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A multiple-scattering theory for the mean acoustic field in a linear statistically homogeneous Auid

with strong fluctuations is presented. Previous strong-Auctuation theories for acoustic wave propagation
deal exclusively with random media of constant density that experience compressibility fluctuations
only. Here a random medium with strong fluctuations of both density and compressibility is considered
using a renormalization method. Analytic expressions for the effective random-medium parameters for
long wavelengths are calculated within the framework of the conventional bilocal approximation as well

as its nonlinear generalization. Through the proper choice of the renormalization constant, the inade-

quacy of the previous multiple-scattering approaches in the case of strong density fluctuations is explicit-
ly shown, and the validity of our results is proved. Possible extensions of the proposed technique are dis-

cussed.

I. INTRODUCTION

One of the most effective methods to treat wave propa-
gation in random media is based on the multiple-
scattering theory (see, e.g. , Refs. 1 and 2). This theory
applies a two-step procedure which consists first of deriv-
ing equations for the statistical moments of a random
field and then solving them through the appropriate ana-
lytic techniques. In particular, the problem for the mean
field assumes the form of equations pertinent to some
deterministic effective medium with the nonlocal consti-
tutive parameters.

For random composite media formed by embedding a
random collection of scatterers in a homogenous host
material, the early attempts to calculate the efFective
macroscopic response can be traced back to Maxwell
Garnett. A new line of work was initiated by Foldy
where the effective field approximation for a dilute en-
semble of scatterers has been proposed. In the context of
solid-state physics, multiple-scattering effects in dense
systems have been dealt with by using the quasicrystalline
approximation in Ref. 5, the coherent potential approxi-
mation in Ref. 6, and the effective medium method in
Ref. 7. They have also been applied to acoustic and elec-
tromagnetic ' problems. Alternative strategies used for
the calculation of mechanical properties of solid compos-
ites invoke a stochastic variational principle"' or a
self-consistent embedding procedure. ' ' ' Finally, one
may view a composite medium as a Auctuating continu-
um with random constitutive parameters and utilize the
multiple-scattering theory for fluctuating media (see, e.g. ,
Ref. 15). As is well known, ' the effective properties of
disordered systems are sensitive to the topology of its mi-
crostructure described by the correlation function of ran-
dom perturbations (or by the two-particle distribution
function in a discrete-medium model). A beneficial
feature of the Auctuating medium approach is that it easi-
ly accounts for topology effects, even within the frame-

V %+co /3 (x) p (x)=0 .1

p„(x)
(2)

The effective parameters for such a case have been calcu-
lated, e.g., in Refs. 26 and 25. [Note that Ref. 25 treats
stochastic equations for a stationary moving medium of

work of a simplest —bilocal —approximation. This bilo-
cal approximation was introduced in connection with the
study of the elastic properties of polycrystals in Ref. 16
and was later utilized in the problem of electromagnetic'
and acoustic' wave propagation in random media. It
should be noted that, as regards the electromagnetic
problems, the results of Ref. 17 and subsequent works
which employ similar techniques are applicable to weakly

fluctuating media only. This limitation has been removed
in Refs. 19—22 with the help of a renormalization
method.

The present paper is concerned with the model of a
linear stationary motionless Quid with strong fluctuating
constitutive parameters. The acoustic wave propagation
in a medium with a iluctuating refractive index n„(x)
(and a unit reference acoustic velocity) is governed by the
equation

[V' +co n„(x)]p„(x)=0
for an acoustic pressure p„(x). The effective refractive in-

dex referring to this case has been calculated, e.g., in
Refs. 1, 2, and 23. When limited to long wavelengths,
these solutions are valid for both weak and strong Auc-

tuations of the refractive index. Note that Eq. (l) and the
related results are restricted to the case where only
compressibility fluctuations occur while the medium's
density remains constant.

When a medium experiences both density and
compressibility fluctuations described by random func-
tions p„(x),P„(x), the equation for the acoustic pressure
becomes
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which Eq. (2) is a particular case. ] However, the bulk of
the work referring to Eq. (2) is restricted by the require-
ment of weak density fluctuations. This is due to the
presence of secular terms in the expressions for the
effective parameters which are generated by the strong
singularity of the respective acoustic Green's function at
the origin. Similar difficulty was characteristic of the
early versions of multiple-scattering theories for elec-
tromagnetic waves. '

In the present paper, we consider an acoustic problem
in a statistically homogeneous medium with density and
compressibility fluctuations described by Eq. (2) or subse-
quent Eqs. (3) and (4). Our goal here is to develop a
multiple-scattering theory for a mean acoustic field which
incorporates the case of strong fiuctuations of both densi-
ty and compressibility. For the electromagnetic case,
similar investigations have been published by Ryzhov,
Tamoikin, and Tatarskii, ' Ryzhov and Tamoikin,
Tsang and Kong, ' and Stogryn.

To achieve our goal, in Sec. III we make use of the re-
normalized integral equations involving Green's opera-
tors for a deterministic background medium. On this
basis, the effective perturbation operators are introduced
and calculated for long wavelengths in the conventional
bilocal approximation, as well as in the nonlinear bilocal
approximation which includes the former as a limiting
case. A nonlinear approximation of this type does not
seem to be available in the literature on the renormaliza-
tion approach. In the electromagnetic case, the same
method for refining the bilocal approximation has been
proposed in Ref. 28. In Sec. IV, we analyze several vari-
ants of choosing the renormalization constant and their
implications on the validity range of the final results, in-
cluding the case of strong fluctuations of density. Possi-
ble applications and extensions of the proposed approach
are discussed in Sec. V.

Throughout the present paper, a time dependence
exp( i cot ) is —assumed, with corresponding time
factor omitted. Algebraic vectors x = (x „xz,x 3 ),
k =(k„kz, k3) refer to the points in the x and k spaces
characterized by the respective position vectors; then

x =dx I dx p dx 3 d k =dk i dk p dk 3 ~ Angular brackets
( .

& stand for statistical averaging, the caret
signifies a dyad, and - denotes the dot product referring
to geometrical vectors or dyads.

The acoustic pressure p„(x) and velocity v„(x) due to the
deterministic impressed sources f(x),s(x) are governed
by the equations

Vp„(x) i —cop„(x)v„(x)= f(x),
i —

co/3„( x)p„( x)+V v„(x)=s(x),

(3)

provided the amplitude is low enough that nonlinear
effects are negligible. In addition, the radiation condition
at infinity, as well as the condition of continuity of acous-
tic pressure and the normal component of acoustic veloc-
ity at every (random) interface in the medium, must be
satisfied. Since the acoustic velocity is given by

(P„(x)p„(x)&
=—b(p„(x) &+c (v, (x) &,

(p„(x)v„(x)&
=—I (p„(x)&+m (v„(x)&,

(7)

where b, c, 1, and m are the effective constitutive opera-
tors acting on x. This representation can be viewed as an
acoustic counterpart to the effective relations in Ref. 12
for composite materials. Averaging of Eqs. (3) and (4)
leads, through Eqs. (7) and (g), to a system of equations

(9)

ico[b(p—„(x)&+c (v„(x)&]+V (v„(x) & =s(x), (10)

with operator coefficients. The use of inverse operators
b ', m ' eliminates (v„(x)& and (p„(x) & from Eqs. (9)
and (10), respectively. The expressions arising can be in-
serted into the corresponding complementary equation
(10) or (9). Hence, equations for the mean acoustic field
are obtained

v„(x)= [Vp„(x)—f(x)],1

l cop, „x
the problem is expressible in the form of Eq. (2) where
zero in the right-hand side should be replaced with the
random source term

f„(x)=i cps(x) +V
f(x)

p„(x)

Owing to the linearity of the problem, the quantities
(P„p„&,(p„v„& allow the following representation in
terms of the mean field quantities (p„&, ( v„&:

II. PROBLEM STATEMENT
V(p„(x) & i cd, (v„(x—) &

= f, (x),
i coI3, (p„(x)&+ V—.( v„(x) & =s, (x), (12)

In this section, the nonlocal effective constitutive pa-
rameters are introduced that determine the properties of
a stationary motionless Quid with density and compressi-
bility fluctuations with respect to the mean acoustic pres-
sure and velocity. For statistically homogeneous media,
limited to long wavelengths, they convert to the local
effective parameters (23) which will be calculated in Sec.

We start with the excitation problem for a random
acoustic field in an unbounded inhomogeneous Quid
characterized by the random density p„(x) and compres-
sibility P„(x). The said functions are allowed to take
complex values to account for small dissipative losses.

P, =b+c m (13)

p, =m+1b
lQ)

(14)

Note that the right-hand side in Eqs. (11) and (12) in-
volves the renormalized source terms

characteristic of a spatially dispersive medium with the
nonlocal "compressibility" P, and dyadic "density" P„
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f, (x) = f(x) l—b 's(x),

s, (x)=s(x)—c m ' f(x) .

As a consequence of the expression

(v„(x))= [V(p ( ))—f (x)],Pe

Eqs. (13) and (14) reduce to an equation

[V p, ' V+co P, ]( p( x)) =icos, (x)+V P,
' f,(x),

(15)

(16)

(17)

b0 =limb(k), ca=lime(k), 10 =liml(k),

ma=limm(k), P,a=limP, (k),

p, a=limp, (k) (k ~0) .

(23)

III. RENORMALIZATION METHOD

effective constitutive parameters in the long-wavelength
limit:

%5(x —x') =S(x,x'),
%exp(ik x) =exp—(ik x)X(k,x),

(19)

where 5(x —x') is the three-dimensional Dirac 5 function
and k is a spectral parameter. Since any arbitrary func-
tion of the variable x can be represented by a linear su-
perposition of 5 functions, we may regard % as an in-
tegral operator %=fd x'X(x, x') whose kernel

X(x,x') belongs, in general, to the class of distributions.
For a statistically homogeneous medium the operators

X=b, c, I, m, and P„P„the Green's operators G, G, and
0 from Eqs. (24) and (25), and the effective perturbation
operators a, y, v, and p in the right-hand side of Eqs. (42)
and (43) will have an x-independent symbol%(k), and the
kernel which depends on x,x' through the difference vari-
able x —x' only: %(x,x')—:S(x —x'). In this case there
exists a simple relationship between the symbol and ker-
nel of an operator given by the distributional Fourier
transform:

(18)

which constitutes, in a source-free case, the averaged ver-
sion of Eq. (2). It is clearly seen from Eq. (18) that
averaging of Eq. (2) necessitates the knowledge of two
effective parameter operators P, and P, . This contrasts
with Eq. (1) which can be averaged by knowledge of only
one effective parameter operator. ' '

Anticipating further needs, let us introduce the kernel
%(x,x') and the symbol %(k,x) of an arbitrary x-acting
linear operator X by the identities

p (x)=Gs (x)+G f(x),
v(x)=Gs(x)+G f(x),

where

(24)

(25)

1
G =icopg, G=Vg, G = . [VVg I], —

LCO

g (x —x') = exp(ik0—R)/4mR, R = lx —x'l

(26)

(27)

J is the identity dyad, and k0 is the wave number:
ka=co&pP (0+arg&X (a). From Eq. (26) and the ex-
pression g(k)=1/(k0 —k ) the spectral representation
for operator G is obtained, namely,

We shall here calculate the quantities of interest listed
in Eqs. (23) using the conventional bilocal approximation
as well as the nonlinear bilocal approximation. We base
the calculation on the renormalized integral formulation
(36) and (37) of the original acoustic problem (3) and (4)
which involves an arbitrary renormalization constant S.
The latter will be specified in the next section to ensure
applicability of the final results to the case of strong den-
sity fluctuations.

The renormalization approach requires the introduc-
tion of an unbounded background medium with constant
density p and compressibility P which will be specified
later by Eq. (50). Let us consider the acoustic field p (x),
v(x) created by the impressed sources f(x),s(x) in the
background medium. The solution for p(x), v(x) can be
expressed in terms of sources with the aid of the Green's
operators G, G, and G:

M(k)= Jd x%(x —x')exp[ ik —(x x )—] . ' (20)
with n=k/k and

(28)

will be spatially harmonic as well:

(p„(x) ) =p(k)exp(ik x),
(v„(x)) v(k)e=xp(ik x) .

(22)

Obviously, P, (k),P, (k) are obtained by replacing opera-
tors with their symbols in Eqs. (13) and (14), e.g., V~ik
etc.

The important physical feature that distinguishes the
statistically homogeneous media is that the mean acous-
tic field created by spatially harmonic impressed sources

f(x) = f(k)exp(ik x)s(x,) =s(x)exp(ik x), . (21)

G' "(k)= icoPnng (k) .

We now introduce a spectral domain function 0' '(k),

G' '(k)=6(k)+ . I,
=G'"(k)+ + . S——

L COP ECO P

and the corresponding dyadic operator acting on x

6"'=G+ .le

(29)

(30)

(31)

(32)

This can be easily checked through Eqs. (9), (10), and
(19).

In this paper, we want to calculate approximately the

where S plays the part of renormalization constant. On
resorting to a well-known technique, an integral equation
substitute for differential equations (3) and (4) can be
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readily derived, namely,

p„(x)=p(x)+i coG(P„—P)p„(x)

the relations which connect the quantities of interest
figuring in Eqs. (7), (8) and the eft'ective perturbation
operators:

+icoG (p —p, )v (x)

v„(x)=v(x)+iroG(P„—P)p„(x)

(33) b —P=a+Sy (I Sp—)
' v, c=y (I Sp—)

1=(I Sp—) '.v, m pI=—(I Sp—) '
p .

(49)

+iso@ (p„—p)v„(x) . (34)

p, (x)=p(x)+iroGPIp„(x)+icoG gw„(x),

wq(x ) —V(x ) + l coGpIp„(x ) + i coC ' ' gw„(x )

(36)

(37)

where pI(x), g(x) stand for random perturbation func-
tions

After making use of representation (32) in Eqs. (33) and
(34) and replacing v„by another field variable,

w„(x)= [1+S[p„(x)—p] j 'v„(x),

there results a system of renormalized equations

They convert to simple algebraic expressions in the spec-
tral domain.

Obviously, it is impossible to calculate the efFective
perturbation operators in accordance with formula (46)
both rigorously and in closed form. A formal solution
can be obtained by expanding the right-hand side in Eq.
(46) in powers of II. To ensure the fastest rate of conver-
gence, it is assumed that the condition ( II(x ) ) =0 is
satisfied, or equivalently, (P&(x) ) =0, ( g(x) ) =0. In
view of Eq. (38), these requirements can be formulated as

(50)

P~(x) =P„(x)—P,
Px) = tu, (x)—p]t I+S[u,(x)—p]]

(38)

For the sake of procedural advantage, we rewrite Eqs.
(36) and (37) in matrix form as

i1 „(x) =g(x ) + i col II /„(x ) .

In this relation

g„=col [p„,w„], g =col [p, v ], 11=diag [PI,g],

(39)

(40)

and a 2X2 matrix I =[I' „]comprises Green's opera-
tors from Eq. (26):

r, =G, r„=G, r„=G, r =6"'. (41)

The averaged version of Eqs. (36) and (37) is simply ar-
rived at, if the efFective perturbation operators a, y, v,
and p that satisfy the identities

y(k) = cof d—'k'Bp~(k —k')k'g(k') = —v( —k),
p(k)= co 13fd —k'B~(k —k')n'n'g(k')

(52)

(53)

n'n'

The first of these two relations yields an explicit expres-
sion for the compressibility of the background medium,
while the second one constitutes an equation to determine
parameter p, provided S is specified.

Retaining the first nonvanishing term in the aforemen-
tioned perturbation series solution yields the bilocal ap-
proximation for II, : II, =iso( II—I II ). Recast in terms of
symbols of the efFective perturbation operators, the bilo-
cal approximation reads as

a(k)= aPp f d O—'Bp(k —k')g(k'), (51)

(Pf(x)p„(x) &—:a&p„(x) & +y & w„(x) )

(g(x)w„(x) & = v& p„(x) &+p & w„(x) &,

(42) We encounter in Eqs. (51)—(53) the spectra Bii(k),
B~&(k), and B&(k) of random perturbations which are ex-
pressible through correlation functions

are available. With these operators at hand, one can in-
troduce a 2 X 2 matrix II, = [II' „],

B&(x —x') = (P(x)P(x') ),

which possesses the property

(44)
Bii&(x —x') = (P(x)g(x') ),
B (

— ')= &g( )g( ')
&

(54)

(45)

II, = (II(1—jcorII) ') ((1—icorII) (46)

On substituting the solution to Eq. (39) g„=( 1—icorll) lit into Eq. (45) it is an easy matter to verify
the following representation for II, :

via integral Fourier transformation

(2') B&(k)=f d xB&(x —x')exp[ —ik (x—x')] . (55)

Similar expressions for B&&(k),B&(k) are omitted for
brevity.

On performing operation k -~0, Eqs. (51) and (52) take
the form

Once the matrix II, is known, one can establish, through
Eqs. (7), (8), (42), (43), and the intermediate equalities,

(w„(x))=S(p„(x))+[I+S(m pI)] (v„(x)), (47)—
ao= co2p f d k'Bp—(k')g(k'),

yo=co f d k'Bs~(k')k'g(k')= —vo,

(56)

(57)

(g'(x)w„(x) ) =1(p„(x)) +(m pI ) (v„(x)), —(48) where subscript "0" signifies the iong-wavelength limit.
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It should be noted that, in general, go+0, v0%0 and, con-
sequently, co%0, 10%0.

From now on we restrict our attention to the case in
which the cross-correlation function 8&&(x —x') is an
even function of difference variable x —x':

Bp~(x —x') =Bp~(x' x—), (58)

ro=&0=0

and p(k ~0) is a multiple of the identity dyad:

p( k ~0)=poI,
po= (4~—/3)~'p f k'8&(k)g (k)dk

(60)

+4~ S— f k 8 (k)dk
3p o

(4~/3)~ —Pf k'B&(k)g (k)dk

(62)

+a S—2 2

3p
(63)

where o.
&

is the value of 8&(x —x') at x'~x. For lossless
media which are characterized by real positive ko, the ex-
pression for po can be given a simpler structure by per-
forming a limiting operation Imko~+0 in Eqs. (62) and
(63). This is tantamount to replacing, in the aforemen-
tioned equations, g(k) with [PV]g(k) (ni/2ko)—5(k—ko). Setting ko-=0 in the arising principal value (PV)
integral in compliance with the long-wavelength approxi-
mation, followed by taking note of the relations

4' f B~(k)dk = f RB~(R)dR

2 + 2
(64)

2m B((ko)-=f R 8~(R)dR
0

leads to a characterization of po of the form

po =—(1/3)co Pf RB~(R)dR
0

+i(1/3)co ko f R B&(R)dR+o~ S—
0 3p

and the random perturbation g(x) is characterized with
the spherically symmetric correlation function:

8~(x —x'):8~(—R) .

In this case B&&(k)=8&&( —k), and spectrum B&(k) turns
into a function of the magnitude of vector k:
8&(k)=B&(k—). Then it can be shown without difficulty
that

Taking account of Eq. (45), we may readily establish that

A, (g„(x))—:(A ical—l, )(f„(x)) =A/ . (69)

We may observe that the conventional bilocal approxima-
tion can be displayed in the form II, =iso(—IIA 'll).
Guided by well-known ideas (see, e.g., Ref. 2), we infer a
nonlinear extension of said approximation by the replace-
ment A ' with A, '=(1—icorII, ) 'I, thus obtaining a
nonlinear equation II, =iso-( 11(1—it'll II, ) rll ) to
determine II, . A solution to this equation comprises an
infinite subsequence of terms in the perturbation series
expansion of the right-hand member in Eq. (46).

When the nonlinear equation in II, is recast in terms of
symbols of the effective perturbation operators and we as-
sume that k —+0, it appears that, in the circumstances de-
scribed by Eqs. (58) and (59), the quantities yo, vo equal
zero [recall Eq. (60)], p(k ~0) reduces to scalar constant

po in agreement with Eq. (61), and ao, po satisfy a system
of nonlinear equations

1
0 ~2p 1 +po S d kBpkg, k, '70

4nco (ao+P. ) f k 8~(k)g, (k)dk
3(1—p 0

[(S—I/p)(1 —poS)+ 1/3p]
+CT

(1—poS) [1+po( 1/p, —S)]
(71)

where

g, (k)= '
[co p(ao+P) —k ]

k po
X 1+po ——S +

p p
(72)

and the notations of Eqs. (56), (62), and (63) are in efFect.
If we concentrate on the situation implied by Eq. (66), a
simplified version of Eq. (70) is obtained, namely,

Note that conditions (58), (59), and (66) imply, in the wid-
er sense, the statistical isotropy of each of the random
functions g'(x), P„(x) but do not presuppose the statisti-
cally isotropic correlation between these functions.

A more refined recipe for calculating the effective per-
turbation operators is furnished by the nonlinear bilocal
approximation. Let A be the inverse of I . When
A= I ' is applied to both sides of Eq. (39), we find

(68)

Bi3(x —x')—:8p(R ), (66)

Likewise, if the correlation function B& is spherically
symmetric,

r

1
Ao= —4&& p 1+po S——

x f k Bp(k)g, (k)dk .
0

(73)

it follows from Eq. (56) that for lossless media

ao=~ p f RBp(R)dR+ico'pko f R'Bi3(R)dR .
0 0

(67)

After neglecting ao, po in the right-hand side of Eqs.
(70)—(73) the respective formulas of the bilocal approxi-
mation derived before are recovered.

With the above approximations for the effective pertur-
bation operators at hand, we are now in a positive to de-
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velop the effective random-medium parameters at long
wavelengths. Reference to Eq. (49) furnishes the result
that we are seeking:

co= lo =0,
o=p+ao

mo=moI, mo=p+po/(I Spo) .

Consequently Eqs. (13) and (14) yield

p,o=bo=p+ao,

p o p ol p ™o=p+po/(I Spo)

(74)

(75)

(76)

(77)

(78)

Equations (74)—(78) show that, under conditions (58)
and (59), the quantities ao, po provide an exhaustive char-
acterization of the effective random-medium properties
for long wavelengths.

IV. CONSIDERATION OF THE
STRONG-FLUCTUATION CASK

In this section, we shall analyze the scope of the results
of the preceding section. The aim is to make these results
suitable for the case of strong density Auctuations
through an appropriate choice of the renormalization
constant.

The criterion which legitimizes Eqs. (75)—(78)
demands ' that the ratio of the two consecutive terms in
these relations be small as compared with unity, namely,

They involve a renormalization constant S which has
remained unspecified. It can be easily shown that the in-
tegral terms in Eqs. (63), (65), and (71) have the order of
(koL&) o &Ip. The off-integral terms do not explicitly in-
volve the correlation length of random perturbations and
are proportional to o.

&. Thus, they may be readily
identified as secular terms. ' If one selects S =0, the
aforementioned equations reproduce the results of the
conventional multiple-scattering theory. ' In particu-
lar, it follows from Eqs. (76) and (78) that

Plo —Peo=P+Po . (82)

are obtained, the second of which results from the pres-
ence of secular terms and clearly implies, through the
corresponding identity g(x) —=p„(x)—p from Eq. (38), the
weakness of density fluctuations. This explicitly reveals
the incompleteness of previous multiple scattering
theories for scalar wave propagation described by Eq. (2).

To lift the weak density fluctuation restriction, one has
to eliminate the secular terms through a suitable choice
of S. This is made by equating to zero the off-integral
terms in the expressions (63), (65), or (71) which refer to
the conventional and nonlinear bilocal approximations,
respectively. In the first case, we arrange for the elimina-
tion of the secular term via equation

On substituting the arising expressions for po in Eq. (80),
the requirements

(83)

la /pl «1, (79) S —(2/3p)=0 . (84)

mo po/p—1 = — «1 .
1 PoS

It gives the value S =2/3p, so, through the second half
of Eqs. (38) and (50),

Here the absolute values of the respective quantities are
used which, in general, may be complex valued due to
slight dissipation in the random medium.

For purposes of deriving an estimate of ao, po, the case
where the random medium is characterized by spherical-
ly symmetric correlation functions given by Eqs. (59) and
(66) is considered. It is convenient to express correlation
functions in the scaled form: B~(R ) =o ~4~(R /L~ ),
Btt(R) =ot3@t3(R /L&). Here L& & are correlation lengths,
functions &0& &( t) approach zero sufficiently fast as t
exceeds unity, and 4& &(0)= 1. The constants cr&, a& may
be viewed as the measure of the strength of the random-
medium fluctuations. By direct inspection of any of the
Eqs. (56), (67), (70), or (73) one can form the following es-
timate: ao-(koLt3) o&!P. It can thus .be concluded that
the condition (79) is met when

p —p„(x)
g(x) =3@

@+2'„(x)

(
1 = 1

@+2'„(x) 3p

and, in view of Eqs. (76) and (78),

3P+Po
~o Peo P 3P Po

The relevant version of Eq. (63) turns out to be

3po= —4m''P f k'B~(k)g (k)dk,

or in the case of a lossless medium,

3po =to Pf —RB~(R)dR+ico~ko f R~B~(R)dR
0 0

(85)

(86)

(87)

(88)

(koLp) lop/pl «1 . (81) (89)

This condition ensures the validity of the approximate ex-
pressions for parameter ao, which arises due to compres-
sibility fiuctuations. Note that inequality (81) is satisfied
in the case of strong compressibility

fluctuations

(lo&/pl »1) provided their characteristic scale is small
enough, (koL&) «1.

We now proceed with the analysis of the approximate
expressions for po developed in the preceding section.

poS —S 1+ +—=0 .2 po 2

P P
(90)

The resulting formula for S which is consistent with Eq.
(84) in the limit po~0, proves to be

When the nonlinear bilocal approximation is con-
sidered, an equation which expresses the declared choice
of S takes the form
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S== 1

2PQ

PQ
&+

Po Po
1 /2

(91)
stance, the excitation of the mean acoustic field can be
described in terms of impressed sources as

+@(po),
2 5po

3p 12p

where 0&arg( )' &~. Taking note of Eq. (90) in Eq
(71), there follows the representation for po that we are
seeking:

(92)

4vrco (ao+P)
po= — f k Bs(k)g, (k)dk .

3 1 —p o
(93)

(kpLg)'I ay/p I' «1, (94)

Equations (93) and (70), joined by an equation that fol-
lows from the second half of Eq. (50), after inserting ex-
pressions (91) or (92), constitute a system of three non-
linear equations for the unknowns aQ, pQ, and p. It pays
to note that, apart from the explicit nonlinearity in o;Q,PQ
manifested in Eqs. (70), (93), or (73), the nonlinearity
enters this problem implicitly through the dependence of
B&(k) on po, p, , as is evidenced by expression (38) for g(x)
and Eqs. (91) and (93) for the renormalization constant.
Numerical solution to this problem can easily be generat-
ed with the help of Newton's iteration method.

The criterion (80) acquires, in the present cir-
cumstances, the form

(p„(x))=G s(x)+Ex .f(x),
(V„(x))=6 s(x)+6 f(x),

(95)

(96)

where the mean-field Green's operators, signified by the
appropriate subscript, are obtained from their counter-
parts referring to the background medium via replace-
ment of p with p, o in expression (26) for G, and ko with
the effective wave number k, =co(p,oP,O)' in Eq. (27)
for g (x —x') (0 & argk, & ~).

The theory of the present paper can be improved, of
course, in several important respects. %'e shall list only
two of them. First, it can be extended to cover the case
of statistically anisotropic Auctuations. This refers main-
ly to density Auctuations, since the Auctuations of
compressibility, in the present context, may be anisotrop-
ic. Such an extension can be achieved through the proper
choice of a background medium and the related Careen's

operators. Second, we have deliberately excluded the dis-
cussion of an opportunity to select the renormalization
constant in accordance with the requirement that
pa~ —=po ~(S) as given by Eqs. (63), (65), or Eq. (71) be
zero value. This recipe can be expressed, in the case of
bilocal approximation and its nonlinear extension, by cor-
responding equations which result from Eqs. (63) and
(71):

which clearly indicates the applicability of our results to
the case of strong ( ~

o.&/p ~

))1) but small-scale
[(koL&) « 1] fiuctuations of density.

V. CQNCI. USIQNS

2 2
a~ S-

3p
—(4m/3)co f3f k B((k)g (k)dk =—0,

(97)

In this paper, we have calculated the long-wavelength
effective parameters bo, co, 10, mo, and P,o, p, o of a linear
statistically homogeneous Auid with density and compres-
sibility Auctuations characterized by spherically sym-
metric correlation function B&(R) and shift-invariant
correlation functions B&(x —x'), B&&(x —x'). Since all
the previous work in this field has been done for weak
density Auctuations and, possibly, strong compressibility
Auctuations, the main purpose here was to extend the
mean-field theory by taking account of the strong Auctua-
tions of both density and compressibility.

The analysis was grounded on the renormalization
method (method of changing the field variable). We in-
troduced a set of the effective perturbation operators, es-
tablished their relationship with the effective constitutive
operators, and calculated the former for long wave-
lengths within the framework of the conventional bilocal
approximation, as well as the nonlinear bilocal approxi-
mation. By choosing appropriate values of renormaliza-
tion constant, we explicitly demonstrated the inadequacy
of previous multiple-scattering theories and showed the
validity of our results in the case of strong density Auc-
tuations.

The knowledge of the effective random-medium pa-
rameters at long wavelengths enables the solution of the
mean-field problems, fully analogous with the acoustic
problems in homogeneous deterministic media. For in-

o. S—2 2

3p

—(4n /3)co (ao+P) f k B&(k)g, (k)dk =0 . (98)

ao= —co p f d kBp(k)g, (k),

which stems from Eq. (70). Here

g, (k)=1/[~'p(ao+P) —k'] .

(99)

(100)

Once pg~ is a null value, there follows from Eqs. (76) and
(78) the consequence that the effective parameters mo, p, ,o
coincide with the density of the background medium p,
and the second half of Eq. (50) acquires the status of an
equation for the effective random-medium density. The
emerging expressions for aQ are compatible with condi-
tion (79) if, as before, the inequality (81) is fulfilled. As to
Eq. (80), the left-hand side is, in view of the equalities
m Q

=p, pQ
I'= 0, unconditionally equal to zero. This

prompts the conclusion that the proposed choice of S en-
ables the escape from any restriction on the strength of
density Auctuations. However, a more careful analysis
reveals that this is not the case. Concentrating, for sim-
plicity, on the version of the proposed scheme which in-
vokes the bilocal approximation for po, Eq. (97) makes

The respective representations for aQ are given by Eq.
(56) and the formula
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where po("'(S) has the order of II" [recall Eq. (46)j. Re-
taining in Eq. (101) the first nonvanishing term pc~'(S)
leads, through expression (49) for I, to an improved esti-
mate,

p(~~(s)
m —

l = -p(&'(S) .
1 —Sp,(~'(S)

(102)

Taking note of this estimate in Eq. (80) furnishes a condi-
tion

~
p',~'(S) y&~ «1, (103)

only the first term pc' '(S)—:pc (S) vanish in the full
asymptotic expansion of po(S) in powers of II,

pc(S)= g po"'(S), (101)

which determines the validity range of the proposed
scheme. It would be useful to investigate the applicabili-
ty of said scheme or that of a related scheme which re-
moves the prescribed number of terms in the perturba-
tion series (101) through an appropriately chosen S for
the case of strong density Auctuations.
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