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Phase diagram of the two-dimensional t J model at low doping
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The phase diagram of the planar t-J model at small hole doping is investigated by finite-size
scaling of exact diagonalization data of ~N x ~N clusters (N ( 26). Hole-droplet binding energies,
compressibility, and static spin and charge correlations are calculated. Short-range antiferromag-
netic correlations can produce attractive forces between holes leading to a very rich phase diagram
including a liquid of d-wave hole pairs (for J/t ) 0.2), a liquid of hole droplets (quartets) for larger
J/t ratios (J/t ) 0.5), and, at even larger coupling J/t, an instability towards phase separation.

Studying the behavior of holes in two-dimensionnal
(2D) antiferromagnets is crucial to understand the ori-
gin of pairing in the high-T cuprate superconductors. In
these materials chemical substitutions in the parent stoi-
chiometric compound lead to injecting mobile holes in the
Cu02 antiferromagnetic planes. Besides transport prop-
erties these holes will also drastically affect the antifer-
romagnetic (AF) correlations in the planes. On the the-
oretical side, motion of holes in antiferromagnets can be
simply described by the so-called t-J model, '2 a strong
coupling version of the well-known Hubbard model. Pre-
vious numerical studies have given reliable information,
especially in the limit of a single hole. It is believed that
holes behave like quasiparticles, at least at the bottom
of the coherent band, although spin fIuctuations strongly
enhance their effective masses and reduce their quasipar-
ticle weights. 4

Finite-size scaling analysis becomes easier at commen-
surate densities such as n = 1/2 (quarter filling). In
this case, exact diagonalizations (ED) studies of the t
J model have suggested the existence of superconduct-
ing correlations in the vicinity of the phase separation
phase. This regime is however quite far &om the exper-
imental situation.

At small but finite doping (e.g. , electron density
n 0.8—0.9) fewer theoretical results are known. How-
ever it is believed that this class of models reproduces
successfully7 the large Fermi surface observed in angu-
lar resolved photoemission studies in the metallic phase
of doped high-T materials. In addition, possible obser-
vation of shadow bands due to strong short-range an-
tiferromagnetic correlations has been suggested in both
experimental or theoretical studies.

The magnetic coupling J can generate an effective cou-
pling between holes. This is particularly clear in the
(unphysical) large J/t regime where the magnetic en-
ergy cost is minimized by having holes sitting on nearest
neighbor sites. In this regime, the uniform state becomes
in fact unstable towards a phase separated state. High
temperature expansions also predict phase separation
for J/t ) 1. However, small cluster calculations have
shown that for smaller and more realistic J/t ratios indi-
vidual pairs could be stable. ' Preliminary results
state that larger clusters of holes could also form in
the intermediate parameter range. Other possible can-

didates in this parameter regime are nonuniform striped
phases i4'~5

In this work, more insights into the nature of the phase
diagram at small doping are obtained Rom a detailed
numerical study. Indeed, since analytic perturbation
treatments are poorly controlled in the relevant physical
regime, exact diagonalizations of small 2D square clus-
ters by the Lanczos algorithm were performed. Stud-
ies in the regime of small finite hole densities are delicate
since only different discrete values of the densities can be
achieved on different clusters and interpolations between
them then become necessary. First, finite-size scaling of
binding energies of n-hole clusters provides an indication
of the stability of liquids of pairs or droplets in the van-
ishing hole concentration regime. Hole-hole correlations
obtained for n 0.85 also confirm the stability of pairs
at finite density even at small J/t ratios. The compress-
ibility for arbitrary hole densities (n ( 0.8) and various
system sizes is calculated to perform an extrapolation
to the thermodynamic limit. The domain of the phase
separated region is then estimated. We also discuss the
behavior of the static spin and charge structure factors
at intermediate density n 0.85.

The t-J model defined on a square lattice reads

II=t ) c~ cps
x.,y N. N.

where c~ and S are creation and spin operators at site
x. Ground state (GS) energies and equal-time correlation
functions in the GS are obtained on small ~N x ~N N
site clusters at low hole densities by the Lanczos method.
Typically N = 18, 20, and 26.

Let us first consider a fixed finite number of holes Nh ——

n (Nb = 2, 4) on various clusters of increasing sizes.
These holes will form an n-particle bound state if the
binding energy A~ = Eh, ~+Eh 0 —2E~ ~y2, where Eh, ~ is
the GS total energy for a system with Nh ——n, converges
towards a negative value in the limit of infinite system
size. Strictly speaking such quantities give indications
about the stability of n-particle bound states only in the
limit of vanishing hole density.

A simple broken-bond counting argument shows that,
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ble in a small region of the phase diagram, as a precursor
of the PS instability line. This should be contrasted to
the small electron density case where the gas of electron
quartets is never stable.

We finish this study by the investigation of the
static spin and charge structure factors de6ned
by S(q) = & g, (S,(r) S,(0))e'~' and N(q)

(nb(r)nb(0)) —nh e'~', respectively. Our data
are complementary to the data obtained in the thermo-
dynamic limit but at finite temperature by Puttika et
al. The data obtained for N = 26 with a density of
n 0.85 (four holes) are shown in Figs. 4(a) and 4(b).
A smooth interpolation between the discrete g points of
the reciprocal lattice of the 26-site cluster has been per-
formed assuming that the correlations in real space re-
main small at distances larger than the cluster size. S(q)
in Fig. 4(a) shows a pronounced peak at (vr, vr) even for
small values of J. This indicates that large commensu-
rate antiferromagnetic spin correlations ((AF 3) still
survive for hole doping as large as 15%. N(q) shown
in Fig. 4(b) exhibits along the I'-M line a behavior very
similar to noninteracting spinless fermions with nearest
neighbor hopping (dotted line). However, a clear dip is
observed at X. This behavior cannot be explained by
a simple Fermi surface effect. For example, a diQ'erent
tight-binding spinless model whose dispersion has a min-
imum at Z [momentum (vr/2, vr/2) j would give much more
structure than observed (other dotted line). We interpret
the dip at X as the signature of strong short-range cor-
relations between holes characteristic of the paired state.

We conclude this paper by suggesting a possible phase
diagram in Fig. 5 based on the results discussed above.
When J exceeds some critical values J~ 2 and J~ 4 holes
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FIG. 5. Schematic picture of the J/t nphas-e diagram.

injected into the antiferromagnetic phase form a liquid
of d-wave pairs and a liquid of quartets (D), respec-
tively. At larger J/t ratios the t Jmode-l phase sepa-
rates (PS). Also note the existence of a ferromagnetic
region (F) at very small J as predicted by high tempera-
ture expansions or ED. Two crucial issues still remain
to be addressed, namely the exact nature of the normal
paramagnetic phase (P) and possible pair-pair correla-
tions (superconductivity) in the pair liquid phase.
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