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We have made a detailed comparison between three competing methods for determining the free ener-
gies of solids and their defects: the thermodynamic integration of Monte Carlo (TIMC) data, the
quasiharmonic (QH) model, and the free-energy-minimization (FEM) method. The accuracy of these
methods decreases from the TIMC to QH to FEM method, while the computational efficiency improves
in that order. All three methods yield perfect crystal lattice parameters and free energies at finite tem-
peratures which are in good agreement for three different Cu interatomic potentials [embedded atom
method (EAM), Morse and Lennard-Jones]. The FEM error (relative to the TIMC) in the (001) surface
free energy and in the vacancy formation energy were found to be much larger for the EAM potential
than for the other two potentials. Part of the errors in the FEM determination of the free energies are
associated with anharmonicities in the interatomic potentials, with the remainder attributed to decou-
pling of the atomic vibrations. The anharmonicity of the EAM potential was found to be unphysically
large compared with experimental vacancy formation entropy determinations. Based upon these results,
we show that the FEM method provides a reasonable compromise between accuracy and computational
demands. However, the accuracy of this approach is sensitive to the choice of interatomic potential and
the nature of the defect to which it is being applied. The accuracy of the FEM is best in high-symmetry
environments (perfect crystal, high-symmetry defects, etc.) and when used to describe materials where
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the anharmonicity is not too large.

I. INTRODUCTION

All equilibrium thermodynamic information about a
system may be extracted from the free energy and its
variation with respect to physical conditions. Therefore,
considerable effort has been expended in developing
methods to determine the free energy. Several methods
have been proposed to extract thermodynamic data from
atomistic simulations (see e.g., [Refs. 1-11] and a review
in Ref. 12). Many of these simulation approaches require
substantial computational resources! ~71° and, hence,
have never been applied to determine the free energies of
complex systems, such as alloys, where significant com-
position fluctuations occur (e.g., due to surface segrega-
tion). Within the past six years, computationally
efficient, approximate methods for extracting thermo-
dynamic data from atomistic simulations have been
developed.®®!! In the present paper, we examine the ac-
curacy of these approximate methods and delineate the
situations under which reasonably accurate results can be
obtained.

The main idea behind these efficient methods is to
determine the equilibrium atomic structure of the system
by minimizing a free-energy functional with respect to
the positions of all of the atoms. Hence, these methods
are known collectively as the free-energy-minimization
(FEM) method. In practice, the free-energy function is
based upon a local version of the quasiharmonic method,
where coupling between the individual atoms is ignored.
For pure system, this approach reduces to the determina-
tion of one of the invariants of the N (3X3) dynamical
matrices (one approach uses the trace, while another uses
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the determinant —see below) associated with the N atoms
in the system and hence the computational time scales
linearly with the number of atoms in the system. The
only input required to determine the free energy of any
solid, atomic system are the atomic positions and an in-
teratomic potential. A detailed description of the FEM
method is presented in the next section.

In order to determine the accuracy of the FEM
method, we compare the FEM results with results ob-
tained from both more accurate quasiharmonic (QH) cal-
culations and the thermodynamic integration technique
as applied to Monte Carlo simulations (TIMC). The QH
method has the advantage that it incorporates all of the
coupling between the atoms within the system. As a re-
sult, this method requires the calculation of the deter-
minant of the dynamical matrix of the entire system —
typically an N3 operation. Nonetheless, the QH method
is still based on a harmonic picture of the solid, albeit at a
lattice parameter which is adjusted to account for
thermal expansion in a manner consistent with the intera-
tomic potential. Monte Carlo simulations include all the
anharmonicity of the interatomic potential as well as the
coupling between all of the atoms. The free energy may
be extracted from the Monte Carlo simulations by per-
forming a series of simulations at different temperatures
in order to determine the enthalpy H(7) and then in-
tegrating H(T)/T? up to the temperature of interest.
The accuracy of this approach is only limited by the
statistics required to obtain H (7). Very long MC simula-
tions are required to obtain defect free energies with this
method since the difference in H(7) between a system
with and without a defect (e.g., a vacancy) can be very
small compared with the total enthalpy of the entire sys-
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tem. This is what limits the computational efficiency of
the determination of free energies from Monte Carlo
simulations. Other MC methods, such as the overlapping
distribution method, are of limited use in determining the
free energy of defects at high temperature because of the
inherent difficulty of handling defect migration and
thermal generation of defects.!®

One of the earliest applications of the free-energy-
minimization method® provided a careful comparison of
the free energies of a perfect crystal and a vacancy using
the FEM method and Monte Carlo simulations. These
simulations were performed using a simple pair (Morse)
potential and examined temperatures up to 75% of the
melting point T,,. These comparisons showed agreement
between the two approaches to calculating the perfect
crystal free energy to within approximately 0.2% and
within 2.5% for the vacancy formation free energy. Ad-
ditional calculations were performed which compared
FEM and QH results for the vacancy formation free ener-
gy for six metals'* using embedded atom method (EAM)
potentials!*~17 which showed agreement to within 6% in
all cases. More recently, Foiles!? compared the free ener-
gies of defects (vacancy, grain boundary, and surface) us-
ing the FEM, QH, and Monte Carlo approaches and an
EAM potential. He found that while good agreement
was obtained for the perfect crystal free energy, poor
agreement was found for the formation free energy of de-
fects, with the vacancies exhibiting the largest discrepan-
cy (as large as 65% at 1200 K in Cu). The large
differences between the measured accuracies of the FEM
compared with Monte Carlo data obtained with a simple
pair potential and an EAM potential suggest that the ac-
curacy depends on the type of interatomic potential em-
ployed. Furthermore, the good agreement between the
QH and FEM calculations of the vacancy formation free
energy and the poor agreement between the FEM and
MC data on the same quantity indicate that a large part
of the error is associated with the anharmonicity of the
interatomic potential. Comparison of MC and FEM re-
sults on the formation energies of perfect crystals, sur-
faces, and grain boundaries consistently showed much
smaller errors. In the present paper, we try to identify
the properties of the interatomic potential that affect the
accuracy of the FEM method, as well as delineate the
types of defects where the FEM method can be expected
to yield reliable results.

The outline of this paper is as follows. First, we de-
scribe the free-energy-minimization method, briefly out-
line the method for determining the free energy from
Monte Carlo data, and discuss the interatomic potentials
which are employed in the simulations. Next, the free
energies of a perfect fcc crystal, an (001) surface, and a
vacancy are presented based upon simulations performed
with EAM potentials and two pair potentials—Morse
and Lennard-Jones. In each case, we compare the results
obtained using the TIMC, QH, and FEM approaches.
Finally, we demonstrate the additional approximations
used for studying alloy systems yield only very small er-
rors in the free energy and that excellent agreement is ob-
tained between MC and FEM calculations of the heat of
segregation.
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II. SIMULATION METHODOLOGY

A. Harmonic methods

The quasiharmonic approximation to the free energy of
a perfect crystal'® has been shown to be very accurate up
to temperatures in the vicinity of the melting point (based
upon comparison with Monte Carlo results). Within the
framework of this model, the Helmholtz free energy A4,
may be written as

fiw

A=U+KT [ “N(a)in T

2 sinh do , (1)

where U is the total potential energy determined by sum-
ming the interatomic potential over all atoms in the sys-
tem, # is Planck’s constant, w is the vibrational frequen-
cy, kT is the thermal energy, and N(w) is the vibrational
density of states. In the QH model, the vibrational densi-
ty of states is determined from the 3N X3N dynamical
matrix D,

U
D, =, 2
B 31,01 2)
where the subscripts i and j label atoms (1-N) and the
subscripts a and f3 label directions (1-3). Since the num-
ber of atoms is finite, Eq. (1) can be rewritten as

'ﬁwiﬁ
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where o5 are the 3N eigenvalues obtained form the diag-
onalization of the dynamical matrix D.

In the local harmonic (LH) model,” we neglect all
terms in the dynamical matrix that couple vibrations of
different atoms. This approximation essentially decom-
poses the full 3N X3N dynamical matrix into N 3X3 lo-
cal dynamical matrices. Diagonalization of these matrices
yields 3N local vibrational frequencies, ;5 which can be
used in Eq. (3) to determine the local harmonic approxi-
mation to the free energy. In the LH model, the deter-
minants of the local dynamical matrices are used to
determine the free energy. In Sutton’s second-moment
model,®!! the traces of the local dynamical matrices are
employed.

In the classical approximation (#w>>kT), Eq. (3)
reduces to

N—1
#
Ag=U+3kTlh | | —— D|V/6
0 KTV M DI
U+3T S 1 #D, |
= 2 vt
U+3T S n | T | 2D 1/2+1
= Z o | T e

4

where M is the atomic mass and |D| is the determinant of
the dynamical matrix. The first expression in Eq. (4) ap-
plies to the QH model, where D is the full
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3(N —1)X3(N —1) dynamical matrix (where three rows
and three columns have been deleted from the 3N X3N
dynamical matrix to remove the translational degrees of
freedom of the entire system). The second expression in
Eq. (4) applies to the local harmonic method where
|D;|=M3[w;j0,,0;3]* is the determinant of the local
dynamical matrix of atom i, and IDi |76 is the geometric
average of the vibrational frequencies of atom i. The last
expression in Eq. (4) represents the free energy in the
second-moment approximation,®!! where Tr(D;) is the
trace of the local dynamical matrix.

Within the framework of the free-energy-minimization
method, we obtain the finite temperature equilibrium
structure by minimizing the free energy Eq. (4) with
respect to the position of all of the atoms. This may be
accomplished using a variety of techniques. In the calcu-
lation presented below, we have employed a conjugate
gradient technique. The gradients of the free energy with
respect to atomic displacements are finite temperature
pseudoforces (i.e., the thermally averaged force), which
are

For a perfect cubic crystal, the free-energy minimization
is reduced to a minimization with respect to one variable,
the lattice constant a.

In order to study alloys, it is useful to introduce the
concept of an “effective atom.”!® Consider first the case
of a binary alloy consisting of a and b atoms. If we were
to monitor a particular atom site in such an alloy for a
long time, we would find that that atomic site would be
occupied by a atoms with probability ¢, and by b atoms
with probability ¢, =1—c, (neglecting vacancies). Ignor-
ing the temporal correlation between the site occupan-
cies, we can then define the spatial compositional profile
within the alloy crystal as ¢, (r). Within this framework,
the vibrational free energy of the crystal may be de-
scribed as in Eq. (4), with the atomic interactions used to
describe the local dynamical matrix appropriately aver-
aged (as described below) and the mass of the effective
atom employed in the frequency calculations given by
m;=cg (iYm, +c,(i)my,.

In addition to the potential energy and the vibrational
energy contributions to the free energy of an elemental
solid described above, a description of the free energy of
an alloy must also include the contribution associated
with the configurational entropy. Several methods are
available for determining the configuration entropy, in-
cluding the Bragg-Williams approximation,? the cluster
variation method,?! etc. The simplest approach to deter-
mine the configurational entropy is to use the Bragg-
Williams approximation, which is a point approximation
that ignores correlations. This is effectively the same lev-
el of approximation used to determine the vibrational
contribution to the free energy within the local harmonic
model. Therefore, we have adopted the Bragg-Williams
approximation to determine the free energy within the
free-energy-minimization method.!” This results in a
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simple point approximation for the configurational entro-
pYy,

N
S.=—k 3 {c,(DIn[c,(i)]+c,(DIn[c, ()]} . (6)

i=1

We note that since this expression always assumes no
correlation between site occupancies, it is a rigorous
upper bound to the true configurational entropy. In al-
most all situations, we note that at least some short-range
correlation does exist. The assumption of no spatial
correlations employed in obtaining Eq. (6) does not im-
ply that spatial correlations will not form in our simula-
tions, since spatial correlations predominantly are a re-
sult of the properties of the atomic interactions (except
near critical points).

Within this “effective atom” approximation, the poten-
tial energy U is described as a sum over effective intera-
tomic potentials. For example, the potential energy for
pairwise interactions is simply

N—-1 N
U= z 2 {ca(i)ca(j)¢aa(rij)

i=1j=i+1
tlea(ey (N Fcp (i), ()1 (7;5)
+Cb(i)cb(j)¢bb(rij)} » (7)

where ¢, (7)), ¢ap (7)) =p,(r;;), and ¢, (7;;) are the pair
potentials describing the energy of the bonds for aa, ab,
and bb atom pairs, where the atoms are separated by a
distance 7;;. The method used in obtaining the potential
energy using EAM potential is very similar, as described
in Ref. 19.

Defect free energies (e.g., grain boundary, surface, va-
cancy) are determined as the difference in free energy be-
tween a system containing the defect and one which is
perfect, for the same number of atoms:
AA= Agygem— Apertect- Vacancy free energies were cal-
culated by determining the free energies of a perfect crys-
tal of 256 atoms and a crystal with one atom removed
(i.e., one with a vacancy) and then subtracting:
Ad o= Ayss—(355) Aase-

B. Thermodynamic integration of Monte Carlo data

The thermodynamic integration method is based upon
the thermodynamic identity

da
dT

G

T

_ H
—*F, (8)

where G and H are the free energy and enthalpy, respec-
tively. The enthalpy is simply the average of the poten-
tial energy plus the average kinetic energy (assuming the
pressure is zero—as in the present calculations). The
average potential energy may be obtained as an ensemble
average over many Monte Carlo steps, while the average
kinetic energy is simply 3NkT /2. Since the free energy
of a defect is the difference between the free energies of
the system with and without the defect (i.e., small
differences of large numbers), long Monte Carlo runs are
required in order to assure that sufficient statistical accu-
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racy is obtained to guarantee the integrity of the defect
free energies.

Equation (8) may be integrated to determine the free
energy to within an unknown integration constant. This
integration must be performed using H (T) obtained at a
constant pressure. In the results presented below, H was
determined at 100 K increments ranging over 10° Monte
Carlo steps per atom in a constant (zero) pressure Monte
Carlo simulation. Equation (8) was integrated analytically
using H which was fit to a third-order polynomial in T.
The unknown integration constant resulting from the in-
tegration of Eq. (8) is arbitrarily chosen such that the MC
and QH free energies match at 300 K.

C. Atomic interactions

Two classes of interatomic potentials were used in the
present study in order to determine the sensitivity of the
accuracy of the FEM method to the choice of interatomic
potential. The two classes of potentials employed were
central force pair potentials and embedded atom method
potentials. Generic forms of pair potentials were chosen
since they can easily be fit to any type of material and
methods for scaling the results obtained with one set of
parameters to others are well known. The first of these
potentials employed is the common Lennard-Jones 6-12
potential which was cut off midway between the third
and fourth nearest-neighbor separation in an fcc crystal
and shifted up to zero energy at the cutoff [¢(r,)=0].
The two parameters o and € in the Lennard-Jones poten-
tial were determined by fitting to the equilibrium lattice
parameter and sublimation energy of Cu (0 =2.3276 A,
£€=0.4912 eV, and r,=5.4225 A). The second central
force potential employed was the Morse potential
¢(r)=Dy{exp[ —2a(r —ry)]—exp[ —al(r —ry)]}.  The
three parameters in this potential were obtained by fitting
to the equilibrium lattice parameter, sublimation energy,
and bulk modulus of Cu and the potential was cut off
midway between the third and fourth nearest-neighbor
separatxon (Dy=0. 4262 eV, a=1.3580 A‘l, ro=2.8110
A, and r,=5.4225 A). The Lennard-Jones and Morse
potentlals employed in the present study are shown in
Fig. 1.

The second class of potential used in the present study
was the embedded atom method form. Within the frame-
work of the EAM, the total potential energy of the sys-
tem is given by

N—1 N N
i=1j=i+1 i=1 J#i
where @;; is the pair interaction between atoms i and j,

p;(r;) is the spherically averaged electron density of
atom j at the position of atom i, and F; is the energy re-
quired to embed atom i into the electron density due to
all of its neighbors. The functions ®, p, and F are deter-
mined by fitting empirical forms to experimental data (in-
cluding the equilibrium lattice parameter, bulk modulus,
sublimation energy, and vacancy formation energy) for
Cu. ®(r) and p(r) were cut off between third and fourth
nearest neighbors in an fcc crystal. Several forms of the
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FIG. 1. The Cu interatomic potential ¢(r) used in the present
study. The dashed curve is the Lennard-Jones potential, the
dotted curve is the Morse potential, and the solid curve is the
effective EAM pair potential (obtained by expanding the many-
body term about the zero temperature interatomic spacing, as
described in the text).

EAM potentials for Cu are available. In the results
presented below, we employed those of Ref. 17. Howev-
er, we have obtained similar results using the Cu EAM
potential of Ref. 16.

In order to compare the EAM potential with the
Lennard-Jones and Morse potentials, we can write an
eﬁ'ectlve EAM pair potential as ¢(r)=®(r)+2(dF /dp)

X(p—pg), where p is the total electron density [i.e., the
quantity in the square brackets in Eq. (9)], p, is p evalu-
ated at the equilibrium, perfect crystal lattice parameter,
and the derivative is evaluated at p=p, The effective
EAM potential is plotted in Fig. 1. Note that although
the EAM is much shallower than the other two poten-
tials, all three potentials yield exactly the same cohesive
energy (the effective EAM pair potential does not include
a constant term from the embedding energy). The
effective EAM potential is much more shallow and has a
shorter repulsive region than either of the pair potentials.
The shape of the EAM potential is much less symmetric
about its minimum than either of the two pair potentials,
while the Lennard-Jones potential is the most symmetric.
By symmetric, we mean that the even terms in the expan-
sion of the potential about its minimum dominate the odd
terms.

III. PERFECT CRYSTAL RESULTS

All three interatomic potentials were used to determine
the equilibrium face-centered-cubic lattice parameter a
and zero pressure free energy G of a 256 atom simulation
cell with periodic boundary conditions as a function of
temperature in the FEM (local harmonic) and QH ap-
proximations and using the TIMC. The equilibrium lat-
tice parameters as a function of temperature are shown in
Fig. 2. Clearly the thermal expansions a=(da /dT)(1/a)
predicted using all three methods are identical to within
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10%. These errors translate into errors in the lattice pa-
rameter of less than 0.3% at the highest temperature ex-
amined (1200 K).

The temperature dependence of the zero pressure free
energy G is shown in Fig. 3 for all three interatomic po-
tentials and all there simulation methods. For each po-
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tential, the entropy S =—dG /dT is identical to within
the statistical error in the Monte Carlo results. The er-
rors in the enthalpy and hence the free energy (since the
entropies are the same) are less than 1% for all three in-
teratomic potentials at the highest temperature exam-
ined. We note, however, that there is some ambiguity in
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FIG. 2. The equilibrium face-centered-cubic lattice parame-
ter a versus temperature 7. The triangles represent FEM (local
harmonic), the diamonds represent QH, and the circles
represent TIMC calculations. (a), (b), and (c) are for simulations
performed with the EAM, Morse, and Lennard-Jones poten-
tials, respectively.
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FIG. 3. The equilibrium perfect crystal free energy G versus
temperature 7. The triangles represent FEM (local harmonic),
the diamonds represent QH, and the circles represent TIMC
calculations. (a), (b), and (c) are for simulations performed with
EAM, Morse, and Lennard-Jones potentials, respectively.
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the free-energy results since the integration constant used
to determine the free energy from the enthalpy was arbi-
trarily set equal to the QH value at 300 K.

The lattice parameter increases with increasing tem-
perature, despite the fact that the FEM (local harmonic)
and QH results are based upon the harmonic approxima-
tion. This clearly shows that all three simulation ap-
proaches do reasonably accurately account for the anhar-
monicity of the lattice, at least in a perfect crystal envi-
ronment. These results also show that the FEM is a reli-
able method for predicting the thermodynamics of per-
fect crystals, while requiring only a small fraction of the
computational resources required of the potentially (de-
pending on the patience of the simulator) more accurate
TIMC method. The present results for the EAM poten-
tials are consistent with those found by Foiles!? to within
statistical errors.

IV. (001) SURFACE RESULTS

The (001) surface of a face-centered-cubic crystal was
simulated and the free energy determined as a function of
temperature for all three interatomic potentials and all
three methods for extracting the free energy. The size of
the computational cell employed was 4a X 4a in the plane
of the surface and contained 16 (002) planes in the direc-
tion perpendicular to the surface. Periodic boundary
conditions were employed in the directions parallel to the
surface such that the in-plane lattice parameters were
identical to that of an infinite bulk crystal at each temper-
ature. The temperature dependence of the surface free
energy ¥, is shown in Fig. 4 for all three potentials and
all three methods of determining the free energy. There
is a small discrepancy between the results presented in
Fig. 4 for the EAM potential and those determined by
Foiles,!* which is presumably attributable to statistical
errors in the TIMC (see below).

There is increasing discrepancy between the (001) sur-
face free energies calculated using the LH, QH, and
TIMC methods as the temperature increases. This effect
is clearly much more severe for the EAM potentials than
for either the Morse or the Lennard-Jones potentials.
The errors in the FEM surface free energies (relative to
the MC data) are 1.7%, 3.9%, and 15% for the
Lennard-Jones, Morse, and EAM potentials at 1200 K.
This, however, is not an adequate test of the FEM
method since most of the surface energy comes from the
potential itself. A more critical appraisal of the FEM is
with respect to the surface entropy —dy, /dT, for which
the errors in the FEM analysis are 20%, 43.6%, and
75%. While the FEM results give the correct sign and
order of magnitude of the surface entropy, the errors are,
nonetheless, substantial.

The errors in the surface entropy may be traced to the
fact that this quantity is sensitive to the anharmonicity of
the potential and the lower symmetry of the surface envi-
ronment with respect to the perfect crystal. As discussed
below, the reason that the errors get progressively larger
as we switch from Lennard-Jones to Morse to EAM po-
tentials is that the anharmonicity of the EAM potential is
larger than that for the Morse potential, which is larger
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than that for the Lennard-Jones potential. The relatively
large anharmonicity of the EAM potentials compared
with the pair potentials is easily seen by considering the
errors in the QH surface free energies. The difference be-
tween the QH and FEM free energies are associated with
the neglect of the vibrational coupling between atoms.
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FIG. 4. The equilibrium (001) surface free energy y; versus
temperature 7. The triangles represent FEM (local harmonic),
the diamonds represent QH, and the circles represent TIMC
calculations. (a), (b), and (c) are for simulations performed with
the EAM, Morse, and Lennard-Jones potentials, respectively.
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On the other hand, the magnitude of the QH error itself
(relative to the TIMC) is a measure of the anharmonicity
of the atomic interactions. Examination of Fig. 4 demon-
strates that the anharmonic contribution to the error
completely dominates the errors obtained in the EAM
case, while it is about equal to the vibrational coupling
contribution in both of the pair potential cases.

In order to put the magnitude of the errors observed
into proper perspective, we should consider the magni-
tude of the errors in the surface free energy with respect
to experiment associated with the interatomic potentials
and associated with the approximations to the vibrational
contribution to the surface free energy. Unfortunately,
no experimental free-energy data are available on the
(001) surface of Cu; however, Wawra?? determined the
polycrystalline average surface energy to be 2016 mJ/m?.
Fortunately, reliable first-principles (local-density ap-
proximation) calculations of the (001) surface energy of
Cu (Ref. 23) are available and yield a value of 2300
mJ/m?. The EAM potential, on the other hand, predicts
an (001) surface energy of order 1200 mJ/m?, which un-
derestimates the true surface energy by 44%. Lennard-
Jones and Morse potentials predict (001) surface energies
of order 3100 mJ/m?, which is an overestimate of 38%
and 53%, respectively. Given the inaccuracies of the in-
teratomic potentials for calculation surface energies of
order 50%, the errors in the surface energies caused by
the FEM method ( < 15%) are not very significant.

V. VACANCY RESULTS

The vacancy formation free energy was determined
from MC and FEM simulations in which one atom was
removed from the center of a 256 atom computational
cell, with periodic boundary conditions set such that the
bulk is of zero pressure. The statistical error in these MC
calculations was large since the difference in enthalpies
per particle in the system with and without a vacancy are
small. Since the TIMC vacancy formation free energy
8vac is determined from the integration of the vacancy
formation enthalpy 4,,., we show the enthalpy and the
statistical error in the enthalpy as a function of tempera-
ture in Fig. 5. The TIMC error bars in Fig. 5 were deter-
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FIG. 5. The vacancy formation enthalpy h.,. vs T deter-
mined from Monte Carlo simulations using the EAM potential.
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mined as follows: the first 10° Monte Carlo steps (MCS)
per atom were used to equilibrate the system, the enthal-
py data from the remaining 9X 10° MCS were divided
into nine bins of 10° MCS each, and the error bars were
calculated as the standard deviation from the mean of
these nine bins. For EAM, the statistical error is +0.27
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calculations. (a), (b), and (c) are for simulations performed with
the EAM, Morse and Lennard-Jones potentials, respectively.
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eV, which corresponds to a +17% statistical error in the
vacancy formation enthalpy at 1200 K. A similar calcu-
lation for the Lennard-Jones potential suggests a £3.4%
statistical error in the vacancy formation energy.

The temperature dependence of the vacancy formation
free energy g.,. is shown in Fig. 6 for all three interatom-
ic potentials and the three different methods used to ob-
tain g.,.. Examination of Fig. 6 shows that the FEM er-
rors in the vacancy formation free energy are largest for
the EAM potential and smallest for the Lennard-Jones
potential. Specifically, the errors in the FEM vacancy
formation free energies at 1200 K are 35%, 9.5%, and
2.9% for the EAM, Morse, and Lennard-Jones poten-
tials. Although the errors in the FEM vacancy formation
energy are not too large for the pair potentials, the slopes
dg.../dT show significantly greater errors: 86%, 70%,
and 39% for EAM, Morse, and Lennard-Jones. The
magnitudes of the vacancy formation energies are in
much better agreement with experiment for the EAM po-
tentials as compared with the pair potentials because the
vacancy formation energy was used to determine the pa-
rameters in the EAM potentials.

In all case, the errors for the QH calculations for the
vacancy formation energies are significantly less than for
the FEM (local harmonic). Since the errors in the QH
are approximately half that of the FEM when the pair
potentials are used, we can attribute roughly half the
FEM (local harmonic) error to the neglect of the vibra-
tional coupling between atoms and the other half to
anharmonicity effects. The difference between the QH
and FEM errors in the vacancy formation free energy
determined with the EAM potentials is similar to that
found in the pair potential cases; however, the error attri-
butable to anharmonicity (i.e., the QH error) is very
much larger in the EAM case. This again points to the
fact that the large anharmonicity of the EAM potentials
is a major factor in determining the error in the FEM
method.
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FIG. 7. Schematic illustration of the (a) one-dimensional per-
fect crystal and (b) a surface of that crystal.

VI. DISCUSSION

In order to separate the effects of symmetry, anhar-
monicity, and interatomic potential from the results of
the free-energy-minimization method itself, it is useful to
consider a few idealized situations. Consider first a one-
dimensional crystal, where the atoms interact via a pair
potential with a minimum at r =r, as shown in Fig. 7(a).
We can expand the pair potential about its minimum as

d(r)=ap+ay(r—ro)+as(r —ro)+a,(r —rg)*+ -+ .

(10)

In a perfect crystal environment with the potential cutoff
between first and second nearest neighbors, the potential
field around any individual atom is simply the sum of the
contribution from its two nearest neighbors.

At a finite temperature, the lattice may expand, chang-
ing the lattice parameter by y =ry(T)—ry(0), where
ro(T) is the finite temperature lattice parameter. At finite
temperature, each atom vibrates about its equilibrium lat-
tice parameter ry(7) and hence, at any time, it may be
displaced from y and x. Hence, the energy surface upon
which an atom sits may be described by

E(y,x)=ag+1a,(y +x)+1a3(y +x)P+La,(y +x)*+Lay(y —x)?+Las(y —x)3+La,(y —x)*+ - -

=(a0+a2y2+a3y3+a4y4+ co)+(a,+3asy +6a4y2+ s )x2+(a4+ S x4, 11

where terms in the expansion of the potential higher than
fourth order have not been explicitly included. Note that
because of the symmetry of the perfect crystal lattice,
there are no terms in the energy that are odd in the dis-
placement x. The vibrational contribution to the free en-
ergy may be determined with the local harmonic model
by evaluating the energy at its finite temperature equilib-
rium lattice parameter E (y,0) and accounting for the vi-
brational contribution to the free energy as per Eq. (4).
The vibrational frequency of an atom sitting in the poten-
tial well described by Eq. (11) and hence the free energy
(within the harmonic approximation) may readily be
determined using Egs. (4) and (11) as

[

Aoy)=(agtay’+azy’+ay+ )

#i
+kThh | ————
n TV (4a,+12a,y
+24a,y%+ - - )] . (12)

The equilibrium lattice parameter is found by minimizing
Ay(y) with respect to y. Keeping terms to first order in
», the equilibrium lattice parameter is
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(T)— (0) 30203kT
T O a3 ¥ (12a,a, +9a kT
3a 3a;(12a,a,—9a?)
~ro(0) = KT+ ——— (kT , (13)
as 'H

where the second relation is found by expanding in T.
The linear coefficient of thermal expansion is
—3a;/(2a3%), where a; is typically negative. The free en-
ergy associated with the equilibrium lattice parameter is

2
a
M }
a3(kT)?
4a3+(12a,a,—9a3 ) kT)

kT

Ao(D=ao+% 1 2%

kT

9
2 (14)

Equations (12)-(14) demonstrate that all orders of
]
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anharmonic terms (a@j,a,,. . .) in the atomic interactions
¢(r) are included in the harmonic description of the free
energy. It is these anharmonic terms that lead to the
thermal expansion of the lattice [Eq. (13)], despite the
fact that the thermal expansion was determined within
the harmonic approximation to the free energy. In a per-
fect crystal environment, the leading order correction to
the anharmonic description of the energy in Eq. (11)
scales as x*. The coefficient of the x* term depends on a,
and higher order a, but has no contribution from the
leading order anharmonicity in the interatomic potential
a;.

We now consider the case of a defect in a one-
dimensional crystal. The simplest type of defect is made
by cutting the infinite perfect crystal in two and removing
one of the semi-infinite pieces [see Fig. 7(b)]. This creates
a free surface. In this case, the atom at the end of the
chain sees an energy surface of the form

E(y,x)=%(a0+a2y2+a3y3+a4y“+ co0 )+ L (2a,y +3ay%+dayi+ - )x

(15)

+L(a,+3asy +6a,y>+ - - x*+Las+day+ - x3+HLa,+ - xt4

Comparing this energy surface with the one found for a
perfect crystal [Eq. (11)], the most notable difference is
that this energy surface contains terms with odd powers
of the displacement x. The term that is linear in x would
be zero if the energy were minimized with respect to the
atomic coordinates such that each atom has zero force
(i.e., 0E /0x =0). This would produce surface relaxation.
However, even if the relaxation were performed (such
that the linear term disappears), the other odd order
terms (e.g., x°) would remain. Therefore, the leading or-
der correction term to the harmonic model in the defect
case [Eq. (15)] scales as x3, instead of as x* as in the per-
fect crystal. The disappearance of the x> term in the per-
fect crystal is a result of the centrosymmetry of the per-
fect crystal environment. This shows that anharmonicity
effects are more important (lower order) when the sym-
metry of the atomic environment is low.

The very good agreement between the MC and anhar-
monic (FEM and QH methods) results shown for the per-
fect crystal (see Sec. III) is attributable to the high sym-
metry of the atomic environment in the crystal. In this
case, the anharmonic, cubic displacement terms (i.e,. x3)
do not contribute to the errors in the harmonic free ener-
gies. The relatively poorer agreement between the MC
and the harmonic results for the surfaces and vacancies is
associated with the lower symmetry of the atomic envi-
ronments in these cases. Hence, in these cases, the cubic
terms in the displacement are responsible for the addi-
tional errors. Comparing the surface and vacancy free
energy results, we found that significantly better agree-
ment between the MC and the FEM methods occurred
for the surfaces than for the vacancies. This too can be
explained on the basis of the symmetry of the atomic en-
vironment. The (001) surface is centrosymmetric within
the plane of the surface and is only asymmetric in the sin-
gle direction, normal to the surface plane. In the vacancy

case, on the other hand, the environment of an atom ad-
jacent to the vacancy is not centrosymmetric in any
direction. Therefore, the errors associated with the har-
monic approximation become more severe as the symme-
try of the local atomic environment becomes less.
Foiles'® suggested that the lower symmetry of the atomic
environment around defects (as compared with a perfect
crystal) was the cause for the greater errors in the har-
monic model in the defect case. The present analysis
analytically shows the reason for this assertion. Al-
though the simple model presented above is only one di-
mensional, group theoretical arguments can be made to
show that the same types of effects of reducing symmetry
around defects also hold in cubic crystals.

Examination of the results shown in Figs. 2—6 demon-
strates that in all cases the errors in the FEM and QH re-
sults are always smaller for the Lennard-Jones and Morse
potentials than for the EAM potential and that the errors
for the Lennard-Jones potential are smaller than those
for the Morse potential. As the above analysis shows, the
error associated with the harmonic models is associated
with the anharmonicity of the interatomic potential not
included in the overall thermal expansion of the crystal.
For defects, this error is dominated by the cubic terms in
the displacement, the coefficient of which is related to the
anharmonicity of the potential. Assuming that the goal
of simulation studies is to correctly model real materials,
it is important to evaluate how large these anharmonic
terms are in real materials and to see how well the poten-
tials represented them. Unfortunately, there are relative-
ly little direct data available on the magnitude of these
anharmonic terms. However, we can extract some useful
information from experimental measurements of vacancy
formation energies.

Since the errors in the harmonic models were larger for
the EAM potential than for either of the two pair poten-
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tials, we will focus on the EAM potential. The most reli-
able experimental vacancy formation data are obtained
near the melting temperature T',,, where vacancy equili-
bration is fast. The melting temperatures of copper
determined using the EAM and experiment are in good
agreement (within approximately 20 K). There is some
scatter in the experimental vacancy formation measure-
ments?* with the heat of formation h,,, of Cu in the
range of 1.0-1.3 eV and the formation entropy s,,. in the
range 1-3k, where k is Boltzmann’s constant. The best
current estimates for the Cu vacancy formation data?’ are
hye=1.19 eV and s,.,=3k. Our EAM Monte Carlo
data yield s,,,=7.3k. This difference in s, is very
significant since it translates into an error of nearly a fac-
tor of 100 in the vacancy concentration (assuming A, is
properly determined). The experimental error in the va-
cancy concentration near the melting point is typically no
larger than 10%. The discrepancy between the simula-
tion estimates and the experimental data on the vacancy
formation entropy is even larger than these results sug-
gest, since the experimental data includes (positive)
configurational contributions to the entropy, while such
contributions are absent in the simulations. A compar-
ison of A, is not meaningful since the EAM potential
was fit to those data. This large discrepancy between the
vacancy formation entropy determined using the EAM
potential and experiment shows that the EAM potential
greatly exaggerates the true anharmonicity of the materi-
al. The fact that the EAM potentials yield reasonable
thermal expansions yet erroneous defect energies is sim-
ply attributable to the fact that the thermal expansion is
simply proportional to a;, while the defect free energies
are also sensitive to higher order anharmonic terms.
Switching now to the Lennard-Jones potential, the MC
data predict a vacancy entropy of s,,. =3.0k which is in
excellent agreement with experiment.?> Therefore, while
the EAM potential is superior to the simple Lennard-
Jones potential in many ways, the Lennard-Jones poten-
tial yields a superior estimate of the vacancy entropy and
hence the anharmonicity. The ratios of the vacancy con-
centrations obtained with the harmonic and MC methods
(assuming the same A ,, i.e., exp[s,,. /k ]) are more than
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two orders of magnitude larger when the EAM potential
is used as compared to when the Lennard-Jones potential
is used. Since the errors in the harmonic methods are so
much larger when the EAM potential is used rather than
the Lennard-Jones potential, we conclude that the errors
are strongly potential dependent and are very large only
when the potential has large anharmonicity. Because the
EAM potentials yield rather poor agreement with the ex-
perimental s, , we also conclude that the EAM potential
results are not particularly meaningful for such quantities
as the vacancy formation entropy and the temperature
dependence of finite temperature defect properties. This
is unfortunate since we have used the EAM potentials to
calculate finite temperature defect properties in several
studies (e.g., Refs. 14,19,26—-34). However, as the present
vacancy formation entropy results demonstrate (Figs. 3,
4, 6), the errors in the FEM are in the opposite direction
from those in the finite temperature behavior of the EAM
and so there is some cancellation of errors.

We have performed several studies!>?’ 34 where we
have used the FEM method to examine segregation to
surfaces and grain boundaries in metals using EAM po-
tentials. The large discrepancies found between the FEM
and MC results using the EAM potentials above force us
to question the validity of our earlier results. Rittner,
Foiles, and Seidman®® made a direct comparison of the
FEM with MC data for surface segregation free energies.
They examined the (111) surface segregation free energies
of all combinations of solute and solvent possible using
six different metals modeled with EAM potentials. Their
results (their Table III) are reproduced in Table I, below.
Overall, the agreement between the MC and FEM segre-
gation free-energy data is excellent. Of the 30 solute-
solvent pairs considered, only four have errors of greater
than 0.03 eV, where the average value of the segregation
free energy is approximately 0.21 eV. The only potential
problem is in those few cases where the segregation free
energy is very small and the error may result in a change
in sign; however, this only occurs for two out of 30 cases
(where the magnitude of the segregation energies is of or-
der 0.03 eV). These data show that despite the inaccura-
cies in applying the FEM with EAM potentials demon-

TABLE I. Comparison of the FEM and MC methods for calculating the (111) surface segregation
free energies at 1000 K using EAM potentials. These results are reproduced from Ref. 35. The values

are in units of electron volts (eV).

Solute Solvent atom

atom Cu Ag Au Ni Pd Pt
Cu-FEM —0.07 —0.02 0.10 —0.01 0.02
Cu-MC —0.11 —0.14 0.10 —0.01 0.00
Ag-FEM 0.33 0.08 0.50 0.26 0.38
Ag-MC 0.33 0.08 0.50 0.26 0.37
Au-FEM 0.25 —0.11 0.59 0.17 0.40
Au-MC 0.24 —0.11 0.58 0.16 0.39
Ni-FEM —0.06 —0.06 —0.04 0.02
Ni-MC —0.06 —0.11 —0.13 0.01 —0.01
Pd-FEM 0.04 —0.21 —0.18 0.36 0.16
Pd-MC 0.04 —0.21 —0.18 0.36 0.15
Pt-FEM —0.19 —0.33 —0.28 0.09 —0.15
Pt-MC —0.19 —0.33 —0.28 0.09 —0.15
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strated above, the FEM/EAM combination does yield ac-
curate estimates of the segregation free energies, even at
elevated temperatures where the errors should be worse.
Another possible source of error in using the FEM
method for segregation calculations is in the “effective
atom” and Bragg-Williams approximations. However, as
we show below in the only evaluations of these approxi-
mations for segregation performed to date, the effective
atom and Bragg-Williams approximations lead to
insignificant errors in segregation simulations.

The free energy of segregation is simply the difference
in energy of the system between putting a solute atom in
the bulk and at the surface, A4 =A A e — A Apux,
where A 4, 5. and A Ay, are the difference in free en-
ergy of the surface and bulk, respectively, with and
without the solute. While the local harmonic model will
certainly introduce errors into the calculations of the sur-
face energies, those errors will largely cancel out when we
calculate A Ay, . as the difference between the free ener-
gy of the surface with and without the solute. A similar
conclusion can be drawn for the bulk. These conclusions
should be valid when the solute is not too much different
in size from the solvent. This is supported by the results
of Rittner, Foiles, and Seidman,>® who showed that the
FEM and MC predictions of the segregation energies are
in excellent agreement except where the solvent atoms
are much bigger than the solute atoms (this is also con-
sistent with the finding that the FEM errors are larger for
vacancies than other defects).

VII. CONCLUSIONS

We have made a detailed comparison between three
competing methods for determining the free energies of
solids and their defects. The most accurate method is the
thermodynamic integration method applied to Monte
Carlo data. In order to obtain adequate statistical accu-
racy for determination of defect thermodynamic proper-
ties, this method requires a very large number of Monte
Carlo steps per atom and hence demands substantial
computational resources. The quasiharmonic model is
based upon the assumption that atoms vibrate within
quadratic potential wells, which are determined from the
interatomic potential and the crystal structure at the ap-
propriate finite temperature lattice parameter. This
method is very accurate as long as the anharmonicities in
the interatomic potential are not too large. The compu-
tational time required to apply this method typically
scales as the cube of the number of atoms, N. The least
accurate approach is the free-energy-minimization
method based upon the local harmonic (or closely relat-
ed) approximations. This method is similar to the
quasiharmonic approximation, except that the vibrations
of the different atoms are assumed to be uncoupled. Ap-
plication of this method requires computations that scale
linearly with N.

In our applications of this method to determining the
lattice parameter and free energy of a perfect, face-
centered-cubic Cu crystal (as described by three different
interatomic potentials), the predictions of the TIMC,
QH, and FEM methods were all found to be in good
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agreement. The (001) Cu surface free energies deter-
mined using the FEM method differed from the TIMC
results by as much as 15% using the EAM potential at
1200 K. The FEM error (relative to the TIMC) in the va-
cancy formation energy was 35% using the EAM poten-
tial at 1200 K. Similar surface and vacancy calculations
using Morse and Lennard-Jones potentials showed errors
which were 75% to 90% smaller than with the EAM po-
tentials. Approximately one-half of the errors in the
FEM determination of the free energies is associated with
anharmonicities in the interatomic potentials, with the
remainder attributed to decoupling of the atomic vibra-
tions. The large errors associated with defects in Cu de-
scribed by the EAM potential were traced to the large
anharmonicity in that potential. The anharmonicity of
the EAM potential was found to be unphysically large
compared with vacancy formation entropy determina-
tions. While the Morse and Lennard-Jones are generally
inferior to the EAM potential in determining zero tem-
perature properties and the thermal expansion
coefficients, they do yield better agreement with vacancy
formation entropy experiments. Based upon these re-
sults, we conclude that the FEM method provides a
reasonable compromise between accuracy and computa-
tional demands. However, the accuracy of this approach
is sensitive to the choice of interatomic potential and the
nature of the defect to which it is being applied. The ac-
curacy of the FEM is best in high-symmetry environ-
ments (perfect crystal, high symmetry defects, etc.) and
when used to describe materials where the anharmonicity
is not too large. In applications to interfacial segrega-
tion, the other (nonvibrational) approximations in the
FEM method are reasonably accurate. In most situa-
tions, the approximations inherent in the FEM method
are less severe than those inherent in the empirical intera-
tomic potentials themselves.
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APPENDIX: TEST OF BRAGG-WILLIAMS
AND EFFECTIVE ATOM APPROXIMATIONS
IN SEGREGATION

In a recent paper, Rittner, Foiles, and Seidman®’ exam-
ined the accuracy of the FEM method for studies of sur-
face segregation by computing segregation free energies
with the Monte Carlo method and the FEM method.
Their results clearly demonstrated that the FEM method
yielded reliable estimates of the segregation free energy
by examining binary pairs of each of six elemental metals.
In the very few cases where the discrepancy was appre-
ciable, the absolute magnitude of the segregation free en-
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ergy was very small. However, in those cases statistical
accuracy issues suggest that the Monte Carlo data should
be viewed with some caution (see above). Despite this
overall good agreement, Rittner, Foiles, and Seidman®’
suggested that the FEM method may still not be
sufficiently accurate because of the use of the effective
atom and Bragg-Williams approximations. In the course
of a separate study on surface segregation in metal ox-
ides,?® we have had occasion to isolate the effects of the
Bragg-Williams and effective atom approximations from
the other aspects of the FEM method. Although we find
that the local harmonic approximation is not accurate for
ionic crystals due to the long-range nature of the bond-
ing, this system does provide an accurate test vehicle for
the Bragg-Williams and effective atom approximations.

We determined the surface segregation profile (concen-
tration as a function of distance from the surface) to the
(001) and (011) surfaces of (Fey ,Mngg)O and
(Cog 3Niy 4)O using both the Monte  Carlo and FEM
methods. The atomic interactions were described within
the framework of the classical shell model.>’ In order to
separate effects of the local harmonic approximation
from those of the Bragg-Williams and effective atom ap-
proximations, we determined the relaxed surface struc-
ture using the FEM method without adjusting the con-
centration profile. Next, using these frozen atomic posi-
tions, we determined the segregation profile using both
the Monte Carlo and the FEM methods at the same tem-
perature (1000 K). The worst agreement was found for
the (011) surface of (Fe, ,Mn, 33)O, which is reproduced
in Fig. 8. Mn was found to segregate to this surface with
an oscillatory segregation profile that decayed with dis-
tance into the bulk. A comparison of the MC and FEM
segregation profiles show that the two methods produce
quantitatively indistinguishable results to within the sta-
tistical accuracy of the MC data. The oscillatory
behavior continues deep into the bulk in the FEM data,
although this behavior is not observed in the MC data
beyond the fifth layer. We believe that beyond the fifth
layer, the statistics from these 10* MC steps per particle
simulations make the MC data unreliable to predict these
fine features.
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FIG. 8. The equilibrium (011) surface segregation profile in
the mixed oxide (Feq ;;Mng g3)O at 1,000 K. The solid curve and
open symbols correspond to FEM calculations. The dashed
curve and closed symbols represent Monte Carlo simulations
performed using the atomic positions determined from the FEM
calculations.

Although this study was performed on only two
different surfaces of two different alloys, the excellent
agreement between the MC and FEM results clearly
show that the Bragg-Williams and effective atom approx-
imations do not yield unreliable segregation data and, in
fact, yield reliable (at least for these two cases) segrega-
tion data. Similar studies on segregation in metals are
underway to determine the effect of these approxima-
tions. Rittner, Foiles, and Seidman® suggested that the
errors in the Bragg-Williams approximation will lead to
decreasing reliability for nondilute systems. This is clear-
ly refuted by the present calculations where the Fe com-
position was 12%. Despite the success of the Bragg-
Williams and the effective atom approximations in pre-
dicting segregation behavior, we do not expect that these
approximations will lead to reliable predictions of certain
other thermodynamic data, such as phase digrams, espe-
cially in the vicinity of critical points.
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