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An e6'ective-medium theory of a random mixture of metal and solid electrolyte particles is developed
to describe the bulk ac conductance of the composite. It predicts a 4 to 6 orders of magnitude enhance-
ment of the dielectric permeability of the composite near the percolation threshold for electronic con-
ductivity. As the frequency increases, the enhancement falls to the level of a metal-dielectric composite,
as the role of the double-layer capacitance of the blocking interfaces between metal and electrolyte
grains diminishes. Analytical expressions are obtained for the conductivity and dielectric function over
the whole range of relative concentrations and in a broad frequency range.

I. INTRODUCTION

A. Metal-solid electrolyte composites

There is presently great interest in dual-phase compos-
ites of electronic and fast ionic conductors. These are, in
particular, membranes with solid electrolyte components
in which oxygen anions or protons are the conducting
species used for separations and heterogeneous chemical
reactions. ' In such systems the metal component plays
the role of an electronically conductive catalyst or sup-
porter that provides a smooth contact of the membrane
with the bulk metal electrodes. Typical examples are
ceramic mixtures of yttria-stabilized zirconia (YSZ) and
nickel or palladium granules, the systems regarded as
promising materials for hydrogen electrodes in solid ox-
ide fuel cells. ' On the other hand, systems of this kind
could be of interest as materials with unusual dielectric
properties.

The electrophysical properties of composite materials
are frequently described in terms of percolation
theory. Single- and dual-component systems have
been considered, including clusters of conducting
granules and mixtures of a conductor and superconduc-
tor, an ionic conductor and insulator, and metal and insu-
lator particles. ' A mixture of conductors of the first
and second kind, such as a metal —solid-electrolyte corn-
posite, contains some features which other composites do
not possess, which makes these composites interesting
from the fundamental point of view, as well. These
features are as follows.

(i) Solid electrolyte granules are ionic conductors, the
conductivity being, usually, a few orders of magnitude
smaller than the electronic conductivity of the metal.

(ii) There is no dc current across the interface of the

electronic conductor and ionic conductor, unless some
Faraday process (electrochemical reaction) takes place at
the interface.

(iii) An electric double layer of microscopic dimensions
is formed at the blocking metal/solid-electrolyte contact
with the double-layer capacitance ~ 10 pF/cm, a value
some 10 —10 times greater than the geometrical capaci-
tance of insulator particles of the same size (in the range
of micrometers and greater).

(iv) While the metal/solid-electrolyte contact is block-
ing for dc, it can conduct ac current in the same way as a
metal/dielectric interface, but the characteristic frequen-
cies for the former are much lower. These frequencies
are determined by the relaxation time needed to charge
the double layer via the migration of ions through the
bulk of the electrolyte to the interface. ' This time is
-l41/D, where D is the difFusion coefficient of mobile
ions, I& is the Debye length in the solid electrolyte, while
l is the thickness of the solid electrolyte particles. ' In
composites, the size of the grain will stand for l, i.e., the
relaxation time will be proportional to the size of the
grain. For a particle of 1 pm size the typical relaxation
time —10 —10 s. The relaxation should give rise to a
pronounced frequency dispersion of dielectric permittivi-
ty in the MHz range, at frequencies the lower the larger
the granules.

B. Metal/composite/metal structures

There is, however, a principal di6'erence between
metal-insulator and metal —solid-electrolyte mixtures due
to electric double-layer formation at the metal/solid-
electrolyte interface. The latter does not let a static elec-
tric field penetrate into the bulk of the composite below
the percolation threshold in the metal component.
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Above the threshold there is a potential drop across the
sample, as far as the electronic current passes through it.

Placing the sample between two blocking (for ionic
current) electrodes creates a metal/composite/metal
(MCM) structure. There are several regimes of the MCM
electric response.

For a composite below the percolation threshold, at
zero frequency, the MCM structure works as a double-
layer capacitor. On each electrode, the connected clus-
ters of metal grains of the composite, touching the sur-
face of the metal plate, effectively extend the electrode
surface into the bulk. Indeed, the metal plates contact
the electrolyte directly or via the metal clusters of the
composite connected to the plates forming the effective
electrode surface (see Fig. l). The closer we are to the
percolation threshold, the larger is the surface of such an
"electrode, "but below the threshold there is still no short
cut between the two opposing electrodes in a su%ciently
thick sample. The idea of enhancing by orders of magni-
tude the effective electrode/electrolyte interface by mak-
ing a contact of a Aat metal plate with the metal-
containing composite was widely used in a number of
technical designs, including supercapacitors. In order to
avoid the eventual short cut in a supercapacitor a
separating layer free from metal components (i.e., a mem-
brane, made of the same electrolyte) is disposed between
two such electrodes. ' The static electric field is fully
screened at the double-layer distances (which are much
smaller than the grain size) near the effective electrode
surfaces. Since the interfaces between the metal plates
and the electrolyte and between the metal clusters and
electrolyte are blocking, there is no dc current in this case
across the MCM structure, i.e., it is blocking as a whole
and can be used as a capacitor.

However, an ac signal penetrates into the sample bulk

at frequencies greater than the inverse time needed to
charge the double layers near the effective electrode sur-
face. This time is determined by the migration transport
of the mobile ions through the bulk of the solid electro-
lyte from one effective surface to another. The migration
time is evaluated as LLz/D, where L is the thickness of
the sample including the membrane if there is one, L& is
the thickness of the double layer (in simple models it
coincides with the Debye length in the electrolyte). At
shorter times the double layer is not yet set up at the in-
terface to screen the Geld. An ac current with frequencies
greater than D/LL& then passes across the MCM struc-
ture as the ac field penetrates into the bulk of the com-
posite. Both metal and solid electrolyte conductances
will contribute to the ac conductivity of the system; one
may also speak in this case about the frequency depen-
dent dielectric properties of the bulk.

C. Bulk and surface contributions:
MCM admittance

When the composite is below the percolation threshold
in the metallic component, the response of the MCM sys-
tem may be represented by an approximate equivalent
circuit (Fig. 2). Here the blocking capacitance Cz is the
capacitance of the double layer at the effective
metal/solid-electrolyte interface,

where S,z is the effective surface area and eo is the dielec-
tric constant of the ionic crystal at frozen mobility of the
ions (the high-frequency dielectric constant). C is the
geometric capacitance of the sample,

eS
4~L

where S is the surface area of the plates and e is the bulk
dielectric constant of the composite. R is the geometric
resistivity of the composite.

This circuit should be valid for a sample that is much
thicker than the size of the largest percolation cluster and
only in an "interpolation sense, " because it gives proper
results at ~=0 and D/LL„&&~ &&D/IL„, but one can-
not guarantee that it would work at intermediate frequen-
cies 0 «co «D/LL&. It is well known that roughness of

FIG. 1. A schematic picture of a cross section of the
metal/composite/metal (MCM) system. Black spots denote
metal particles; white space in between is filled by the particles
of solid electrolyte. The lines show the surface of the clusters
connected with the metal electrodes, i.e., they determine the
"effective electrode surface. " The picture is based on two-
dimensional random site percolation on a square grid at x=0.5
[x,=0.593 (Ref. 5)]; the cross section of three-dimensional per-
colation on a cubic lattice will look different.

FICx. 2. An approximate equivalent circuit of
metal/composite/metal systems below percolation in the metal-
lic component. Cz is the interfacial double-layer capacitance
and Cg and Rg are the geometrical capacitance and resistance of
the composite.
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and

CO( CO1—
co/( 1+co /co~ )

1+co /co~c02
C,fr( co )=Cd /2

1+co /co&

2 = 1

(4)

Cd & Cg and in most cases Cd »Cg, so that co2 »co&. At

the electrode surface gives rise to the so called constant
phase element (CPE) behavior: Y ~( —iso)" with p &1.
After a provocative suggestions of Le Mehaute and
Crepy' that the exponent p is determined by the Haus-
dorff dimension of the interface, D;, a number of papers
were published on the study of the CPE impedance for
model fractal surfaces of blocking electrodes. ' ' In-
spired by the pioneering paper of De Levi, ' who has
treated a deep pore as an ac transmission line, these
works have considered hierarchical pore models of the in-
terface which could be described as self-affine fractals. It
was shown for model self-affine structures, both theoreti-
cally and experimentally, that there is no universal rela-
tionship between p and D;.

However, the effective metal/electrolyte interface,
which emerges in the MCM structure close to the per-
colation threshold in the metallic component, in the case
of particles of equal size is rather self-similar than self-
affine. As shown recently by Halsey and Leibig, the
surfaces of self-similar objects do contribute to the CPE
behavior (as an intermediate asymptotic of the im-
pedance, limited by the frequencies from below and
above; they obtained explicit expressions for the cross-
over frequencies), but under a certain condition: if the
correlation dimension of the harmonic measure of the
surface r(2) (the probability measure defined by the nor-
mal component of electric field at the surface ) is not
equal to D, . A difference between the values of the two
exponents is a manifestation of a rnultifractal structure of
the surface. We are not aware of calculations of r(2) for
the surfaces of percolation clusters. A priori, the reasons
why these structures should exhibit multifractal proper-
ties are not obvious, and this question requires a special
study. In real systems there could be many reasons
which would make the interfaces multifractal. Keeping
in mind our idealized percolation model we would, how-
ever, neglect at first instance any CPE contribution.

Hereafter, the complex admittance is de6ned as a
current response to the voltage signal —exp( i cot)—
(which determines the negative sign of the capacitance
contribution). The equivalent circuit shown in Fig. 2 has
three frequency independent elements. However, for the
purposes of our discussion, the admittance can be formal-
ly rewritten in terms of two frequency dependent
parallel-connected effective elements, the effective con-
ductance and effective capacitance:

1'(co) =o,fr(a) ) i AC,fr(co—),
where

co«cot, cr,/co)=0 and C,~(co)=Cd/2 (the limit of inter-
face blocking). At co))co&, o,s(co) =Rs ', and at
co ))+co ]copy C~ff ( co ) Cg

A simple evaluation of S,z can be given in a fractal re-
gime,

where the roughness factor

R =(L/i) ~ (l/ro) '

Here ro is the smallest self-similarity range on the surface
of one metal granule, and D and D, are, respectively, the
fractal dimensions of the surface of the percolation clus-
ter and of the interface between the two grains
(metal/electrolyte). D~ )2, while D, can be greater or
smaller than 2 depending on whether the contact between
the grains is good or bad. The upper physical limit for
the roughness factor is obtained by putting D =D, =3,
which gives R ~L/ro(~10 for a sample with 1 cm
cross section, but typical estimates would give R & 10 ).
Together with Eq. (1) this gives an estimate for Cd, exact
calculation of which is a complicated task.

D. The goal and the structure of the paper

The main subject of our work will be the calculation of
Rg and Cg, i.e., of the bulk characteristics of the sample.
However, comparing the theory with experiments, we
will focus on the interplay between the bulk and surface
contributions.

Close to the percolation threshold, where an infinite
passage through the metal granules emerges, one may ex-
pect a strong enhancement of the imaginary part of the
system conductance, i.e., the anornalously large dielectric
permittivity. A similar effect, known as the "dielectric
catastrophe" has been obtained theoretically ' and ex-
perimentally observed in metal-dielectric composites. '

However, in the metal/solid-electrolyte composites the
effect could be, actually, much larger because the capaci-
tance of the double layer at the contact of the metal and
solid electrolyte grains is a few orders of magnitude
greater than the geometrical capacitance of dielectric
grains of the same size.

With these expectations in mind one may try to build a
percolation-type theory of the bulk conductance of
metal/solid-electrolyte composites. As a first attempt, it
is expedient to start with an extension of the effective-
medium theory proposed by Kirkpatrick for dc conduc-
tivity, which gives in our case a simple analytical solu-
tion, formally in the whole range of the relative composi-
tion and a broad range of frequencies. Such a theory is
developed in the present paper.

In the next section we formulate the model of the com-
posite as a three-bond random network and adopt the
equivalent circuits for the bonds. In Sec. III we discuss
the basic parameters of the model and estimate their
values. In Sec. IV we develop two variants of the
effective-medium formalism for the random metal —solid-
electrolyte mixture. Results for the real and imaginary
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II. THE MODEL OF A RANDOM
METAL/SOLID-ELECTROLYTE MIXTURE

We start with a square (cubic) lattice with a fraction x
of randomly chosen occupied squares (cubes), which
represent the metallic material (black) (see Fig. 3). Corre-
spondingly, the fraction of the solid electrolyte com-
ponent (white) is 1 —x. The links between centers (sites)
of the nearest neighbor squares (cubes) are called bonds.
Bonds between two black sites have an admittance X&(co)
with X,(0)WO, which characterizes the metallic com-
ponent. Bonds between two white sites have an adrnit-
tance Xz(co) with Xz(0)%0 [Xz(0)« X,(0) ], which
characterizes the solid electrolyte. Bonds between black
and white sites have an admittance X3(co) with X&(0)=0,
which represents the blocking metal/solid-electrolyte in-
terface.

We adopt the following expressions for the bond con-
ductances:

X)——o.),
Xz(co) =oz —iCzco .

(9)

(10)

Here o. , and o.
2 differ from the bulk conductivity of the

metal and solid electrolyte, respectively, by a factor relat-
ed to the size of the granule. (For grains of the same size
cr, /o z is equal to the ratio of the corresponding bulk con-

t ill

FICz. 3. Two-dimensional picture of the percolation system.
Black and white squares correspond to metal and solid electro-
lyte particles, respectively. Centers of the squares correspond to
lattice sites. Bonds between two black sites, two white sites, and
black and white sites are shown by wavy, thin, and solid lines,
respectively. In the three-dimensional case squares should be
substituted by cubes.

parts of the conductance are discussed in Sec. V. Simple
approximate analytical formulas are derived in Sec. VI,
using the smallness of some parameters typical for experi-
ments with real composites. Order of magnitude esti-
mates and the dependence of the predicted effects on tern-
perature and other factors are given in Sec. VII. In Sec.
VIII we discuss the proper way of comparison with ex-
perimental data, together with some previous theoretical
studies. FIG. 4. Equivalent circuit of the third bond. o.

&
and a.

2 are
the conductivities of metal and solid electrolyte grains, respec-
tively, C2 the geometrical capacitance of the solid electrolyte
grains, C, the capacitance of the interface between the metal
and solid electrolyte grains.

ductivities. ) Cz is the geometrical capacitance of the
solid electrolyte cube, i.e., the capacitance of the solid
electrolyte grain when the ions are frozen. X3(co) corre-
sponds to the equivalent circuit of Fig. 4:

lC3co
X (co)= iC —co 1—

2Xz(co)

l C3 co

20 i

p& =x, pz =(1—x), p3 =2x (1—x),

where C3 stands for the capacity of the metal/solid-
electrolyte interface. This is the simplest model for the
blocking metal/solid-electrolyte contact; it behaves as a
double-layer interfacial capacitance at zero frequency,
but it conducts the relaxation current. At frequencies
higher than the inverse time needed to charge the double
layer through the bulk of the solid electrolyte, the interfa-
cial element does not inhuence the ac current.

Note that in Eq. (9) the frequency dispersion of the
metal conductivity, which is frequently described by the
Drude formula, is ignored because we are interested in
the range of much lower frequencies, not exceeding con-
siderably the characteristic frequency of charging the
double layer by ion migration through the grains (co & 10
s ', see Sec. III). For the same reason we neglected the
infrared frequency dispersion of Cz, since these frequen-
cies are also far beyond the frequency range that we focus
on. More severe assumptions are made on the equivalent
circuit that results in Eq. (11). There could be a number
of elementary processes not accounted for by this circuit,
which can give rise to a dispersion at low frequencies.
For instance, it does not involve Faraday processes across
the interface, which will contribute a shunt: a "reaction"
resistance parallel to C3 so that the contact will be no
longer blocking. Possible roughness of the interface be-
tween the metal and solid electrolyte grains leads to a
constant phase element. Wartburg impedance due to
diffusion of minority carriers can contribute as mell.
More complicated variants of the equivalent circuit for
the third bond will be discussed elsewhere. In the present
paper we wish to get the "reference" results for the most
simple, basic equivalent circuit with the three elements
always present in any metal/solid-electrolyte system.

The fractions of electron conducting, ion conducting,
and "blocking" bonds are given, respectively, by the ex-
pressions
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which are prescribed by the random site distribution.
Then the value of a complex bond conductance o. is dis-
tributed according to a probability density f(o).

the solid electrolyte ( —5 —10). The geometrical capaci-
tance Cz -e—,l /4m. l =e, l/4m. Then

f(cr ) =p i &(o —&i(~) )+p&&(cr —&&(~)) CO2 2— (16)

+p 35( o —X3(co) ) . (13)

III. SYSTEM PARAMETERS

We scale the system parameters to the unit values of
the conductivity of the metal and the geometric capaci-
tance of the solid electrolyte and set the lattice spacing
equal to unity, so that bond conductances and conduc-
tivities have the same dimension. In these units o. , =1
and C2=1 and the typical orders of magnitude of the
other two parameters correspond to o.

2
= 10 and

C3 10 ~ There are superionic conductors for which o.
2

reaches 1 (in the units of conductivity of the poorest elec-
tronic conductors), but for most metal-electrolyte com-
binations the ratio is orders of magnitude lower.

The system characteristic frequencies are

02
~2,2—

20 1 2o2
2p 3

3 3

(14)

m2 2 is the characteristic time of charging the capacitor
with the geometric capacitance of the solid electrolyte
grains. co& 3 and cu2 3 are the times of charging the double
layer at the metal/solid-electrolyte interface by electron
transport through the bulk of the metal and by migration
of ions through the bulk of the solid electrolyte, respec-
tively. The migration frequency co23 is the lowest and
most important of the fundamental frequencies when one
works in the range of relatively low co. In the dimension-
less units given above the corresponding frequency esti-
mates are

Our task, now, is to solve the corresponding system of
the Kirchhoff equations on the cubic lattice with three
types of conductances (bonds) distributed according to
the distribution function (13).

More complicated distribution functions can be pro-
posed in order to take into account some real features of
the composite. For example, a nonuniformity of its phase
state, caused by preparation conditions, will lead to a
random distribution of bond conductances over some
finite intervals of allowed values. The presence of spheri-
cal voids with random positions can be considered as
well, resulting in power-law type distribution functions.
In this paper, however, we limit the analysis to the sim-
plest case, described by Eq. (13).

4mo. 2ld
602 3—

e, l

4vro, l„
e, l

Let us take for estimates

o&=0 5X10 0 'cm ', o2=5X10 ' 0 'cm

—=10 e =5.—4

Then

IV. EFFECTIVE-MEDIUM THEORY

The conductance of the system can be expressed
through the conductivity o. and typical linear size L of
the system as o.L", where d is the dimensionality of
the system. Our task is then to calculated some intensive
characteristics of the composite material as the complex
conductivity o(co) and the dielectric permittivity. The
latter is related to o (co ) by the equation
e(co) =I+4vrio (co)/co; the dielectric susceptibility is
defined as y(co)=[@(co)—1 j/4m. . We will study below the
quantities

and

cr' =«cr(co ) (19)

(20)

m2 2=10" s '
co =10 s '

co =10' s2, 3 1,3

In general the conductivity of metals and solid electro-
lytes lies within the ranges 10&o-, &10 fL 'cm ' and
10 & o.

2 & 10 Q ' cm ', respectively. Depending on
the size of the grains 10 (ld/l (10 . This defines the
ranges for the characteristic frequencies 10 & co2 2

~ 10'
s ', 10'&~23&10' s ', and 10 &co»&2X10' s '. In
the case of very high superionic conductivity of the elec-
trolyte and very low electronic conductivity of the metal
these frequency regions can overlap. However, this is an
extreme situation and for most realistic metal/solid-
electrolyte mixtures the frequencies are well separated.
The frequency A@23 is the lowest one and the only fre-
quency of interest in the electrical impedance measure-
ments, where one cannot go higher than 10 s

2 2-10, co& 3-2X10, co2 3 10
7

(15)

These estimates are supported by the following con-
siderations. The capacity of the metal/solid-electrolyte
contact C3 =CDl, where CD is the double layer capacity
per unit surface area and l the contact area between the
metal and solid electrolyte grains (l 8 the mean cross
section of the grain). CD can be roughly evaluated as
=e, /4mld, where ld is the Debye length ( —1 —10 A) and
e~ is the dielectric constant of the immobile skeleton of

The random network will be treated by means of two
variants of effective-medium theory, which allows us to
obtain approximate solutions of the Kirchhoff equations
in the quasistationary limit (see Sec. I).

A. Single-bond approximation

In the so-called single-bond (SB) effective-medium ap-
proximation the conductivity cr obeys the equation
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Jf(o )do. CT CT

0 +(d —1)cr

B. Low-concentration cluster approximation

As a next approximation, treating clusters larger than
one bond we employ the so called "low-concentration
cluster" (LC) effective-medium theory suggested by Ber-
nasconi and Wiesmann, "which is an analog of the Bethe
approximation in the Ising model. This approximation
considers explicitly the cluster of bonds which have a
common site, all the other bonds being treated as an
effective medium; thereby it takes into account at least
part of the correlation between the values of bonds with a
common site. This model is expected to give better
values of percolation thresholds than the SB model. It
leads to the following equation on conductance cr:"

Substituting into this equation the distribution function
(13) one obtains an equation on o".

o.—X) o.—X2
p& +p2

X,+(d —1)cr X2+(d —1)o
o. —X3

X3+(d —1)cr
21

This would allow us to obtain expressions for o' and y'.
There are limiting cases of this equation which have

been studied before. When X3(co) is put equal to X2(co)
[Eq. (10)], Eq. (21) reduces to the one used for a descrip-
tion of the two-component mixture of metal —"leaky"
dielectric particles. The limit Xz(0)=0 has been con-
sidered for the two-component mixture of metal-insulator
particles.

This model works satisfactorily for bond disordered
systems, but is known to give inaccurate results, primari-
ly for the positions of the percolation thresholds, for the
site disordered system on which our problem was
mapped. " The SB approximation neglects completely
correlations between the values of the conductivity of
bonds with a common site. Nevertheless, we use this
model as a "zero" approximation since it leads to rela-
tively simple analytical results and in order to see the
effect of correlations by comparing the SB model with
more refined models.

only the root which provides Reo. & 0 will be kept in the
studied range of frequencies. This condition is not
satisfied for the two conjugated roots, but could be
fulfilled for the lone root. In the "quasi"-dc case (co is
smaller than all the frequencies of the model except co, )

the equation on o. degenerates into quadratic equations,
while in the general case one has to use a cumbersome
Cardano formula.

In the next two sections we consider results for con-
ductivity and permittivity in three dimensions (3D).

V. RESULTS FOR THREE-DIMENSIONAL CASE

A. Real part of conductance

The overall conductivity, measured in a gedanken set-
up which does not distinguish the sort of charge carriers,
is composed of ionic and electronic contributions. This
quantity is shown in Fig. 5, where the plot of in(a'/o. 2)
reveals the behavior in the region x ~x, dominated by
the ionic conductivity. It thus displays a quasithreshold
behavior manifested in a sharp rise of conductivity above
x, . However, in real steady state measurements of Ohm-
ic resistance with electronically conductive leads, the
solid electrolyte contribution to the current will be absent
and the true metal-conductance threshold will be ob-
served. At the same time both contributions will be seen
at high frequencies, when the metal/electrolyte contact is
no longer blocking.

The threshold values for electronic conductivity follow
from Eq. (21) or Eq. (22) by putting there formally
X2=X3=0: in 3D this gives x, =0.577 (for the SB ap-
proximation) or =0.458 (for the approximation LC).
Both values of the threshold are higher than the best
known value for the one-component random site problem
x, =0.3116. Note that the LC approximation gives a
better value. The quasithreshold value practically coin-
cides with the thresholds.

The ac conductivity of the SB model at three different
frequencies is displayed in Fig. 6(a); for the LC model

1 1 1
pi +p2 +p3X&+qo. X2+qo. X3+qo

1 =0,(1+q)cr

(22)

D 2-

-2

0,0

X) X2 X3
pi +pp +p3X)+qo. X2+qa. 23+qo.

1

( I+q)
It will be used together with Eqs. (9)—(11) to find the real
and imaginary parts of the complex conductivity where

where q =2/(vr —2)=1.752 at d=2 and q=3.7655 at
d =3. For d =2 the Bernasconi-Wiesmann model is
equivalent to the Watson-Leath model.

Since p, +p2+p3=1, simple algebra shows that Eq.
(22) is identical to Eq. (21), if one replaces (d —1) by q,
and that the resulting equation is cubic on o'. FIG. 5. Low-frequency conductivity (in units of the bulk

conductivity of the metallic component) of LC (solid line) and
SB (dotted line) models in 3D as a function of fraction x. The
logarithmic plot, shown as an inset, shows the nonzero conduc-
tivity below the percolation threshold in the metallic com-
ponent due to the conductivity of the solid electrolyte com-
ponent, o.2. (Parameters: o &=1, o.~=10 .)
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FIG. 6. The ac conductivity (in units of the bulk conductivity
of the metallic component) in 3D as a function of x at three
different frequencies. Solid lines correspond to low frequency
(co=10 ' ), dashed line, to intermediate (co=10 ), and dotted
lines to high frequency (co=10 ). (a) SB model and (b) LC
model. Frequencies are given in units of co2 2/y (for typical esti-

mates ~2 2/y —10' s '). (Parameters: o.
)
= 1, C2 = 1,

o2=10, C, =10 .)

FIG. 7. The results for the real part of the susceptibility g' in
3D as a function of x for +co&co&&co «co2 3, dotted line, SB
model and solid line, LC model. (Parameters: o.&=1, C2=1,
o2=10, C3 10 )

We expect that for a real 3D system the critical exponent
will take a value different from 0.5.

At co ++c02 3 the system behaves effectively as a
metal —solid-electrolyte mixture, but with a minor contri-
bution of the interface between the metal and solid elec-
trolyte grains. The dielectric susceptibility of the system
at low frequencies is greater by a factor of C3/Cz. In or-
der to clarify this point we present in Fig. 9 the results
given by the three-bond theory within the framework of
the LC model and the "2-bond theory, " which ignores
the effects of the interface, which is formally a particular
case of the three-bond model: X3——X2(co). With increas-
ing frequency, the difference between the three-bond and
two-bond theories almost disappears.

analogous curves are shown in Fig. 6(b). We see that the
conductivity rises with increasing frequency, because the
higher the frequency the greater is the conductance of the
third bond (the double-layer capacitance becoming less
and less important).

3000

1 500

B. Dielectric susceptibility

The results for the effective dielectric susceptibility y'
as a function of x for fixed co (Fig. 7) are qualitatively
similar for both models. The peaks are centered at
x, =0.577 (SB model) and x, =0.458 (LC model).

The frequency dependence of y' for two values of x is
shown in Figs. 8(a) and 8(b). It has a typical Lorentzian
form

0

10000

5.0x) 0 1.0x1 0

1g'(~)—
I+ (co/co~ 3)

(23) 5000

[The plot of (y') ' versus co gives, indeed, a straight line
with a slope equal to co2 3.]

The value of the dielectric susceptibility at the percola-
tion threshold through the metallic component can be
evaluated as

0
5.0x) 0 1.0x)0

g'(O, x, ) —C3
02

1/2

(24)
FIG. 8. The frequency dependence of y' in 3D, x=0.4 and

x=0.6; solid line, LC model; dotted line, SB model. (Parame-
ters: o.

&

= 1, C2 = 1, o 2=10, C3 = 10 .)
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3 0000 p3+p& p—i(d —1)+y I p i+p3 p—~(d —1) l

d —1
(28)

5000

0

15

0.5 X

p i+p2 (d——1)p3
1

yt p~
—(pi+p2)(d —1))

(d —1)'

p2
—(pl +p3 )(d —1)+y I pl —(p2+p3)(d —1)]

(d —1)

(29)

(30)

(31)

(32)

Reo =cr,fo, y'=C3f, . (33)

0.5 3.0

FIG. 9. The real part of the susceptibility as a function of x,
LC model, forrnal limit of m=0: (a) three-bond description; (b)
two-bond limit (see discussion in the text); (c) the results of
three-bond (solid line) and two-bond (dashed line) models are
compared at high frequency co=10 . Frequency units the
same as in Fig. 6. (Parameters: o.

&
=1, C2 = 1, a ~= 10

C3 =10 .)

CO /C02 3
2

ReX3= C3
1+(co/coq q)

C3
ImX3 — co

1+(co/co~ ~ )

so that

(34)

Note that we defined all lengths in units of the lattice
constant ( =size of the particle); in order to restore the
dimensional units one should replace C3 by C3/I. This
refers to all the equations that contain C3.

Similarly, one can obtain more general expressions for
o ' and y'(co, x) in the region co & co2 3. In this region

VI. ASYMPTOTIC RESULTS FOR SMALL
AND MODERATE FREQUENCIES:

ANALYTIC EXPRESSION
FOR DIELECTRIC RESPONSE

A. SB model

4CO 1o'=o, fo+f, 2~2 3 1 3 1+(co/co2 3)

y'(co, x) =y'(co=0) 1

1+(co/co2 3)

(35)

(36)

Results can be obtained in analytical form by perturba-
tion analysis of the SB mode1 in the range of frequencies
much smaller than co& 3 where Xz(co ) =o 2,

X 3(co ) = i coC3, —and coC3 /cr
&

——2co /co
& 3 « 1 . Represent-

ing o. as

67
cr =o, fo+2i f, -

CO) 3
(25)

—ho++ho 4bo—
2

(26)

and separating the terms of zero and first order in co/co] 3,
we obtain

This supports our previous claim about the Lorentzian
form of g'(co, x).

For d=3 Eqs. (26)—(31) give expressions for fo and f,
in a closed form as functions of x and y. They show, in
particular, that y'(O, x) has a maximum at the point x, .
We put down the expression for f, (x), obtained using the
smallness of the parameter y close to the percolation
threshold, x —0.577I )y,

fi=fi~
= —9x (x —1)

9x +(6—6y)x +12yx —6y+1
(3x —1)

x —0.577) y, (37)

where

y/(1 —d) —h,fo
—b, fo

3fo+2foho+bo
(27)

3

(3x —1)(3x —3x + 1)

x &0.577 —y . (38)

On the other hand at the point x, =0.577
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f -0 5y" =0 5y

Note that the effective-medium theory gives u =0.5, while
the accepted value of the critical exponent in 3D is 0.72.

This could be used as a possible correction when applying
the theory to experimental data.

For arbitrary x one can use for estimates a formula
which interpolates between (37), (38), and (39):

f, =18x (1—x) '36y x (1—x) +(3x —1) 1 —2x —x +6x —6x

+(1—2x+3x —6x —6x )tanh4 x —0.577

y
(40)

[see Fig. 10 for a comparison of (27) and (40)].

B. LC model

f,~ =2.531, x —0.458 & y,x (1—x)
(x —0.21)

(41)

x (x —1)
(x —x +0.395)(x —0.21)

At the maximum

f, =0.266y" '=0.266y

x & 0.458 —y . (42)

(43)

A unified interpolation formula can be built analogously
to Eq. (40).

20

30

0
0 0.5

FIG. 10. A comparison of the interpolation formula (40)
(solid line) and the result of the perturbation theory (27) (dashed
line).

One can obtain the expressions for fo and f, within
the framework of the LC model by a replacement of
(d —1) by q in Eqs. (26)—(31). In 3D (q=3.7655) the fac-
tor f, for small y in the region of parameters
~x —0.458

~

)y takes the form

VII. PERMITTIVITY MAXIMUM:
ORDER OF MAGNITUDE ESTIMATE.

THE DEPENDENCE ON TEMPERATURE
AND OTHER FACTORS

The height of the maximum in the static dielectric sus-
ceptibility is evaluated (in dimensional units) as

C3 o)
+max (44)

For typical values of the interfacial capacitance of the Aat
metal/solid-electrolyte interface per unit surface area
—10 pF/sm and the size of the particles —1 pm,
(C3/I) —10 . With the typical ratio o, /cr2-10 and the
effective-medium "modest" value of the exponent u=0.5
we get y —10, which gives an effective dielectric permit-
tivity e-10. This value can be increased to 10 and
greater values by the increase of the size of the grains
(under an assumption that this procedure does not spoil
the homogeneity of the sample, i.e., it does not induce
porosity) which would enhance C3/l-l and using ma-
terials with greater ratio o.&/oz. One may expect even
greater enhancement if the contact between the metal
and solid electrolyte grains had a fractal shape with the
interface fractal dimension greater than 2.

How does the predicted effect depend on the variation
of temperature, which does not destroy the composite?
The height of the maximum in the static susceptibility y'
depends on it primarily due to C3 and o.2, since the tem-
perature dependence of o. is relatively weak. The temper-
ature dependence of the characteristic frequency
602 3

2o.2 /C3 is determined by the same parameters.
The temperature dependence of C3 can be evaluated from
the capacitance of the given metal/solid-electrolyte Aat
interface. Depending on the material it can vary several
times usually increasing with temperature (which may,
simply, be a result of contact improvement). On the
other hand, the conductivity of the solid electrolyte
has an activational dependence o.

2
—exp I E/k~ T]-

so that y',„-C3expI (1—u)E/k~ T] and
co2 3-C3 'expI E/k~T]. Which of the —eff'ects would
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prevail'7 Solid conclusions can be made for a given com-
bination of metal and solid electrolyte, having experimen-
tal data for the capacitance of the Aat interface and the
activation energy of ion diffusion; particularly strong
effects could be expected near phase transitions if they
confine the superionic state, which is not the case of zir-
conia electrolytes, however.

One effect can be predicted immediately. If the metal
particles are covered by a~ oxide film, the maximum will
decrease together with C3. Indeed, in this case the ca-
pacitance of the oxide film is added in sequence to the
double-layer capacitance; for a considerably thick film
the former is smaller and will dominate in the overall ca-
pacitance.

accordance with the equivalent circuit of Fig. 2 and Eqs.
(5)—(8). Considering the case when the correlation length
g~l~x —x, ~

'(I (v=0.9 in 3D) we may suggest an ex-
trapolation formula for the capacitance

ix —x, ~"+(l/I. )'f(')(x)f, (x)(co/r))'
C (x, co ) = CD /2

x x,—I'"+(i /I )'f 'o(x )(~/~)'

(45)

Here CD is the capacitance of the interface between the

400

VIII. MSCUSSH3N CD/2
200

Earlier, Ukshe and Ukshe have made an attempt to
develop a Kirkpatrik-type effective medium theory for a
two-bond model of a composite. The interface between
the metal and solid electrolyte was taken into account in
the equivalent scheme of the solid electrolyte particles,
but the double-layer capacitance did not appear as a re-
sult of a contact between the metal and solid electrolyte
grains. Presumably, this is the reason why the Ukshe and
Ukshe model gave the two orders of magnitude enhance-
ment of the sample geometrical capacitance near the per-
colation threshold instead of the four to six orders of
magnitude typical for the three-bond model.

It is worthwhile to stress once more that the equations
of the effective medium theory, homogeneous in space,
cannot describe the case with the essentially inhomogene-
ous field distribution. Just such a situation takes place
below the percolation threshold in the metallic com-
ponent in the zero frequency limit: the static field,
screened by the electrolyte, does not penetrate into the
bulk of the composite. Thus, what Ukshe and Ukshe
have calculated was the bulk impedance of the sample,
which can be observed only at the sufBciently large fre-
quencies (cf. Sec. I c). This makes the claims on the har-
mony of this model with the data of Bukun el; al. on
the admittance of the carbon-Ag4 RbI5 unjustified. We
believe that what Fig. 1 of Ref. 28 shows in the low-
frequency limit is the interfacial capacitance, not de-
scribed by the effective medium calculation. Indeed, the
Lorentzian seen in Fig. 1 of Ref. 28 could not be the
Lorentzian decay of the capacitance, predicted by the
Ukshe and Uk she m.odel, because the experimental
dispersion shown takes place at the frequencies at least
three orders of magnitude lower than in the model. Also,
the observed value of capacitance at co -0 is 200 times
greater than the one predicted by the model. The quanti-
ty that the Ukshe and Ukshe model has actually attempt-
ed to calculate is the much smaller value of capacitance
at co & 10 Hz. The same applies to the plot of the capaci-
tance against the volume fraction of electrolyte shown for
different frequencies (Fig. 3 of Ref. 28): while the curve 6
(co=20 Hz) may have, in principle, a connection with the
results of the effective medium theory, curve 1 cannot.

The data of Ref. 28 themselves are, nevertheless, very
interesting. Figure 11 shows that they are in qualitative

0
—5 —3

1ogro (~)

200

iSO
-----

c'~72
100—

50—

log, o (—)

I0
0.445 0.45 0.455

FIG. 11. The capacitance of the metal/composite/metal sys-
tem near [below, x, —x ) (L/1)'~", y] the percolation threshold,
calculated via expression (45). Parameters I./l =10, p=2.6,
@=10,x, =0.458. (a) Frequency dependence of capacitance
for difFerent fractions of metallic component, x: 0.4575;

. . 0.4572; ———0.4569. co is given in units of co, the fre-
quency of charging of a Aat metal/solid electrolyte/metal com-
ponent. Calculated for the LC model. (b) Capacitance frequen-
cy dispersion: comparison of LC and SB models for the same
"distance" hx =x, —x from the percolation thresholds
x, =0.458 and 0.577, respectively. Lower pairs of curves:
Ax =0.007 ( SB; ~ . ~ LC). Upper pair of curves:
b,x=0.0001 ( ———) SB; —.——- LC). (c) The capacitance as
a function of the volume fraction of the metallic component for
diFerent frequencies. SB model. co: ( ) 0; ( ~ ~ ~ ~ ) 0.005co;
( ———) 0.01B.
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ideal Hat metal and the homogeneous electrolyte, 6 is the
frequency of charging the double layer at a Bat surface
via the migration of ions through the bulk of the solid
electrolyte: co=2/[C&Rg(x =0)], fo(x) and f~(x) a«
given by the corresponding equations of the SB and LC
models, respectively, and p =D;v, where D; is the Haus-
dorf dimension of the surface of percolation clusters.
Note that in deriving (45) we have neglected the possible
fractal structure of the grain surfaces. Figure 11(a)
displays the family of C(co) curves for different x values,
for the LC model. f, (x) are given by Eq. (42), x, =0.458.
In Fig. 11(b), the LC model is compared with the SB
model. A difference between the curves is seen together
with the onset of frequency dispersion. The difference at
intermediate frequencies is due to the variation in con-
ductivities given by these two models. In the high-
frequency limit (not shown) the difference is due to
different values of the geometrical capacitance.

Figure 11(c) displays C(x) for diff'erent frequencies
below the percolation threshold in the volume portion of
the metal. The capacitance at zero frequency is entirely
determined by the capacitance of the interface.

We have deliberately plotted curves very close to the
percolation threshold, where the difference between the
bulk and surface contribution is most clearly seen, but as-
suming warranted that the size of the system is much
greater than l/(hx) . The crude picture of the interplay
between the bulk and surface contributions sketched in
the Introduction and discussed in this section should in
no way be regarded as a solution of the problem. Future
theory or computer siulation for a finite-size system with
proper boundary conditions would tell us what is the true
response function of the whole system at the intermediate
frequencies and how the crossover between the bulk and
surface responses takes place. For relatively thin sam-
ples, when the correlation length (which grows with the
approach to the percolation threshold) becomes compara-
ble with the thickness of the sample, there wi11 be no
separate bulk and surface contributions, and the interpo-
lations like the one discussed above will be at least inac-
curate, if not misleading.

IX. CONCLUSION AND OUTLOOK

We have considered a metal —solid-electrolyte ceramic
mixture as a random network of three types of bonds,
representing, respectively, the conductances of metallic
and solid electrolyte particles and the admittance of the
contact between them.

This metal —solid-electrolyte contact is blocking in the
absence of Faraday processes, and the third bond contrib-
utes to the system equivalent circuit the double-layer ca-
pacitance of the metal —solid-electrolyte interface, a quan-
tity orders of magnitude larger than the geometrical ca-
pacitance of a solid electrolyte grain. Close to the per-
colation threshold for electronic conductivity this gives
rise to a strong enhancement of the imaginary part of the
system conductivity, i.e., to a peak in dielectric permit-
tivity which, as we show, can easily reach the value of
10 . Even greater values (up to 10 ) can be obtained in
principle for particularly large ratios of the conductivity

of the metal to the conductivity of the solid electrolyte
and large double-layer capacitances which could be pro-
vided by the proper choice of the components of the
ceramic material and large surface area of the interface
between two metal and solid electrolyte grains.

The enhancement decreases with increasing frequency.
Indeed, when it becomes larger than the inverse time of
ion migration through the solid electrolyte grains, the
countercharge at each blocking metal/electrolyte grain
contact has "no time" to react to the variation of the
charge on the metal and the contribution of the imagi-
nary resistors vanishes. This leads to a Lorentzian shape
of the dielectric permittivity frequency dependence.

Within the scope for the three-bond random network
we obtained the efFective-medium solutions, which are
normally inaccurate at the percolation thresholds, but
usually work satisfactorily outside the critical region.
Thus the results await a comparison with computer simu-
lation and real-space renormalization methods. We ex-
pect, however, the prediction of the peak in the dielectric
permittivity close to the percolation threshold to survive.
It is, of course, an open question how broad the frequen-
cy window would be where this "bulk" effect could be ob-
served at the background of the surface contribution.
The above given estimates suggest that the effect ought to
be looked for in the range 1—100 Hz, but this is only a
guess. Since the theory for heterogeneous systems —with
the boundary conditions in confined geometry —is not yet
developed, we can only speculate on the interplay of the
surface and bulk contributions, but cannot make any
solid conclusions a priori. The latter is particularly
dangerous for a sample the thickness of which is only a
few times larger than the percolation correlation length,
where there is no "bulk" as such.

Experimental observation of this effect may be affected
by random fluctuations of bond admittances along the
sample. For instance, they may be caused by variation of
the contact area between the grains (admittance of the
third bond is proportional to the contact area), even if
they are morphologically of the same size: some grains
are pressed to each other more tightly than others. Ran-
dom Auctuations of the grain size may also contribute
significantly to the system macroscopic properties. Vari-
ations of the grain shape or of the phase state (grains
could be "liquidlike") may be of a certain importance.
The presence of pores can modify the results. Because of
these factors an experimental observation of the predict-
ed enhancement of the dielectric permittivity is to be
started with a specially designed monodisperse ceramic
mixture with a small percentage of pore space and mono-
dipersive pore-radii distribution, compatible with the
model system considered above.

The predicted giant enhancement of the bulk dielectric
permittivity of the composite, if confirmed by experi-
ments, however, cannot be utilized for energy storage in
supercapacitors based on MCM structures. Static accu-
mulation of energy depends completely on the interfacial
capacitance. However, the resonance in e will give rise to
an enhancement of the geometrical capacitance of the
sample, which could be of some interest for the frequency
characteristics of supercapacitors.
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