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Transition-metal impurities in Fe: Magnetic- and hyperfine-field properties
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A description of the local properties, hyperfine field, and local magnetic moment of dilute transition
impurities in Fe, including the next-neighbor perturbation is presented. The Hartree-Fock approxima-
tion for the electron-electron interaction is adopted, as in the usual description of these alloys. The use
of only a few parameters and a simple self-consistent procedure is enough to account for the observed ex-
perimental trends in the hyperfine fields of these systems.

INTRODUCTION

The formation of local moments and its connection to
hyperfine interactions is one of the central problems in
the description of the magnetic properties of metals.!™>
The case of rare earths diluted in ferromagnetic hosts® ™2
has also been studied. Recently a formulation,’® including
the change in hopping between the impurity and next
neighbors, applied to the case of Pd-based alloys, suggest-
ed a connection between first-principles calculations!'®!!
and the model approaches for the impurity problem, as
the classical Clogston-Wolff picture.’

In this work, the formulation of Ref. 9 is used to de-
scribe the magnetic and hyperfine properties of the gen-
eral case of nd transition impurities dissolved in a fer-
romagnetic Fe host. A parametrized tight-binding ap-
proximation is adopted; this approach furnishes a simple
theoretical framework to describe dilute impurities in a
ferromagnetic host, providing a good description of the
observed trends in the experimental data.

We include also the sp band to describe hyperfine in-
teractions. The sp magnetization is taken proportional to
the d one,'? with proportionality constant, ¥(Z,,). Here
we use the qualitative description adopted in Refs. 3 and
14, where the hyperfine field is connected to the host
magnetization, via the Fermi-Segré term A(Z,,,), plus a
core polarization contribution, proportional to the local d
magnetization, multiplied by an effective coupling con-
stant 4.,. These quantities are both extracted from Ref.
13.

The plan of the paper is as follows. We first present
the formulation, the involved approximations, and the
obtained numerical results. Finally, we present a general
discussion and the conclusions.

FORMULATION

We start from the d part of the transition impurity
problem in the Fe ferromagnetic host, using the following
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single-band Hamiltonian:

— t h
H=3 |3 tyaj,q,+3 U n;n;
o |jl#0 j#0

+3 ?Oj(a(’;aaja +ajt,aol, )
j#0

+(e'-—£°)a:§0000+ Ulnmnm , (1)

where a JTU (a;,) is the creation (annihilation) operator, ¢;
is the hopping between host sites, and 7,; is the corre-
sponding to processes involving the impurity site. The
term €’ is the energy level of impurity state, £° is the
host-metal band center, and U” (U?) is the Coulomb in-
teraction between electrons at the host (impurity) site.
Using the Hartree-Fock approximation to deal with
the Coulomb interactions, one gets for the Hamiltonian

H=H,+V, , (2a)
H,=3 tﬂa;aa,a-i—z UM n;_,)n;, , (2b)
jlo jo

V,=(A+AU(n_, ) +U{ny_, )al, ao,

+r 3y toj(a;r)aaja—i—ajgaog) , (2¢c)
j#0
where 7 is an impurity-dependent parameter, describing
the difference in hopping, between impurity-host and
host-host  sites, A=gl—e", AU=U'—U"  and
8{ng, ) ={(n,)—{ngy, ). Hy is the Hamiltonian of the
unperturbed system, and V, is the potential due to the
presence of the impurity. For 7=0 this potential reduces
to the case where the hopping is site independent.>
The potential ¥V, must be determined consistently with
Friedel’s sum rule. In this case the problem is more com-
plicated than the usual one. To solve it, we use Dyson’s
equation, obtaining
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ﬁ =gﬁ +g]%Vg gI with
Vi=A+AU(n_,)+U'8(ny_,) . (3b)
+78jo é tom G+ 7| 2 &jmtmo |G (32)  Eollowing the same procedure used in Ref. 9, one has for
mro m*0 the change in the density of states
J
1, —(a?—1)gg—[(z—eNa®—1)+V{ |3g &, /02
Ap,=—Im o 3 . , )
T a“—gpliz—e Na*—1)+ V]

where z=g+i8 and a=7-+1. Integrating this expression
up to the Fermi level (eg), one gets for the change in the
occupation of o spin states:

AZ,=(—1/m)ImIn{a®—g[(ep—eNa®—1)+ VT 1} .
(5)

The potentials V' are self-consistently determined using
Friedel’s screening condition for the total charge
difference AZ=AZ,+AZ,. Once these potentials are
obtained, the magnetic moment at the impurity site is
calculated using 71, =no, ~ng,- The occupation numbers

at the impurity site are given by

_ 1 ptF 860
nog———f Im——— 3 ——dz .
TY-w a*—giHllz—eNa*—1)+V{]

(6)

Within the simplifying approximations used in Refs. 5
and 14 to describe the d-induced sp magnetization and
with the notation defined above, one has for the hyperfine
fields
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FIG. 1. Calculated magnetic moments for nd series impuri-
ties in Fe. Inset: Hopping matrix elements a as a function of
the position in the Periodic Table for the nd series.
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where m;=
zation.

—¥(Z;np)my and my is the d-host magneti-

NUMERICAL RESULTS

The numerical calculations were performed starting
from a density of states previously used.'* The parame-
ters of the present model are the host and impurity
Coulomb interaction strengths and also the a and y
quantities; cf. Egs. (4) and (7). Assuming suitable values
for the Coulomb interaction parameters and pure host
spin-dependent occupation numbers combined with
Friedel’s sum rule, we self-consistently determine the im-
purity potentials via an interactive numerical procedure.

The value of the parameter a decreases from the begin-
ning to the end of the same series and up a column in the
Periodic Table. This is a consequence of the decreasing
extent of the impurity wave function. Its value for each
impurity was determined (all other parameters were
fixed) by the best fit between the calculated local magnet-
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FIG. 2. Hyperfine fields for the nd series impurities in Fe.
The full line corresponds to the present calculation, the dashed
line corresponds to the results of Refs. 9 and 10, and the circles
are the experimental data. Inset: variation of the ¥ parameter
as a function of the position in the Periodic Table for the nd
series.
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ic moment by the present method and the first-principles
calculations;” '° the adjusted values are shown in the inset
of Fig. 1. The final values for the d-magnetic moments at
the impurity site, are shown in Fig. 1.

The parameter ¥ depends also on the impurity atom in
Fe. This is to be associated to the origin of the antiparal-
lel alignment of the host sp polarization with respect to
the d one,'* driven by the sp-d hybridization. The extent
of the impurity d-wave function modifies the hybridiza-
tion matrix element, introducing the impurity depen-
dence indicated by y(Z;,,,). The existing hyperfine field
data enabled us to fix the values of ¥ as a function of
Zip- The results of this fit are presented in the inset of
Fig. 2. These changes are directly connected to the hy-
bridization strength of the impurity nd states with the
conduction 4sp states. The obtained hyperfine fields for
impurities of the 3d, 4d, and 5d series are shown in Fig.
2.

We observe a good agreement with experimental data
for the 3d series. In the other cases there is a deviation in
the beginning of the series, except for the first element
used to fix . This deviation may be a consequence of the
absence of a local impurity-induced sp-d hybridization in
the present model Hamiltonian.

For comparison, we also show the hyperfine field calcu-
lations extracted from Refs. 9 and 10. Note that first-
principles calculations deviate from experiment at the
end of the series, a region where our model is in fair
agreement with experiment. Further study within our
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model, including the additional impurity-induced hybrid-
ization term, is required.

FINAL DISCUSSIONS AND CONCLUSIONS

In this work we have used an extension of the classical
parametrized tight-binding approach’ to include finer de-
tails of the impurity host hopping and a simple picture of
the hybridization-induced sp host polarization essential'
for hyperfine field calculations. The motivation and in-
terest of this calculation is to exhibit in detail the intrin-
sic merits and limitations of our parametrized and simple
approach, as compared to first-principles calculations, in
what concerns local magnetic moments and hyperfine
fields. We conclude, in agreement with Refs. 13 and 5,
that a series of improvements to the Wolff-Clogston for-
mulation® are enough to provide a reasonable description
of experimental data for 3d impurities. Also the period
dependence of the deviations from experiment and first-
principle calculations indicates that our method is ade-
quate not only for pure 3d ferromagnetic hosts but also
for other 3d intermetallic compounds.

Finally we want to stress that sizeable discrepancies,
with respect to experimental data, still occur in first-
principles approaches for 4d and 5d impurities in Fe.
This encourages us to proceed with working along the
above-suggested lines of including impurity-induced hy-
bridization effects in our formulation.

IFor a review, see D. Riegel and K. D. Gross, in Nuclear Phys-
ics Applications on Material Science, Vol. 144 of NATO Ad-
vanced Study Institute, Series E, edited by E. Recknagel and
J. C. Soares (Plenum, New York, 1989), p. 327.

2y, Friedel, Nuovo Cimento Suppl. 7, 287 (1958).

3P. A. Wolff, Phys. Rev. 124, 1030 (1961); A. M. Clogston, B. T.
Matthias, N. Peter, H. J. Williams, E. Orenzwit, and R. J.
Sherwood, ibid. 125, 541 (1962).

43. Kanamori, J. Appl. Phys. 16, 929 (1965).

5I. A. Campbell and A. A. Gomes, Proc. Phys. Soc. (London)
91, 319 (1967).

SI. A. Campbell, J. Phys. F 2, L47 (1972); I. A. Campbell, W. D.
Brewer, J. Flouquet, A. Benoit, B. W. Mardsen, and N. J.
Stone, Solid State Commun. 15, 711 (1974).

7C. E. Leal, O. L. T. de Menezes, and A. Troper, Solid State
Commun. 50, 619 (1984); 53, 35 (1985); C. E. Leal and A.

Troper, ibid. 61, 317 (1987).

8W. D. Brewer and E. Wehmeir, Phys. Rev. B 12, 4608 (1975).

W. Speier, J. F. van Acker, and R. Zeller, Phys. Rev. B 41,
2753 (1990); J. F. van Acker, W. Speier, and R. Zeller, ibid.
43, 9558 (1991); J. F. van Acker, W. Speier, J. C. Fuglle, and
R. Zeller, ibid. 43, 13916 (1991).

10H, Akai, M. Akai, S. Blugel, B. Drittler, H. Herbert, K.
Terakura, R. Zeller, and P. H. Dederichs, Prog. Theor. Phys.
Suppl. 101, 11 (1990).

11p H. Dederichs, R. Zeller, H. Akai, and H. Herbert, J. Magn.
Magn. Mater. 100, 261 (1991).

12A. Troper, X. A. da Silva, A. P. Guimar3es, and A. A.
Gomes, J. Phys. F 5, 160 (1975).

131, A. Campbell, J. Phys. C 12, 1338 (1969).

14N. A. de Oliveira, A. A. Gomes, and A. Troper, J. Appl. Phys.
75, 6296 (1994).



