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Tunneling and localization in a two-state system interacting with a phonon bath
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A variational ground-state wave vector for a tunneling system coupled to a phonon bath is proposed
taking into account the possibility of a symmetry breaking in the initial state of a two-state system. A
best upper bound to the ground-state energy is found showing the impossibility of localization due to in-
teraction with a phonon bath.

During the last few years there has been considerable
interest in the theoretical investigation of the ground-
state properties of a two-state system (particle) coupled to
a phonon bath. ' The most exciting property found for
this system was the possibility of localization in one of
the states due to interaction with a bath in the case of
Ohmic dissipation. In a variational approach, ' the lo-
calization was manifested by a zero probability of inter-
state transitions ' and was related to the one taking place
in the quantum tunneling of magnetic Aux in supercon-
ducting quantum interference device. '

In the variational approach, the conclusion about
localization of the particle due to its interaction to the
Ohmic phonon bath was made on the ground of the
specific behavior of the tunneling reduction factor which
was found to be zero in the region of supposed localiza-
tion. The main result which is reported in this paper is to
show that actually variational methods used before are
not suitable to describe the localization region. The
reason is that variational ground-state wave vectors
(GSWV) proposed in Refs. [3—6], working perfectly in
the tunneling region, do not take into account the adia-
batic syrnrnetry breaking in the two-state system. We
will show that this effect, being negligible for tunneling,
becomes extremely important in the region of supposed
localization. Adiabatic symmetry breaking leads to the
onset of spontaneous magnetization and to the phase
transition in the studied model. At the same time, the
adiabatic symmetry breaking gives a nonzero tunneling
reduction factor in the same region of parameters making
impossible the localization in this type of tunneling sys-
tem. The phase transition is related to the symmetry
breaking between potential wells but not to localization
as it was supposed before.

A great deal of interest was also related to the quality
of the approximation used in a variational approach. ' It
was related to the understanding of the effect of squeez-
ing of the phonon modes on the ground-state properties
of the model. ' ' ' It was found that for definite values
of the model parameters the phonon field is squeezed in
its ground state. This conclusion is not a universal one
because there are cases when the original GSWV built
with a help of the unitary operator generating the opera-

tor displacernent of the boson modes ' is more stable,
providing a better upper bound to the ground-state ener-

gy (GSE). It is only the combination of these two ap-
proaches that provides better estimates for all values of
parameters. This approach reveals a dependence of the
upper bound to the GSE on the index k of the coupling
strength. Generally, the squeezing in the GSWV modifies
slightly the localization conditions of the usual variation-
al approach.

In this paper we show that localization is actually a
very subtle and problematic property of a two-state sys-
tern interacting with a phonon bath when it is studied in
a variational approach. This notion was made in Ref. 11
where the GSWV was presented which always corre-
sponds to tunneling without locali'zation in the system. It
provides a better upper bound to the GSE with a corre-
sponding reduction factor which is nonzero everywhere.

We propose a trial GSWV taking into account both the
delocalization at the small values of the tunneling matrix
element" and the squeezing of the phonon modes. ' This
GSWV, when it is used in the Ritz variational method,
gives the best known upper bound to the GSE of a model
with a nonzero reduction factor. This means that the
ground state found in Refs. 4 and 5 is unstable and there
is no localization in the system.

The effectively two-state system (particle) linearly cou-
pled to a phonon field is described by the Hamiltonian

gf'= —Wo +g tokbkbk+cr, g gI, (bk+bk ), (1)
k k

where 8'is the splitting parameter (tunneling matrix ele-
ment) of the two-state system which is defined in terms of
the Pauli spin matrices, gk is the coupling strength, and
cok is the frequency of a phonon of a mode k. The annihi-
lation bk and creation bq operators of the phonon field
satisfy the usual Bose commutation relations
[bk, b~]=5kq. The summation in (1) is taken over all
modes k of the field.

The Hamiltonian (1) is widely used in the literature to
investigate a wide range of physical phenomena when an
effectively two-state system interacts with its surround-
ings described in terms of elementary Bose excitations'
The competition between localization of a particle due to
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its interaction with a phonon bath and delocalization in-
herent in tunneling is the main feature of the model (1).

The most well-known variational ansatz for the trial
GSWV of the system (1) is given by the theory of
localization-delocalization phase transition ' and can be
considered as a unitary reconstruction of the first-order
perturbation theory,

~y, & =U~o&~~/4&, (2)

where the (operator) displacement unitary operator

U=exp o., g uI, (bl, bI, )— (3)
k

acts on the direct product of the phonon vacuum ~0) and
the symmetric spin state

(7)

ditional squeezing, the phase boundary between these two
states reveals dependence on the index of the coupling
strength.

It was found in Ref. 11 that in the adiabatic approxi-
mation, which is the most relevant for small values of the
tunneling matrix element, the GSWV converges to a
direct product of independent vectors describing the tun-
neling particle and a field. The GSWV

iy„&=Uvc io&i+ & (6)
was proposed, where

V=exp $ vt, (bI, bz) —. ,
k

@=expI —iso I, (&)

1
~~/4) =

2 1

The state ~m/4) describes tunneling in a free two-state
system when it can be found with equal probability in ei-
ther of its two symmetric states. A quantum particle is
tunneling in its ground state between two wells through
the finite barrier of a double-well potential.

A general wave vector of a two-state system has the
form

cos+
sing

The symmetry between "left" and "right" wells is broken
in

~ y ). In other words, the probabilities to find a particle
in these two wells are different, but nevertheless the parti-
cle is tunneling between two wells in the same sense as in
the state ~m. /4).

The tunneling reduction factor of a free two-state sys-
tem (y~o„~qr) =sin2q& is proportional to the product of
two probabilities. The reduction factor z becomes zero
only in the localized states ~+ ) and

~

—). The tunneling
reduction factor calculated for the ground state of in-
teracting systems is used as the order parameter in a vari-
ational approach to the problem.

The upper bound EU to the GSE of the system (1)
found with the help of the GSWV (2) was investigated in
Ref. 4, where the possibility of localization was deduced.

The squeezed state approach developed in Refs. 5 and
6 is centered around the GSWV,

~1t „)=UG~O& ~~/4&, (4)

where the unitary operator

G=exp g (b& bf ) . —Vk
(5)

k 2

generates the Bogolubov transformation'

Cx bk G =bk coshyk +bk sinhyk

of the Bose operators. The squeezed GSWV with the
fixed displacement, ul, = —

gl, /co&, does not always pro-
vide a better upper bound than the purely displaced
GSWV (2). The simultaneous minimization with respect
to ul, and yI, of the GSE obtained with the help of (4) has
been done in Ref. 5. As for the GSWV (2), this approach
leads to the symmetry-breaking phase transition from the
tunneling to the localized state. As a consequence of ad-

+2cos2qr(cot, ul, +gl, )vz ]—Wz,
where the notation

z = sin2qr exp —2 Jul, exp I
—2yl, I

k
(12)

has been introduced for the tunneling reduction factor

The uniform squeezing approximation where yk =y for
every field mode is used below. We will see that it suffices
to provide better bounds to the GSE and clarify consider-
ably our understanding of the localization-delocalization
problem.

To proceed further, the dimensionless ground-state en-
ergy, normalized to the upper cutoff frequency 0 of exci-
tations, DO=ED/0, and the dimensionless tunneling ma-
trix element m = 8'/Q are introduced. We also use the
standard for the Ohmic dissipation spectral density of en-
ergy excitations,

I+&= 0

Unlike the operator U, the unitary operator V generates
a c-number displacement of the Bose operators, while N,
taken at an angle pAn/4, breaks the symmetry between
two initial states of a free tunneling particle. Taken in-
dependently in addition to the operator U, the operators
V and 4 do not contribute to the GSE of the system,
awhile together they improve the upper bound in the most
interesting region of small 8' and large enough interac-
tion strengths where the localization was found previous-
ly. The state (6) is more stable than (2) everywhere and
gives a nonzero reduction factor corresponding to the
tunneling particle without localization. "

We use Eqs. (4) and (6) to propose the trial GSWV,

iy, &=UVGc io&i+ &, (10)

which takes into account both the deformation of the
phonon bath through squeezing together with displace-
ment of the boson modes and delocalization appropriate
to (6).

The upper bound to the GSE of the Hamiltonian (1),
E,

is easily found with the help of Eqs. (3), (5), and (7)—(10),
Ep —+[~A; (uQ + vQ +»»'y~ )+2gg up

k
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The uniform squeezing approximation gives a nonzero
contribution for the indices of the coupling strength
A, (—,'. Also there are limitations on the use of the bound
(13) itself. First of ail, it is valid for the coupling
strengths

a~ —,'e r . (14)

In addition, minimization on y of the GSE (11) can be
done only if Isin2tpI 1. If this constraint is not fulfilled
one must fix the best value of y=~/4, as will be done for
the second major upper bound A'o2(a, w ). For the upper
bound 8o,(a, w ), the above constraint is equivalent to

w & w *= ( 2a —e r ) /2g .

The tunneling reduction factor (12) corresponding to
the bound (13) is given by

z=2wg /(2a —e ~) (16)
and the only remaining variational parameter y minimiz-
ing the function eo, (a, w;y) is defined from the self-
consistency equation

a(2a —e i')sinh2y+8(3 —2A, )(wg) ln(=0 .

Another major upper bound is derived from (11) for
the symmetric case of y=m/4 and has the form

@»(a,w) =mine»(a, w;y), (17)
Irj

a sinh y"(' 'y)=
3 —A.

WZ

(15)

a 1

2 1+2wze 2r

where now both reduction factor z and variational pa-
rameter y are defined self-consistently from the equations

S(co)=g gk5(co —co„)=—,'ac0,
k

and convert in a usual way the summation over field
modes into the integration over frequencies ~,

Qg g„f(co„)=J S(co)f(co)dto .
k 0

As in the squeezed-state approach, our upper bound is
sensitive to the frequency dependence of the coupling
strength which is specified by the index A, ,

gk =0
Q

Two major uPPer bounds for the normalized GSE Co
of the Hamiltonian (1) follow from (11). The first one is
found after minimization on y, Uk, and uk and is given by

6o & 6oi(a, w ) =mineo, (a, w; y ), (13)
Irj

where

eo, (a, w;y) = ——1—a sinh y (wg)~
2 3 2A 2(g —e

and
ae

2a —e r

e i'=1 —(8wz/a)e i'(3 —2A, )in/ .

The full upper bound to the GSE of the model (1) is
given by the inequality

bo&minI Aoi(a, w), 6oz(a, w)] . (18)

For those values of a, w where no localization was found
previously, the upper bound is given by bo2(a, w ). It fol-
lows from Eqs. (13), (17), and (18) that it is for the most
interesting region of the possible "localization" the upper
bound 6o,(a, w) becomes important. The ground state
corresponding to this bound remains tunneling every-
where, inhibiting the localization.

As in Ref. 11, the bound 6oz(a, w ) is not greater than
6oi(a, w) for values of the coupling parameter a & 1/2.
Consequently, the upper bound has the form

bo2(a, w). The function 6'o2(a, w) is analytical in w

and the reduction factor zo2(a, w ) is nonzero in this re-
gion.

The localization was found in Refs. 3 and 4 for u) —,
'

and small w. In Fig. 1 we compare our upper bound (18)
with the upper bound 8U( —,', w) corresponding to the
GSWV (2) (see Ref. 4 for details) for a= —,

' and A, = —,
' (for

A, = —,
' the effect of additional squeezing in the GSWV

I go )
becomes irrelevant). As shown in Fig. 1 there is no con-
tribution of the tunneling part of the Hamiltonian (1) to
the GSE 6U( —,', w) for w & w, =0.4779 (see Refs. 4 and

11), so that O'U( —,', w ) =const and the corresponding
reduction factor of tunneling zz( —,', w ) is zero (see Fig. 2).
The interstate transitions are inhibited and the particle is
localized in one of its degenerate ground states.

For values of the coupling strength index A, (—'„ the
contribution of squeezing of the phonon cloud surround-
ing the tunneling particle becomes important, so that
A oz(a, w ) & 6 U(a, w ) and the GSWV

I tPo ) is more stable
than IfU). The similar upper bound has been studied in
Refs. 5 and 6 with a confirmation of existence of localiza-
tion and conclusion that the squeezing just modifies the
phase boundary separating the localized and tunneling
phases.

The situation is changed drastically for the full upper
bound (18). In the region of a )—,

' and 0 & w & w '
= 0.6603 (the inequality w, & w" always holds), the sym-
metry of the initial state C& I+ ) of the two-state system in
(10) is broken (p&m/4). Conditions (14) and (15) are also
satisfied. Our GSWV I Po ) becomes more stable than the
displaced state IfU ) and displaced squeezed state Ig~G )
(see Fig. 1). The reduction factor (16) remains nonzero in
this region, showing the impossibility of localization in the
model (1) in general. The interaction of a two-state sys-
tem with a phonon bath specified by the Hamiltonian (1)
is only reducing the probability of interstate transitions
and cannot cause the localization in one of the states.

A di6'erent way to study the tunneling problem has
been chosen in Refs. 8, 13, and 14. It is based on the no-
tion that it is possible to accept the correlator

and

lnz = —ae r ln 1+
2wze 1+2wze

m =
& go I a, I @o&

as the order parameter of the problem. In distinction
from z the order parameter m is zero in the pure tunnel-
ing state Im. /4) and has its maximal absolute value in the
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FIG. 1. Upper bound to the ground-state energy as a func-
tion of the normalized tunneling matrix element w. The bound
6 z(w) has a plateau between 0 and w, corresponding to "locali-
zation. " Our upper bound @o(w ) is better than 6 U( w ) every-
where and corresponds to a tunneling system without localiza-
tion. Two branches of the bound @o(w ) are merging at w

two maximally ordered localized states. A particle is
equally likely in either of two wells if m =0, while m ~0
means that the particle is predominantly in the "right"
well. We should stress here that the condition m ~0
does not exclude at all the tunneling of the particle. For
example, in the tunneling state ~qr) both order parame-
ters z and m are nonzero.

In the case of the model (1) the order parameter m is
related' to the breaking of reflection symmetry
o,~ o„bk~ —bk of the —Harniltonian (1). The spon-
taneous breaking of reflection symmetry in the ground
state of % associated with the onset of the nonzero spon-
taneous magnetization m was found in Ref. 8 and investi-
gated in Refs. 8, 13, and 14.

The magnetization m has been never studied in the
framework of the variational approach. The reason is
very simple: it is equal to zero identically in any previous
variational approach. Following the argumentation of
Refs. 8, 13, and 14, this would mean the absence of locali-
zation for any interaction strength.

We have found that for the GSWV (6) the magnetiza-
tion is given by the mean-field-type equation

m =+1—(w/w ) (19)

if w ~ w"; otherwise, m =0 if w) w . In Eq. (19) the

FIG. 2. Reduction factor as a function of the normalized
tunneling matrix element w. The reduction factor zU(w ) is zero
in the "localized" state when w is smaller than w, .

normalized tunneling matrix element plays the role of
temperature in the usual theory of magnetic phase transi-
tion. The critical value w' is given by (15).

Our Eq. (19) confirms variational results of Ref. 8 with
a different value of w* which depends on the ground-
state choice. Although the model does exhibit the phase
transition at the critical point w ', its ground state
remains tunneling because the tunneling reduction factor
remains nonzero for w + w'. The phase transition is as-
sociated with the discontinuity of the ground-state energy
derivative at w*. We can speak about the onset of mag-
netization but there is no reason to conclude that the par-
ticle is localized in the potential well. The magnetization
is stressing the symmetry breaking between two states of
the quantum particle and does not contradict its tunnel-
ing.

Although the variational method cannot be used for
the rigorous proof of existence or absence of localization
in the model with the Hamiltonian &, it brings a lot of
understanding of its main features. In this paper we were
able to give the most stable GSWV of the model (1) corre-
sponding to pure tunneling without localization which
was found in the earlier variational study of the same
model.
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