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We have performed Monte Carlo simulations on the quantum Heisenberg antiferromagnet on the
kagomé lattice with up to 72 spins. We have used the transfer-matrix Monte Carlo method, which
enabled us to do efficient samplings at rather low temperatures where other methods suffer from
serious sign problem. Specific-heat data exhibit the double peak. Results of the chirality and short-
range spin correlations show no tendency of any magnetic ordering even at the lowest temperature

we observed.

Recent interest in the kagomé antiferromagnet orig-
inates in the experiment of a 3He layer adsorbed on
graphite in the mK temperature region.!™ A peak of
the specific heat was observed at the coverage p ~ 0.18
atoms/ A2, where the second layer is just filled. An unex-
pected finding is a lack of entropy. Namely, if we assume
C « T in the low temperature region where the experi-
ment could not be achieved, the entropy calculated by the
integration C/T is just half the expected value.? There-
fore they speculated that some structure, or the second
peak, might be present in the lower temperature region
not yet observed experimentally.

Elser proposed that the atoms on the second layer form
the +/7 x /7 triangular lattice and that a quarter of the
atoms become free from the exchange interactions so that
the remainder form a kagomé lattice.! The /7 x /7 struc-
ture with respect to the first layer atoms is supported by
path integral simulations.* In this proposal, half the miss-
ing entropy is to come from these free spins. The other
half is to be supplied by the additional low temperature
peak of the specific heat. He showed the double peak
by the numerical diagonalization of a small cluster! and
by the decoupled-cell Monte Carlo simulation.® It should
be noted that there is another explanation of the specific
heat; the multispin interactions may play an important
role in this triangular system as well as the two-body
interactions.®

Apart from the experiment, the kagomé system pro-
vides attracting problems concerning both the thermo-
dynamic properties and the ground state, and thus nu-
merous efforts have been done both analytically and
numerically.®" 712 Classically, the kagomé antiferromag-
net possesses macroscopic local degeneracy in the ground
states. In the quantum system, two typical structures
have been considered as candidates for the ground state
selected among the classical degenerate ground states by
quantum fluctuations. One is a v/3 x /3 structure and
the other is a ¢ = 0 structure. Within the linear spin-
wave theory, both states have an identical dispersionless
zero-energy mode throughout the Brillouin zone.®7 It is
reported that higher order corrections to the spin-wave
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calculation lift the degeneracy and the two states are sta-
bilized for the systems with large S value.® A large-N
expansion gives a similar result but a disordered ground
state at small S.° The disordered ground state is pre-
dicted by the series expansion from the Ising limit'® and
the numerical diagonalization of finite systems.®11:}2 Re-
sults of the high temperature expansion depend on the
orders of expansion.”"!2 The presence of the magnetic or-
der in the ground state is not clarified yet and therefore
left for a future problem.

On the thermodynamic properties, the specific heat
exhibits a broad plateau at low temperatures in the clas-
sical system.!® Contrarily, in the quantum system, nu-
merical diagonalization up to size N = 18 displays the
double peak, but the size dependence is still strong; the
data of N = 15 do not show the second peak but a
shoulder.!? The existence of the third peak was also ob-
served at a lower temperature.!? The specific heat for
the system with 24 spins is not so definite to determine
the existence of the second peak.'* An elementary poly-
gon of the kagomé lattice is a hexagon with 12 spins.
Thus the small lattices studied so far include only one or
two hexagons, where they suffer from nontrivial bound-
ary conditions. The minimum size which is free from the
problem of the boundary condition is 36. The system
contains four hexagons. In this sense, we consider that
we have to study systems with NV > 36 in order to study
intrinsic properties of the kagomé lattice.

In this paper, we report that the second peak stably
exists at T' ~ 0.1 by comparing the data of N = 18 with
those of N = 36. Here, the temperature is scaled by the
coupling constant J in the notation

H=J)S;-8j,
()

S| =1/2. 1)

The staggered and the uniform chirality as well as the
short-range spin correlations were also calculated to in-
vestigate whether the ¢ = 0 structure or the V3 x /3
structure grows when the temperature decreases.

So far, unfortunately, the quantum Monte Carlo
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(QMC) method is not a good tool to study this sys-
tem because of the negative-sign problem.!® We em-
ployed the transfer-matrix Monte Carlo method proposed
recently.!® In this method, we decompose all the spins in
the real space into two parts; one is composed of the spins
() which are traced out beforehand and the other is com-
posed of the spins (o) which we sample by MC as depicted
in Fig. 1. For such local traceout, the e spins should be
enclosed by the o spins. In the present simulations, two-
thirds of total spins are already traced out. This causes
an improvement in the sign problem. In the case of the
size N = 36, the sign ratio stays almost unity for T > 0.2
and it decreases for T' < 0.125. Inverse temperature de-
pendence of the ratio is roughly r ~ 51.7 exp[—0.744] for
T < 0.2. This should be compared with a case of an
ordinary world line simulation on the A-chain system,
in which the ratio is 10~7 at the same temperature for
N = 16,17 although we have not yet performed the ordi-
nary world line QMC for the kagomé lattice.
Simulations were carried out at 1.5 > T > 0.15 for
N = 18, at 3.5 > T > 0.10 for N = 36, and at
T = 0.2,0.25,0.35,0.5 for N = 72. We have used the
reweighting method'® to improve the sampling efficiency.
We obtained data at three to five different temperatures
from a single temperature simulation, and consequently
a local tendency of the data with respect to the temper-
ature was observed. It should be noted that this method
also works to improve the sign problem: error bar of a
quantity observed at T,,s by the reweighting from the
simulation at Tg;y, becomes smaller than that of a quan-
tity observed at Tops from the simulation at T, for
Tobs > Tsim. We performed simulation of several values
of the Trotter number in the range 0.32 < 8/m < 0.80,
and extrapolated the data to m — oo, which gives good
linearity. The autocorrelation time is also short because
the simulated spins are all isolated alone. Besides these
merits of the method, there is a disadvantage; it takes
a rather long time for one MC step because of the local
traceout. For example, a simulation with 2000 steps for
the Trotter number m = 18 at 7' = 0.2 with N = 36 takes
about 106 minutes by the FACOM VPP500 parallel su-
percomputer with a single processor. Typical numbers of
steps we sampled are about 20 000 for most of the temper-
atures except for the low temperatures, 7' < 0.2, where
we have done eight independent samplings with different
initial conditions, each of which has more than 40000
steps. Error bars are estimated from the deviation of

FIG. 1. The kagomé lattice. Spins that are traced out are
indicated by e, while spins that are sampled are indicated by
o. The broken line is a periodic boundary for N = 36.
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FIG. 2. Energies obtained by the reweighting method and
the slope obtained as the specific heat.

data sets among these eight samplings. We have used the
local three-spin flip along the Trotter axis, the world line
flip, and a local winding number flip around a hexagon.
Generally, the last type of the flip is necessary around
each elementary polygon of the lattice. We have done
the data analysis proposed by Hatano'® at the temper-
atures where the sign problem is serious. We adopt the
algorithm of Kawashima, Hatano, and Suzuki?® to cal-
culate correlation functions along the Trotter axis. This
algorithm enables us to do MC sampling of the specific
heat as the second derivative of the free energy. We also
estimate the specific heat by the temperature derivative
of the values of the energy which are obtained by the
reweighting analysis. Both data agree with each other as
shown in Fig 2.

Figure 3 shows low temperature behavior of the spe-
cific heat of systems of N = 18,36, 72 together with the
diagonalization result of N = 18 by Elstner and Young!?
for a check of our method. For N = 18, the results of
both methods agree with each other for T' > 0.2 and also
the Monte Carlo data for these three sizes coincide. The
data are proportional to T=2 for T > 2.0. This con-
tradicts the experiment of Greywall and Busch, which
showed the T~! behavior.2 For low temperatures, the
existence of the second peak is confirmed. It is also seen
that the data of N = 36 tend to be even larger than those
of N = 18, although the differences are within the error
bars. Therefore we conclude that the double peak is not
a spurious finite size effect.
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FIG. 3. Specific heat of N = 18 (o), N = 36 (A), and
N = 72 (O) together with the diagonalization result of Elstner
and Young of N = 18 (solid line). We also plotted the uniform
susceptibility.
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We have calculated the total entropy change from the
specific heat data by

© ¢
AS = L Zdr, )

assuming that C o T72 for the higher temperature re-
gion in which we did not simulate, and also that C' o< T'
below the lowest temperature we observed. The inte-
grated entropy changes are (0.86 &+ 0.04)In2 for N =
18, and (0.94 £ 0.02)In2 for N = 36. Without the
second peak taken into account, the integration gives
~ 0.67 In2 for N = 36, which is consistent with the for-
mer calculations.?'2 Uniform susceptibility is also shown
in Fig. 3. The consistency of the Monte Carlo data of
N = 18 with those of the diagonalization!? was con-
firmed. The size dependence is very weak, and the sus-
ceptibility falls down to zero nearly at the temperature of
the second peak of the specific heat. Below this temper-
ature, singlet states are considered to be dominant be-
cause of the vanishing of the susceptibility. As has been
obtained by the Lanczos diagonalization up to N = 36,
the low-lying excited states are all singlet in the lattice
with even numbers of spins, and there exists an energy
gap between the lowest state of S = 1 and that of S = 0.
The gap is about 0.25J as N — oo.!! A sharp dump
of the susceptibility is explained by the existence of the
energy gap. Furthermore, we expect some structure in
the density of states due to the energy gap, and that
the structure would cause the second peak of the specific
heat. The similar situation holds in the A-chain system
where a finite energy gap exists above the ground state
and the second peak of the specific heat stands at the
temperature roughly equal to one-quarter of the gap.17:2!
Further simulations under the magnetic field may be nec-
essary to check this speculation.

In Fig. 4, we have shown two types of chiral sus-
ceptibility; the staggered chirality corresponding to the
V3 x /3 structure and the uniform chirality to the ¢ = 0
structure. Here, chirality of three spins on a triangle is
defined as

2

HVE%(51X52+52X53+S3X51). (3)
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FIG. 4. Two types of chiral susceptibility; the staggered
chirality (open symbols) and the uniform chirality (solid sym-
bols) for N = 18 (circles), N = 36 (triangles), and N = 72
(squares). Neither size dependence nor the difference between
the two types of chirality was observed for T > 0.1.
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There is no clear difference between the two types within
the temperature region simulated here. Moreover, there
is no size enhancement. We could not observe evidence
for the existence of any order in the ground state within
the present calculations.

Short-range spin correlations (S7SZ) are plotted in
Fig. 5. We would expect at least a short-range mag-
netic order at a finite temperature if the ground state
had some ordering structure. The nearest-neighbor cor-
relation data are consistent with the energy and take
about 3 x 60% of the classical value. For far neighbors
the correlations rapidly decay with distance as was found
previously by the diagonalization method.5!! There are
two types of relative position for pairs connected by two
steps, and three types for the three-step pairs. The cor-
relations for the two-step pairs take small positive val-
ues. No clear difference between the two types was ob-
served. For three-step pairs, the data take small neg-
ative values and the difference is also small. If the
magnetic order, either the /3 x /3 structure or the
q¢ = O structure, was realized, the sign of the above
correlations must depend on the relative position of the
pair. We have calculated a dimer correlation defined by
(1/4 - Sl . Sz)(1/4 - S3 . S4)(1/4 - Ss . Ss) Location
of the spins is depicted in the inset of Fig. 5. We could
not observe any anomalous behavior within the present
calculations. The present results suggest the absence of
order in the ground state.

At T = 0.1, the lowest temperature we observed for
N = 36, the data fluctuate with large error bars es-
pecially for the quantities that are usually difficult to
be measured, e.g., the specific heat and the chiral sus-
ceptibility. The staggered chirality decreases although
the uniform chirality remains to increase at 77 = 0.1
in Fig. 4. This observation contradicts the results of
the spin correlations discussed above, which do not show
any sharp change at that temperature. Thus the data
include a spurious error caused by the large fluctuation.
Not only the sign problem but also the unsuitableness
of the S* representation for the complete set makes the
sampling difficult,?? and the important sampling cannot
be achieved at low temperatures 7' < 0.1.

We confirmed that the second peak of the specific heat

0.15 : ‘ Y
- 010 | Ld‘“‘xﬂ 0=0N1)
o
= 0.05 '
i) 2-step pair
e i —
8 0.05 - ! 3-step pair

010 b7 ~heighboring pair

0 02 04 06 08 1
T

FIG. 5. The short-range spin correlations and the dimer
correlation of the systems with N = 36 and N = 72. The
inset shows the spatial configuration of spins. For two-step
pairs, we calculated (S7S3) and (S7S3), and for three-step
pairs we calculated (S7S3), (S7S%), and (S3S%).
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exists in the system of N = 36, the smallest size for
intrinsic properties for the kagomé lattice. For proper-
ties at lower temperatures, it is difficult to predict any
conclusive nature. But it should be noted that in the
temperature region where the specific heat shows rele-
vant structure, namely, the double peak, we do not find
any growth of short-range order. Actually the weak size
dependences of various physical quantities suggest that
the relevant excitations bear a local aspect. The nature
of the ground state and the origin of the second peak
should be investigated in future studies.
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