early maximum whereas the maximum
of the VM curve occurs at an angle greater than 45 . In
addition, the VM curve approximates energy data better
than the RS curve at larger angles, as it was also ex-
pected. The VM formula, using the fit parameters which
are approximately 20'%%uo different &om the experimental
ones, gives a satisfactory approximation to the data for
angles up to about 33 . The values we obtained for r0
are reasonable for metals.

At finite temperatures vibrational and configurational
entropy terms must be included in the expression of GB
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&ee energy. The change in relative atomic species con-
centration in the bicrystal as well as segregation e8'ects
at the GB region become important. A recent study
of [001] twist GB's in a Cu-Ni system at finite tempera-
tures showed that the GB &ee energy drops with increas-
ing temperature indicating that the GB possesses a pos-
itive excess entropy. The GB &ee energy vs misorienta-
tion angle curves all showed RS-type behavior for all the
temperatures studied. Small inBections were observed in
the vicinity of the Z5 boundary. Other extensive stud-
ies showing the efFect of temperature on segregation and
[001] twist GB structure of binary metal alloys were pre-
sented in Refs. 28—33. We must note that in this study we
did not consider the eRects of varying the chemical po-
tential at the boundary as a first approximation to twist
GB's in the Cu3Au system. Varying the relative concen-
trations at the GB of the two metal species in a binary
alloy can further reduce the GB energy even at T=O K.
However, in light of previous studies on other alloys, we

expect no qualitative changes to the form of the GB en-

ergy vs misorientation angle curves of [001] twist GB's in
our system.
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B. Volume expansion normal to the grain boundary

Although there is no general quantitative theory that
describes the magnitude of LV;„, such an expansion is
expected. When two perfect crystallites are misoriented
by twist with respect to each other and are placed at a
distance equal to their distance in the perfect lattice, the
destruction of perfect stacking at the GB causes the in-
teratomic distances of the atoms lying closer to the GB
and on either side of it to be increased for some atoms
and decreased for others (compared to their respective
distances in the perfect crystal). However, the repulsive
part of the interaction potential varies much faster with
distance than the attractive part, resulting in an overall
tendency of the misoriented crystals to repel. This hap-
pens for initial values of volume expansion (imposed in
the simulation) b, VO ( AV;„. For AVO ) AV;„ the
situation is reversed as a result of the shorter range of
the repulsive forces as compared to that of the attractive
ones. (See also Ref. 34.)

Figure 4 shows the equilibrium energies of the GB
as a function of AV;„(MC results). The almost lin-
ear dependence of p on LV;„agrees with theoretical,
computational, and experimental results on monatomic
metals. We notice, however, that there is a deviation
&om linearity at the last six or so data points corre-
sponding to the highest angle GB's (0 ) 30'). The curve
reaches a plateau indicating a sort of "saturation" of GB
energy with respect to volume expansion above a certain
value, a fact that has not been observed in the results of
other authors. The error bars represent our estimates of
standard error in the values of LV;„which comes from
the uncertainty in the polynomial fits of energy vs LU
data already mentioned. Despite the uncertainties in the
LU;„values, the trend towards a plateau is clear.

Unrelaxed CSL energies were found to be essentially
independent of misorientaion angle (or multiplicity Z)
except for a 40 erg/cm cusp at Z5 and AV = 0, which,
however disappeared at the other volume expansions.
Qualitatively, this fact is justified as follows: in twist
GB's interatomic distances in the GB region are altered
only due to the relative displacement of the two crystal-
lites in a direction parallel to the GB; there is no change
in the interplanar distances between parallel to the GB
planes. On the contrary, the introduction of a tilt misori-
entation alters interplanar distances of parallel to the tilt
GB planes by an amount which depends on Z. As a con-
sequence, deep cusps occur in both unrelaxed and relaxed
energy vs tilt angle curve at some values of Z for which
the change in interplanar distance is much smaller than
CSL's of nearby tilt angles but with di8'erent value of Z .
The parallel displacements due to twist, however, cause
change of interatomic distances that are on the overall al-
most of the same magnitude for GB's of any twist angle,
provided that the bicrystal is a multiple of CSL units.
Thus the GB energies of the unrelaxed CSL structures
themselves are expected to be very similar for all GB's of
difFerent misorientation angles. Deviations from this pat-
tern should occur only for very low E boundaries (Z5 for
example) due to the relatively higher percentage of atoms
which lie on perfect lattice positions. These deviations
should cause only small dips in the unrelaxed energy vs
misorientation angle curves, because they involve only a
small fraction of atoms.

D. Relaxed structures

The following discussion in this section and the next
refers to both the MD and MC experiments since
both methods yielded essentially indistinguishable re-
sults. The structure of low angle twist boundaries is
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known to be described by a grid made up of two sets
of screw dislocations. For symmetrical twist boundaries,
such as the [001] boundaries examined here, the two sets
of dislocations are perpendicular to each other. Consecu-
tive dislocations in the one set are separated by a distance
D given by Frank's formula:

g )
2 sln—

2

(8)

where b is the magnitude of the Burger's vector and 0 the
misorientation angle. Figure 5 shows the structure of four
(002) planes (two on either side of the GB) for Z145, a
low angle boundary (8 = 6.7'). The [001]direction points
out of the paper. There are apparent regions of perfect
lattice structure surrounded by two sets of screw dislo-
cations. The sense (i, (q of each set is parallel to its re-
spective Burger's vector bi ——

2 [110]and bq ——
2 [110],

as seen in the figure. Some lines of the strain field that
show the deformation of crystal structure inside the cores
of the dislocations are also drawn. The continuous line
corresponds to the lower two planes whereas the dashed
one to the upper ones. Concentrating on the dislocation
arrays that surround a single perfect crystal region, we
observe that the strain field inside the core of the same
dislocation, same distance &om the boundary but on op-

posite sides, is difFerent. This is because the boundary
is centered between a mixed Cu-Au and a pure Cu (001)
plane. The binary nature of our system is the cause of the
twofold (instead of fourfold) symmetry of the dislocation
arrays lying in the saxne (001) plane.

We have also marked the extent of the dislocation core
ro ——Oe42a obtained &om the VM fit in Sec. III A. Look-
ing at the figure at grazing angle we notice that this
value appears reasonable compared to the actual relaxed
structure obtained &om the simulation. From Fig. 5 we
measured the distance between consecutive dislocations
and found it equal to D = 6e17+ 0.22a. Inserting this
value into Eq. (8) gives a value for the magnitude of the
Burger's vector b = 0.72 + 0.025a, which agrees within
standard error with the expected value of 0.707a.

E. Structural efFects

In order to look at some structural aspects of the relax-
ation process in the entire misorientation angle range we
additionally measured the average difFerence per atom of
the atomic positions in the relaxed structure from their
respective positions in the unrelaxed CSL structure:

1 . 2
M 2- X/2) (

CSL rel) + (
CSL rel)

planes (001), (002)

planes (001}, (002)
(Z R.) —= —) (z,""—z,"),

(9-)

(9b)

b =1/2 [2

/2 [110]

[100]

FIG. 5. (001) projection of relaxed structure of Z145
(z-axis points out of the paper). The square frame made up
of continuous and dashed lines marks two members for each
set of dislocations making up the twist boundary, same type
of line indicating same set of dislocations. The curved bold
and dashed lines are eye-guiding curves that follow roughly
the strain 6eld of two parallel to the boundary atomic rows:
a row at positive z values (continuous line) and a row at neg-
ative z values (dashed line). The core of the dislocations, as
obtained from the VM 6t, is marked inside the shaded region.

where M is the number of atoms over which we wish to
average, (xC L, yCSL, zC ) is the position vector of atom
i in the unrelaxed CSL structure and (z,"l,y,". l, z,"l) is
the respective position in the relaxed structure. Axis z is
normal to the boundary. We will refer to the quantities
inside (. ) in Eq. (9) as average relaxation length par-
allel and perpendicular to the GB, respectively. For the
calculations of the quantities in Eq. (9) we used MD data
for zero initial volume expansions. Figure 6 shows the de-
pendence of the average relaxation length parallel to the
GB, (AR &), on misorientation angle, where the average
is taken over all atoms in the computational cell (left y
axis). We observe that the relaxation length is reduced
as the angle increases in an RS fashion after reversing the
sense of the ordinate. Figure 6 also shows the respective
average relaxation, (AR, ), in a direction normal to the
GB (right y axis). The average is taken over all atoms in
the first six planes on the positive z axis (i.e., planes 001
to 006) which are the planes affected by the real GB at
z = 0 and not by its image at the edge of the computa-
tional cell. All (b,R, ) values are negative. According to
Eq. (9b), this can be interpreted as an overall tendency
of atoms on one side of the GB to relax away &om it,
as already discussed in the Sec. IIIB. The shape of the
curve is again of RS type. As the angle increases, the ab-
solute value of the average relaxation length increases, as
expected. Comparing (AR „) to (AR, ) values in Fig. 6
we conclude that the greater the average relaxation par-
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FIG. 6. Average relaxation length per atom in directions
parallel and normal to the GB as a function of misorientation
angle.

ation, i.e., by twisting back parts of the crystal at the GB,
thus restoring the broken bonds; (ii) normal relaxation,
i.e., the volume expansion at the GB that we already
discussed, which restores interatomic distances that were
reduced by the introduction of twist, bringing them closer
to their perfect lattice values. These two modes are com-
plementary to each other meaning that when one mode is
stronger the other is suppressed. In low angle boundaries
for large parts of the boundary linear elasticity holds and
there is -a restoring torque opposing the small perturba-
tion of twist. Thus relaxation occurs according to mode
(i) and mode (ii) is suppressed. On the contrary, in large
angle boundaries there is little or no net restoring torque.
Thus relaxation occurs mostly by mode (ii).

We also compared and contrasted the relaxation of Cu
atoms to that of Au atoms. First, in a direction parallel
to the GB [see Fig. 8(a)j the average relaxation length

allel to the GB, the smaller the average relaxation in a
direction normal to it (notice the complementary char-
acter of the small cusp at Z5). The previous remark is
demonstrated explicitly in Fig. 7 which shows a log-linear
plot of the average relaxation length parallel to the GB vs
the absolute value of the average relaxation length nor-
mal to the GB. Except for the last four points, shown in
a circle, corresponding to the four largest angle bound-
aries (Z5, Z137, Z73, Z29), the others follow an almost
exponential decrease, as indicated by the dashed straight
line used as a guide to the eye. This decrease of the
relaxation perpendicular to the GB with increasing re-
laxation parallel to it can qualitatively be understood in
conjunction with the discussion on the volume expansion
at the GB in Sec. IIIB: the atomic relaxation occurs in
such a fashion as to restore the perfect stacking of atoms
at the GB which was destroyed by the introduction of
twist. This can be done in two modes: (i) parallel relax
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parallel to the GB of Cu atoms varies linearly with the
respective average relaxation length of Au atoms and ac-
tually (AR tl) c„(AR „)~„ for all angles 0 as depicted.
by the linear least-squares fit in Fig. 8. On the contrary,
in a direction normal to the GB, comparison of relaxation
lengths between the two atomic species in a direction nor-
mal to the GB shows that Cu atoms relaxed more than
Au atoms with respect to their unrelaxed CSL positions
[see Fig. 8(b)]. Finally, we examined the average relax-
ation lengths per xy plane vs distance z from the GB for
each of the atomic species, Au and Cu [Figs. 9(a)—(d)].
The averages ( . ) in Eqs. (9) are taken over atoms in
each xy plane. In Figs. 9(a), and 9(b) we plot relaxation
lengths parallel ((AR z)) and normal ((AR, )) to the GB
for F29, a high angle boundary (8 = 43.6 ), whereas in
Figs. 9(c) and 9(d) the respective relaxation lengths for
Z85, a low angle boundary (0 = 8.8 ). Relaxation length
values for Au atoms exist only for mixed planes. The real
GB exists at ~z~ = 0 while the image GB at ~z~ = 6. The
first plane on the positive z's is a mixed Au-Cu plane
whereas the first plane on the negative z's is pure Cu.
Pure and mixed planes alternate thereon. The effect of
this asymmetry (related. to stoichiometry) on relaxation
length is evident in Fig. 9.

(1) Direction parallel to GB: from Fig. 9(c) we see that
for F85, Cu atoms moved almost exactly the same as
Au atoms in every mixed plane. In contrast, for 229
[Fig. 9(a)], Au atoms moved more than Cu atoms in ev-
ery plane, the difference becoming more pronounced as
we move closer to the GB. Notice that (AR „) varies
smoothly with z for the low-angle boundary in contrast
to the irregular variation for the large angle one. Also,
for F29, relaxation length of Cu atoms in mixed planes
is less than relaxation length of Cu atoms in pure planes.

(2) Direction normal to the GB: from Figs. 9(b) and
9(d) we see that for both F29 and 285 Cu and Au atoms
moved. the same amount at all planes except for the first

two mixed planes on either side of the GB, where Au
atoms moved less. The fact that (ER, ) is positive at
negative z values and reverses sign at positive z values
is easily identified, in conjunction with Eq. (9b) as the
expected volume expansion at the GB. Notice also that
relaxation length normal to the GB varies linearly with
distance from it for all planes with the exception of the
two closest to the GB. In addition, (AR, ) varies smoothly
with z for both low- and high-angle boundaries, in con-
trast to the variation of (ER &) mentioned before, a fact
that indicates a smoother z variation of the stress com-
ponent normal to the GB than the parallel stress com-
ponent.

Finally, in all the aforementioned figures, we see that
there is absolute symmetry in relaxation lengths between
the real and the image boundary, whereas there is no
symmetry in relaxation lengths between the two sides of
the same boundary d.ue to the stoichiometrical asymme-
try already mentioned.

IV. CONCLUSIONS

Concluding our discussion we note that both computa-
tional methods yielded essentially the same results if one
neglects the small discrepancies that occurred between
30 and 35 presumably caused by insufFicient equilibra-
tion at some MD runs. Moreover,

(1) Energies of [001] twist GB's in a CusAu system at
T = 0 K vary smoothly with misorientation angle with
no indication of cusps at GB's corresponding to CSL's of
small multiplicity.

(2) Formulas that are derived from dislocation theory
satisfactorily describe the energies of GB's in our sys-
tem. The equilibrium volume expansion, LV;„, at the
GB, the average relaxation length parallel, (AR „),and
normal, (AR, ), to the GB plotted against misorientation
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angle all follow RS type behavior.
(3) The energies of the unrelaxed CSL structures at all

initial volume expansions are independent of misorienta-
tion angle (except for a small dip at Z5 for AV = 0).

(4) The structure of low-angle GB's in our system is
described by a dislocation grid made up of two sets of
dislocations perpendicular to each other with Burger's
vectors 2 [110]and 2 [110]. The distance D between con-
secutive dislocations of the same set agrees with Frank' s
formula. The strain field at the same dislocation, same
distance &om the GB but di8'erent side is diferent due
to the binary nature of our system. For the same rea-
son, the strain field at the same plane but difFerent set of
dislocations is also diferent.

(5) Relaxation parallel to the GB works complemen-
tarily to relaxation normal to it so as to optimally fix
the destroyed stacking at the GB due to twist. More-
over, the average relaxation length parallel to the GB
decreases almost exponentially with average relaxation
length normal to the GB for angles & 37 . For four GB's
with 0 + 37' the decrease is much steeper. In fact, we
more generally conclude that the behavior of the high-

est angle boundaries deviates from that of the others as
seen in the relaxed GB energy vs twist angle, relaxed GB
energy vs volume expansion at equilibrium and parallel
relaxation vs normal to the GB relaxation curves.

(6) Average relaxation length parallel to the GB for Cu
atoms is approximately the same with that for Au atoms
whereas average relaxation normal to the GB is larger
for Cu atoms than Au atoms. In addition, for high-angle
boundaries, relaxation length parallel to the GB of Cu
atoms in mixed planes is less than relaxation length of
Cu atoms in pure planes.
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