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Zero-field muon spin lattice relaxation rate in a Heisenberg ferromagnet
at low temperature
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We provide a theoretical framework to compute the zero-field muon spin relaxation rate of a
Heisenberg ferromagnet at low temperature. We use the linear spin wave approximation. The rate,
which is a measure of the spin lattice relaxation induced by the magnetic fluctuations along the easy
axis, allows one to estimate the magnon stifFness constant.

I. INTRODUCTION P (t) = pl. ~ (t)] (la)

Recently, the measured temperature behavior of the
zero-field muon spin relaxation (@SR) rate of some
Heisenberg ferromagnets has been analyzed quantita-
tively in the paramagnetic and ferromagnetic criti-
cal regimes. This analysis has given information on the
anisotropy of the spin dynamics in the reciprocal and
direct spaces. It has shown that the anisotropy in the
reciprocal space, which is induced by the dipolar inter-
action, has a strong inBuence on the dynamics near the
zone center of the Brillouin zone. Note that this interac-
tion always exists in real ferromagnets. The experimental
data in the isotropic dipolar Heisenberg regime are well
explained by the mode coupling approximation of Frey
and Schwabl. On the other hand, up to now, the low-
temperature behavior of the relaxation rate has only been
considered qualitatively or in restricted physical cases.
The main purpose of this work is to provide a theoretical
framework to analyze @SR relaxation data recorded on
Heisenberg ferromagnets at low temperature.

The organization of this paper is as follows. In Sec. II,
we summarize the relation between the measured depo-
larization function and the spin-spin correlation function
of the magnet. In Sec. III we compute the muon spin
lattice relaxation rate in the linear spin-wave approxima-
tion for a Heisenberg Hamiltonian with an energy gap. In
Sec. IV we apply the result of the previous section to de-
scribe the spin lattice relaxation of a dipolar Heisenberg
magnet in the spin-wave temperature region. In this last
section we present the conclusion of our work.

II. MUON SPIN RELAXATION
AND SPIN-SPIN CORRELATION FUNCTIONS

We take the Z-axis parallel to the incoming muon
beam polarization. A zero-Beld muon spin relaxation
measurement consists of measuring the time depolariza-
tion function Pz(t). ' For simplicity we take the easy
magnetic axis z parallel to Z. We writexo, i

with

(1b)

A, = ~p„' [C (~o = 0) + C y„(~o = 0)] . (2)

It is possible to express the magnetic Beld. at the muon
site as a function of, on one hand, a tensor which de-
scribes the coupling between the localized spins of the
metal and the muon spin and on the other hand of the
localized spins components themselves. Because 4 (~)
is quadratic in Belds, A can be written as a linear com-
bination of spin-spin correlation functions of the magnet.
In general the calculation of these correlation functions
is performed. in q space, i.e., in the Brst Brillouin zone.
Therefore the spatial Fourier transform of these functions
has to be introduced. This is done in detail in Ref. 1. Us-
ing the result given at Eq. (2) we find

+G"i (q)G"~( q)]j A~~(q). —

is the muon gyromagnetic ratio: p„= 851.6
Mrad s T . g, (t) does not depend on the muon pul-
sation frequency u„because the associated energy Lu~ is
negligible. In Eq. (1b) C (v.) is the symmetrized time
correlation function of the o. Buctuating component of
the local magnetic field at the muon site and (x, y, z) is
an orthogonal frame.

Experimentally it is usually observed that Pz(t) is an
exponential function. Equation (1) predicts such a result
if 7 is very small relative to t, i.e. , if the characteristic
decay time of 4 is much smaller than t which is 2 ps.
Taking this hypothesis which is justiBed and the fact that
the Beld correlation functions are even functions of ~, we
derive that Pz(t) is an exponential function characterized
by a damping rate A, which can be written in terms of
the time Fourier transform of field correlation functions
atm=0
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The integral extends over the first Brillouin zone. This
equation shows that A depends on the coupling between
the muon spin and the spins of the magnet through
the coupliiig tensor G(q) and the spin correlation ten-
sor of the magnet, A(q, cu), taken at cu = 0, i.e. , A(q)= A(q, u = 0). The information on the muon localiza-
tion site is contained in G(q). We have defined D =
(po/4') p„(gL,p~) where po is the permeability of free
space, gL, the Lande factor, and p~ the Bohr magneton.
V is the volume of the sample. The formula given at Eq.
(3) allows one to deal with Bravais and at least some non-
Bravais lattices, for instance the hexagonal close packed
lattice. In the latter case G(q) = 1/nd gd Gd(q) where
the index d runs over the np nonequivalent sites of the
magnet and Gd(q) = p,. exp[iq. (i+d)]G, , , i runs over
each cell of the crystal lattice and G~, „ is a dimension-
less tensor which accounts for the classical dipolar and

Fermi contact couplings between the muon spin and the
magnet spins located at distance vector r,+g from the
muon. A(q) writes Pd d, Add (q) where Add (q) is the
correlation tensor between spins belonging to cell sites d
and d'. Note that the case of Bravais lattice is included
in the definition we have just given: d takes then only one
value (nd = 1) and the sums reduce to a single element.

The tensor G(q) is the sum of dipolar and hyperfine
tensors which we denote D(q) and H(q), respectively.
In general terms, the sublattice d contribution to D(q)
writes

D„-'(q) = -4 P (q) —C,'(q),

where P&~(q) is the longitudinal projection operator and

Cd (q) a symmetric tensor:

Cd (q) = 1 —exp
iq4g'y

1

4 2 ~ cL4, ):(~-+~-)(~~+VP)Vo I 4, lexP(-iK ro+d)
f (q+ K)')

V
g +d, n i+'d, /i P3/2 (g i+d j P]/2 (g i+d) P ( q i+d) .2 2

(4b)

The D(q) expression is derived using an Ewald
transformation. The p (x) functions are defined in
Ref. 1. K is a vector of the reciprocal lattice and r,+g
(respectively ro+d) is the vector that links the muon site
to the ion belonging to sublattice d and located in lattice
cell i (respectively origin) of the crystal lattice. Expres-
sion (4b) gives the same result for all values of the Ewald
parameter g, but for numerical applications a value of
g is chosen which ensures that both series of Eq. (4b)
converge rapidly. The Cd(q) tensor, the trace of which is
1, reveals the symmetry of the point group at the muon
site. Whereas the elements of the Cd(q) tensor are an-
alytical functions of q for all q values, the elements of
PL, (q) are only piecewise continous at q = 0.

The hyper6ne interaction is short range and usually
isotropic. In the lowest order in q we have

(5)

where r„ is the number of nearest-neighbor magnetic ions
to the muon site and H a constant which can be deduced
&om the muon spin rotation frequency at low tempera-
ture. Equation (5) is derived under the hypothesis that
the muon site is a center of symmetry.

In order to proceed further, in this paper we will only
consider the behavior of G(q) near the zone center. From
the previous results, using C (q) = 1/nd gd Cd (q),
we derive in the limit q ~ 0

r„IIb ~
G-i'(q) = —4~ Pg~(q) —C-/'(0) — "

III. MUON SPIN RELAXATION B.ATE
IN A HEISENBERG FERROMAGNET

WITH A SMALL ENERGY GAP

For the computation of the damping rate we need an
expression for the correlation functions of the magnet.
We erst have to specify its Hamiltonian. As we have
done before we suppose that the magnet is described by
a Heisenberg interaction with a small energy gap. Be-
cause the minimum magnon energy is much larger than
he@„, the energy conservation principle tells us that only
the parallel (to the easy axis z) fiuctuations contribute
to the depolarization, i.e. , the measurements probe only
the correlation function A" (q). Then a close look at
Eq. (3) indicates that the diagonal terms of G(q) do
not contribute to the depolarization. This means that
an isotropic hyperfine interaction does not influence the
measured damping rate. For many possible muon local-
ization sites in crystals we have C' (q = 0) = C'"(q = 0)
= 0. Using this hypothesis we deduce the simple result
G'~(q —+ 0) = 47rPI' (q) for P—= x, y. This leads to
the important fact that, within our hypothesis, the muon
spin relaxation rate is independent of the muon localiza-
tion site. The previous analysis leads to the following
simple result:

A generalization of this result when C' (q = 0) and
C "(q = 0) are not zero is not diKcult: it results in
a modified prefactor that depends on C' (q = 0) and
C'"(q = 0). We compute A' (q) in the linear spin-wave
approximation. In this approximation the fluctuating
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part of the z component of the total angular momentum
of the magnetic ion, bJ', is expressed in terms of a sum

of products of boson operators ak and ak ..

The expression of the muon spin relaxation rate for the
model considered in this section [specified by the disper-
sion relation given at Eq. (11)] is obtained using Eqs.
(7) and (13). We derive

(a& ak a+a, ) = W bi„~bi,~, ni, (n~ + 1), (9)

bJ' = ——) b( —q+ k —ki, K)a&a&, (8)
k,kg

where I is a vector of the reciprocal lattice. Each of
the k and kq sums extends over N vectors of the first
Brillouin zone. Because b'J is given in terms of products
of two operators, the computation of A" (q) requires the
evaluation of four operator products. We decouple these
products. We set

Cg T
A, = P(qBz),

m

with

1 —exp (D —q /4+ A)/k~T
P(q) = ln

1 —exp ( 6/k~—T)

(14a)

(14b)

where n~ is the standard Bose occupation factor. With
these results it is easy to derive an expression for the
parallel spin-spin correlation function. We And

where we have defined C = (2/15') (po/4vr) p2p2 hk&~

129.39 (meV) A.s s i K 2. In the limiting case,
(D qB2z/4+ A) ) D~qBz/4 )) k~T, we have

exp(%up/k~T)
A (q): )

[ (~ /k ) ]2
b ((dp+g (dp) (10) CgI T

z D3
exp (6/k~T)

exp (6/k~T) —1
(15)

In order to proceed further we need an expression for the
magnon dispersion relation ~&. The simplest choice is
to write

A" (q) = Vh kg) T 1

16m D2 q exp ((D~qz/4 + 6) /k~T] —1
1

exp [(D qn2z + 4) /k~T] —1
(12)

where k~ is the Boltzmann constant and qBz the radius
of the Brillouin zone. We note that usually at low tem-
perature we have (D gz + 4) )& k~T. This is the case,
for instance, for GdNis for which D = 3.2 meVA. 2 and
qBz = 0.9 A. ' (see Ref. 4). Then the expression of the
correlation function greatly simplifies:

Vh, k~T

1
X

exp [(D q /4+ 6) /kgyT] —1
(13)

Notice that, because of the simple relation we take for the
magnon dispersion relation, the correlation function is a
function of the magnitude of q and not of its orientation.

So far in this section we have not mentioned if we are
dealing with Bravais or non-Bravais lattices. In a non-
Bravais lattice where A" (q) writes P& &, A&&, (q), the
existence of more than one atom per unit cell gives rise to
acoustic and optical branches in the dispersion relation.
Because of the relatively huge gap present in the optical
branch(es), the spin correlation functions A&&, (q) with d

g d' are not relevant as seen at Eqs. (10) or (12).

~~=D q

where D is the magnon stiffness constant and 4 is the
energy gap of the magnon dispersion relation. We have
supposed that the dispersion relation is isotropic at small
q. The sum in Eq. (10) can be converted to an integral
and can be computed analytically using Eq. (11). We
obtain

A numerical study of the P(q) function shows that the
expression for A, given at Eq. (15) is a reasonable ap-
proximation of the A, expression given at Eq. (14).

In practice we have L (& k~ T. In this high-
temperature regime we obtain the simple result

Cgi'T
A, = ln(kggT/6) .

m
(16)

The Tz ln(k~T/A) dependence of A, has been predicted
in the past for an anisotropic contact interaction which
can occur in nuclear magnetic resonance. ' Some years
ago we have derived this temperature dependence for
muon spin relaxation rate using the model considered
in the present work. But the derivation was not sound
mathematically: the constant G [introduced at Eq. (15)
of Ref. 6] was undetermined.

The physical origin of the T factor in Eq. (16) is clear:
each of the two magnons contributing to the muon spin
depolarization process (Raman process) accounts for a
factor T. We note that A, given by Eq. (16) diverges if
4 = 0, i.e. , for a pure Heisenberg magnet. This fact is
not disturbing because a real magnet has always a small
energy gap.

Although the result of Eq. (16) has not been published
before, it has already been used to extract the stifI'ness
constant of the dipolar ferromagnet GdNi5 from its zero
muon spin relaxation rate data. 7

A, has been computed by other authors for EuO. In
the present work, we have presented a general framework
to compute the pSR relaxation rate for a ferromagnet
at low temperature. Then for a given magnon disper-
sion relation the rate has been computed explicitly. In
the proposed kamework the coupling between the muon
spin and the electronic spins is described by the tensor
G(q). For a given muon localization site in a crystal, its
elements are easily computed. One does not have to con-
sider separately the relaxation due to the hyper6ne and
dipolar interaction.
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IV. MUON SPIN RELAXATION
IN A DIPOLAR HEISENBERG FERROMAGNET

AT LOW TEMPERATURE

In the previous section we have computed A for a sim-

ple Heisenberg Hamiltonian with an energy gap. In a
dipolar magnet the gap is induced by the dipolar inter-
action between the ions. Recently the neutron scatter-
ing function has been computed for a dipolar Heisenberg
magnet in the linear spin-wave approximation. From
this work an expression for the zz correlation function
can be deduced. Relative to our expression the differ-
ences are that a relatively complicated weighting factor
exists besides the thermal factor in Eq. (10) and the
magnon dispersion relation for a dipolar Heisenberg mag-
net is used. However, qualitatively this factor does not
influence the correlation function A" (q). The magnon
dispersion relation writes

= e~(e~ + e sin 0~),

possibility is to take for the gap value the bulk magnetic
anisotropy energy: 4 = gL, p~B where B is the mag-
netic anisotropy Beld. These two choices represent limit-

ing cases. We note that for GdNis we have he/k~ 1.2
K and (gl, p~B )/k~ 0.3 K, i.e. , there is a factor of 4
difference. But because the purpose of the measurement
of the relaxation rate is to measure the spin-wave stiff-
ness constant which is proportional to [ln(k~T/A)] ~,
this uncertainty by a factor of 4 will only introduce an
error of 20%%ujj on the extracted D value &om the relax-
ation data (in the case of GdNis the D value is deduced
from the relaxation data recorded at about 10—15 K).

In this work we have given a general framework to an-
alyze positive muon longitudinal relaxation data at low

temperature for a Heisenberg magnet. Using the sim-

plest possible approximation, we have shown that the
measurements allow one to estimate the magnon stiff-
ness constant. The &amework which is given here should
allow one to deal with other problems in an easy way.
We think for instance of antiferromagnets.

where 0& is the polar angle of wave vector q relative to the
easy axis, cz the dispersion relation without the dipolar
interaction, and e = (pogL, p~Mo)/h a characteristic dipo-
lar energy (Mo is the saturation magnetization). There-
fore a natural choice is to identify the gap 4 with he.
In this case the effect of sin 0& is neglected. Another
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