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Statistics and superHuidity
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Using finite-size scaling, anyons on a triangular lattice at zero temperature with statistics v = —,3 )

3 4 and — are tested for Bux quantization. It is found that all anyons, except those with v=3
form a super8uid for some range of densities. These results compare favorably with previous mean-
field investigations of lattice anyons, although the v = —case is not predicted to be a super8uid by
the usual fermion-based mean-field theories.

I. INTRODUCTION

The quasiparticle excitations of two-dimensional
strongly correlated electronic systems may obey frac-
tional statistics. These quasiparticles, called anyons,
play a crucial role in the &actional quantum Hall
eKect, ' and have been invoked in theories of &us-
trated spin systems as well as high-temperature
superconductivity.

Mean-field studies which incorporate the eKect of local
fluctuations indicate that anyons on a lattice can form a
superfluid at zero temperature. Fermion-based ' mean-
field calculations yield superfluid states for lattice anyons
with statistics v = 1 —1/n (n integer), but with a num-
ber of lattice-dependent density restrictions. ' Boson-
based mean-field calculations also predict superfluidity
but for lattice anyons with statistics v = —(mn even).
While there is considerable numerical evidence in support
of the mean-Geld predictions for superfluidity of anyons
with statistics v =

2 (semions), ~o ~~ ~s ~5 other statistics
have not been investigated to date.

Previous numerical studies of lattice semions ' indi-
cate that the torus is the ideal geometry for an investiga-
tion of flux quantization since edge eKects are eliminated.
The braid group for anyons with statistics v = m/n on
the torus stipulates that the entire energy spectrum must
be Po/n periodic in applied flux (where Pc ——hc/e is the
flux quantum). ~ '~ Flux quantization, a signature of su-
perfluidity, can be monitored by investigating the change
in the energy barrier, the difFerence between the maxi-
mum and adjacent minimum of the ground state energy,
with system size.

In the present work, anyons at zero temperature with
statistics v =

3 3 4 and 4, on the triangular lattice
with periodic boundary conditions in both directions, are
tested for flux quantization in order to address the va-
lidity of difFerent mean-field predictions for superfluidity
driven by quantum statistics. While both the Fermi and
Bose-based mean-field theories predict superfluid states
for anyons with the statistics v =

3 and 4 and an insu-

lating state for anyons with v = 3, only the Bose-based
mean-Geld analysis yields a superfluid for anyons with
v = 4. The triangular lattice is chosen since this lattice
was found previously to yield. the most robust signa-
ture of superfluidity, compared to the square or kagome.

The fact that the Hilbert space for an anyon system with
v = m/n is n-fold larger than for a corresponding fermion
or boson system makes it unfeasible to extend these
studies to statistics with n & 5.

In Sec. II, the Hamiltonian employed in the numeri-
cal investigation of lattice anyons on a torus is explicitly
given. The flux quantization results are given in Sec.
III and are compared with the corresponding mean-field
predictions.

II. ANYONS ON A TORUS

Anyons with statistics v = m/n on the triangular lat-
tice with periodic boundary conditions in both direc-
tions are considered. Anyons are constructed by coupling
hard-core bosons to gauge Gelds. The triangular lattice
can be represented by a square lattice with additional
nearest-neighbor links in the x + y direction. In the
tight-binding approximation, the Hamiltonian is written

II = —) T; btb, + H.c.
(~j)

(2.1)

The operator b (bs) creates (destroys) a boson-gauge
Geld composite at site j, and the sum is over nearest
neighbors. The hopping term T;~ includes the energy
scale (chosen to be unity), the Aharonov-Bohm phases
due to other particles, and the n x n matrices T and T„
imposed by considerations of the braid group for anyons
on the torus. The matrices T~ and T» included whenever
an anyon crosses the lattice boundary in the x and y
directions, respectively, satisfy

T~Ty = TyT~c (2.2)

and have nonzero elements

Tk&k — tel t27I vk (1 ( k ( )
Qn~l Tk~k+1 eipg (1 ( IC ( n) (2.3)

where the phases Pq and P2 are chosen so that the ground
state energy is a minimum with zero applied flux.

Individual N-anyon states can be written

(2.4)
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where ~S) labels one of the ways N anyons can occupy
the sites of a lattice with B rows and C columns, and
the nonzero element of the n-component spinor 0. labels
the Dirac sheet that is occupied. Notice from Eq. (2.3)
that the sheet index can change only if the anyon crosses
a boundary in the y direction.

As in previous studies, ' the "string gauge" is em-
ployed, and periodic boundary conditions are applied in
both directions such that the lattice is bounded by the
cuts A and B corresponding to hops across the bound-
ary in the y and x directions, respectively. The matrices
T( , where the code n (P) is a "x" if the hop h crosses
cut B (A) and a "o" otherwise, are given below. For hops
in the x direction,

T;~ = exp i7rv (N,~ —N~) I, (2 5)

T, " = exp i7rv (2N, + N ) +i2vr4„/Po T„, (2.8)

where ¹ is the number of particles with a smaller x co-
ordinate than that of the hopping particle, independent
of their y coordinate, and ¹ is the number of particles in
the same column as, but not including, the hopping par-
ticle. The external flux 4„, felt by particles crossing cut
A, is also included in order to And the absolute minimum
of energy as well as to check the rotational invariance of
the results. For hops in the x + y direction,

T(. +"l" = exp i7rv (N; —K+) I, (2.9)

T( "l"' = exp i~v (N; —N ) + i2~4 /Po T,
(2.10)

where N~ (N+) is the number of particles with the same
x coordinate as the hopping particle but with a larger
(smaller) y coordinate, and I is the identity matrix of
order n,

T( l"' = exp i7rv (N, —N ) +i2a@ /Po T, (2.6)

where C is a flux coincident with cut B included in order
to test for flux quantization. For hops in the y direction,

(2.7)

v = m/n on an R rows by C columns lattice with periodic
boundary conditions in both directions can be written

si 4= —
I

—E(o= 0) =p, (
—

) (3.1)

A. Anyons with v =—
The system studied with the largest Hilbert space was

9 (or 12) anyons on a 3 x 7 (or 7 x 3) lattice; this has
881 790 states, reduced to a maximum of 41 985 by Bloch
diagonalization. The actual number is dependent on the
value of k for the block. Anyons with v =

3 statistics
were not found to favor any particular k state. Due to
the considerable computational time required to find the
true minimum of energy, the largest system studied was
comparatively small.

In the above respect, anyons with v =
z behave much

like fermions; by contrast, bosons and semions always
minimize their ground state energy when k = 0, as do
anyons with statistics v = s, 4, and 4 (discussed below).
The implication that anyons with v =

3 do not form
a superfluid is supported by the numerical calculations.
The flux quantization results for these anyons on the tri-
angular lattice are shown in Fig. 1. No evidence of flux
quantization is found for any density. Indeed, the energy
barrier is as likely to be positive or negative, a behav-
ior identical to that found for fermions. These results
corroborate the mean-field prediction that only v =—
anyons with mn even can form a superfluid.

where p, is the superfluid fraction. This equation as-
sumes that the external flux is along a single direction;
for all the results presented below, 4~ = 0 and C „=4.

The largest Hilbert space considered is 16 anyons with
v =

4 (x = 1,3) on 25 sites. The 8 171900 states are
reduced to blocks of 326876 or less by making use of
the translational symmetry of the lattice. A modified
Lanczos algorithm is used in order to calculate the ground
state energies.

T' += exp i2.~ (vN + 4y/Po) Ty, (2.11)

T(x+y) x x
22 (2.12)

III. RESULTS AND DISCUSSION

= exp[i27r(4 + 4'„)/Pp]Ty T
= exp[i2vrv(N —1)

+i2w(4' + 4&)/Pp]T T&, (2.13)

where the equivalence of Eqs. (2.12) and (2.13) is proven
by making use of Eq. (2.2) and the braid group condition
that % must be an integer multiple of n.
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As discussed above, superfluid states can be monitored
by investigating the scaling of the energy barrier, the
difference between the maximum and adjacent minimum
of the ground state energy, with system size. The energy
barrier for a finite system of N anyons with statistics
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B. Anyons with u =—
The flux quantization results for anyons with statistics

v =
3 are shown in Fig. 2. Note that anyons do not have

particle-hole symmetry. Indeed, anyons at a density p
are equivalent in mean-field theory to anyons at a density
1 —p in a uniform field of Pov per unit cell (where anyon
holes have negative statistics). 2 For both p ( 2 and

p 0 2 it is found that the energy barrier scales more
or less linearly with N/R2, indicating that anyons with
statistics v = 3 form a zero-temperature superfluid at
most densities.

The scatter of the data points for the p & 2 case, par-
ticularly near K/R2 = 0.4 and at N/R~ = s, is most
likely a finite-size effect. This artificial scaling of the
energy barrier with increased C at constant N/R2 de-
creases rapidly with increasing lattice size, providing a
clear indication of the dependence on system size of the
flux quantization signature. It should be emphasized,
however, that the existence of off-diagonal long-range or-
der (ODLRO) is made manifest by the scaling of the
points for the smallest lattice sizes considered. A crude
estimate of the superfluid density from Eq. (3.1) yields
p, = 0.71 + 0.05, where the uncertainty is due to the
scatter.

The reduced slope of the data points corresponding to
anyons at half-filling is a lattice effect seen previously
in studies of lattice bosonsi and semions. ' The lat-
tice is most capable of suppressing superfluidity as the
density approaches half-filling. The linear scaling of the
points corresponding to p =

&
indicates that anyons with

v = 3 nevertheless form a superfluid at this density, in
agreement with mean-field theory.

The scaling of the energy barrier with N/R2 for den-'

sities p & 2 provides clear evidence of ODLRO for most
lattice fillings. The data points corresponding to p =

4
account for the majority of the scatter, indicating that
anyons with v = 3 may not form a superfluid on the
triangle at this density. This observation is confirmed
by a fermion-based mean-field theory of lattice anyons
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FIG. 3. The energy barrier E($0/8) —E(0) is given as a
function of N/R for anyons with statistics v = 4.

which incorporates the effect of Gaussian fluctuations; '

anyons on the triangular lattice with statistics v = 1 ——
form a zero-temperature superfluid for all densities ex-
cept p = "

&
. Neglecting the points corresponding to

p = 4, the superfluid &action is roughly calculated to be
p, = 0.64 + 0.03. It is possible that the weaker super-
fluidity is due to &ustration caused by the effective field
induced in the transformation &om particles to holes.

C. Anyons with v =—

The results of the flux quantization investigation for
anyons with statistics v =

4 are given in Fig. 3. The
energy barrier generally scales linearly with 1V/R2 for

p & z, indicating a superfluid state. The scatter of the
points, particularly near N/R = 0.4, is likely a finite-
size effect similar to that found for anyons with v = 3.

The flux quantization results for anyons with v =
4 dif-

fer markedly for densities p & 2. Approximately half of
the data points appear to scale in a manner appropriate
to superfluidity. The remainder of the points, which are
associated with a near-zero energy barrier, correspond
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FIG. 2. The energy barrier E(gs/6) —E(0) is given as a
function of N/R for anyons with statistics v = —. Filled
points correspond to p = ~. Mean-field theory predicts an
insulating state for p = —;points corresponding to this lattice
61ling are marked with crosses.
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FIG. 4. The energy barrier E($0/8) —E(0) is given as a
function of N/R for anyons with statistics v = 4. Points
marked with crosses correspond to p = —;mean-field theory
predicts that these anyons form an insulator at this density.
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to densities approaching unity (low hole concentrations).
There is, however, no lattice mean-field theory for anyons
with these statistics that has yielded explicit density re-
strictions. It is possible that the relatively high field (4$o
in the same direction as the statistical gauge field) in-
duced in the transformation &om particles to holes is
sufBcient to destroy superfluidity.

D. Anyons with v =—

The numerical results for anyons with statistics v =
4

and densities p & 2 (Fig. 4) are virtually identical to
those found for anyons with v =

4 in the same density
regime. The general scaling of the energy barrier with
K/Rz indicates that anyons with v =

4 form a super-
fluid for densities less than half-filling, albeit with some
&ustration manifested by the scatter of the data points.
The superfluid density estimated &om the slope of the
points is 0.89 + 0.07.

While the majority of the data points for anyons with
v =

4 and densities p ) 2 (Fig. 4) scale in a manner con-

sistent with superfluid states, the deviation &om linear
behavior for data points corresponding to p =

5 indicates
that this filling is special. Indeed, mean-field theory pre-
dicts that anyons with these statistics form an insulator
at this density. Neglecting the p =

5 data points, the
superfluid &action is estimated to be 0.58 + 0.04.

In summary, the numerical investigation of flux quan-
tization for small systems of lattice anyons supports the
existence of a hierarchy of superfluid states for anyons
with statistics v = —,with mn even. Such a hierar-
chy, predicted by boson-based mean-Geld theory, also in-
cludes the v = 1 —— superfluid states resulting &om
a fermion-based mean-field analysis. It appears that the
boson mean-field theory has more general validity, in that
the fermion-based mean-field theory does not appear to
be a valid predictor of superfluidity for statistics v ( 2.
On the other hand, the numerical results presented here
and previously do corroborate specific density restric-
tions on superfluid states ascertained within the fermion
mean-field treatment of lattice anyons. To date, the bo-
son mean-field theory has not been extended to include
possible lattice effects.
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