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Pressure strengthening: A way to multimegabar static pressures
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This paper shows why a static pressure of several megabars can be reached in a diamond anvil cell us-
ing a molybdenum gasket whose yield strength at P =0 is only 0.04 Mbars. The elastic constants of bcc
Mo at 0 K vs reduced volume and pressure were otained from first-principle, all-electron, density-
functional calculations to V' /¥, =0.4 (P =11.6 Mbars) although the fcc phase was calculated to be more
stable above 6 Mbars. These constants were used to obtain the Chua and Ruoff pressure scaling factor
for the yield strength which combined with plasticity theory shows that a gasket of 2.6 um final thick-

ness can support 6 Mbars.

INTRODUCTION

There have been many calculations of the total energy
versus volume for a given crystal enabling the calculation
of the bulk modulus versus pressure (or the equation of
state) and allowing comparisons of enthalpies of different
phases as a function of pressure (and hence phase equilib-
rium at the absolute zero of temperature). Such calcula-
tions on molybdenum have been recently reviewed, with
the conclusions that there should be an equilibrium phase
transition from bce to hep (fee) in the neighborhood of 5
Mbars.! Static pressures of 4.16 Mbars (Ref. 2) and 5.6
Mbars (Ref. 3) have been obtained in molybdenum using
molybdenum as the gasket materials in the diamond anvil
cell (DAC). Considerably fewer detailed calculations exist
for the pressure dependence of the shear constants. We
have made thorough calculations of the pressure depen-
dence of the shear constants C'=(C;;—C,)/2 and Cy
and the bulk modulus B for bcc molybdenum to a re-
duced volume of ¥V /V,=0.40, which, it is calculated,
corresponds to a pressure of 11.6 Mbars (were the bcc
phase to persist). These results are used with the varia-
tional method of Hashin and Shtrikman* to compute the
shear modulus G (P) and the Poisson ratio v(P) of the
randomly oriented polycrystalline aggregate. Then, using
the Chua and Ruoff scaling law® for the yield stress, pres-
sure profiles were computed for the DAC.

CALCULATION OF SINGLE-CRYSTAL
ELASTIC CONSTANTS

The density-functional theory® has been used in
numerous theoretical calculations of structural and
dynamical properties of solids from first principles. Even
the crudest approximation, the local-density approxima-
tion (LDA), has proven to yield very accurate results in
many cases. We also used the LDA for the study of the
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elastic properties of Mo under pressure described here.
The parametrization by von Barth and Hedin’ was
chosen, and the self-consistent solution of the one-
electron equation was performed by means of the linear
muffin-tin-orbital (LMTO) method.® It was shown® that
calculation of the elastic shear constants requires the in-
clusion of the nonspherical parts of the charge densities.
The calculations reported here were not based on the “‘ex-
tended force theorem,”’® but we used the self-consistent
total energy obtained by the full-potential (FP) LMTO
method as implemented by Methfessel. !°

Molybdenum assumes the body-centered cubic (bcc)
structure at ambient pressure where the (experimental)
lattice constant is 5.962 bohrs. The FP-LMTO calcula-
tions were performed for volumes ranging from a 15%
expansion down to 0.40 V,,, ¥V, being the zero-pressure
volume. Some states which at zero pressure are corelike
form at the very reduced volumes rather broad bands.
For the sake of numerical continuity of the calculated en-
ergy versus volume relations, we used, at all volumes, the
same grouping into “core” and ‘“‘valence” electrons, and
all calculations were performed in two energy panels. We
considered 14 electrons as “valence” electrons. Also,
eight electrons (4s,4p) were treated as band forming in a
lower-energy panel, whereas six (4d,5s,5p) were included
in the upper panel. The remaining electrons were con-
sidered as belonging to a core, but their wave functions
were relaxed, i.e., recalculated in each iteration. Three
sets of envelope functions were used, a “triple-«” basis
set. Their formal kinetic energies were chosen to be
—0.21, —1.0, and —2.3 Ry, respectively. The max-
imum angular momenta included in the basis for these
were 3 (spdf), 3 (spdf), and 2 (spd), i.e., 41 functions per
atom.

Reciprocal-space integrations were done by means of
special points in the lower panel, whereas the tetrahedron
method was used in the upper panel. We applied the lat-
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TABLE 1. Calculated fractional volume and pressure
(Mbars) dependence of the elastic constants of bcc molybdenum
(Mbars). Here C'=(C,; —C,)/2.

V/Vo P B c’ Cy
1.00 —0.095 2.5819 1.5231 1.0234
0.95 0.0518 3.1631 1.7198 1.2376
0.90 0.2411 3.8545 1.9295 1.4735
0.85 0.4845 4.6784 2.1615 1.7580
0.80 0.7974 5.6612 2.4225 2.0937
0.75 1.1999 6.8360 2.7074 2.4697
0.70 1.7192 8.2486 3.0042 2.9999
0.65 2.3920 9.9447 3.3686 3.6232
0.60 3.2694 12.027 3.6561 4.4450
0.55 4.4274 14.6661 3.9484 5.4601
0.50 5.9890 18.2595 4.0655 6.8062
0.45 8.1874 23.8712 3.8687 8.6571
0.40 11.5669 34.6684 3.0765 11.2082

est version,!! and the necessary integration accuracy was
obtained by using more than 1300 irreducible k points.

For each of 15 volumes in the range mentioned above,
the total energy was calculated for five tetragonal and five
trigonal volume-conserving distortions. Polynomial
least-squares fits of the energy versus strain parameter
then allowed derivation of the tetragonal and trigonal
shear constants as functions of volume. The theoretical
pressure-volume (P-V) relation was obtained from the
volume derivative of the energy-versus-volume (E-V)
curve obtained by fitting a suitable series of functions to
the energies obtained for the undistorted crystal. This
also yielded the bulk modulus B as a function of volume.
Table I gives the calculated volume-pressure dependence
of the elastic coefficients. Here V|, is the experimental
value of the volume at 0 K. The corresponding experi-
mental values at V/V,=1 are in Mbars, at 73 K,
B =2.618, (C;;,—C,)/2=1.584, and C,,=1.109,' and
at 77 K B=2702, (C;—C,)/2=1.566, and
C,,=1.085.!* These should be less than 0.3% smaller
than in the 7"=0 K case. The calculated pressure deriva-
tives at zero pressure are dB /dP =3.96, dC'/dP =1.34,
and dC,/dP =1.46. These compare with the experi-
mental values of dB/dP =4.44, dC'/dP =1.48, and
dC,,/dP=1.40."* At 5 Mbars the calculated dB /dP
has dropped from 4.0 to 2.3, not far from the free-
electron gas value, . At higher pressures C’ decreases
with pressure and, since B =C; —+C’, B then increases
more rapidly. Similar calculations were performed for
Mo in the fcc phase.

PHASE STABILITY

The stability of the bcc phase of Mo at high pressures
was examined by comparing its theoretical total energy
to those of other structures. We chose to consider the
fcc, hep, and w titanium phases (see, for example, Ref.
15). The calculated E-V and P-V relations were used to
deduce the enthalpy of each phase as a function of pres-
sure as shown in Fig. 1, where the bcc values have been
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FIG. 1. Calculated enthalpies of bcc, fce, hep, and w-

titanium phases of Mo versus (theoretical) pressure. The bcc
values have been subtracted to facilitate the determination of
the transition pressure.

subtracted. It is seen that the fcc structure is, among
those selected here, the most stable for pressures above 6
Mbars. In the case of W wel!® also examined the dhcp
structure, and found that this has enthalpy values that
are very close to those of fcc W, probably slightly below
at high pressures. The results for the hexagonal phases,
hep and o, included in Fig. 2, were obtained from calcu-
lations where the c /a ratios were kept fixed at the respec-
tive ideal values, 1.633 and 0.612. Optimization of ¢ /a
does not alter the conclusions drawn from Fig. 2 since ad-
ditional total-energy calculations have shown that the
theoretical ¢ /a ratios in both cases vary from 0.95 to 1.00
times the ideal values when the pressure is increased. For
pressures above the transition the optimized c /a is iden-
tical to the ideal one.

COMPUTATION OF G AND v

The method of Hashin and Shtrikman* was used to
compute upper and lower bounds for G and, since these
were quite close, the average was taken as the value for
G. The graph of G(P) and v(P) are shown in Fig. 2,
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FIG. 2. Calculated bulk shear modulus G and Poisson’s ratio
v of molybdenum versus pressure. Also shown is pressure-
strengthening scaling factor F(P) increasing by a factor of 4.53.
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where v(P) is computed from B and G. Chua and Ruoff®
give both theoretical reasons and experimental evidence
to the effect that the compressive yield stress o(P) scales
with pressure according to

0o(P)/on=[G(1—=v4)/Gy(1—=V)]=F(P), (1)

where oy, Gy, and v, are the corresponding values at
zero pressure. Figure 2 shows the scaling factor F versus
P. Note that at P=6 Mbars F=4.53, i.e., the yield
strength of molybdenum is 4.53 times larger than at zero
pressure (ignoring the additional increase expected due to
strain hardening). This is pressure strengthening. !’

CALCULATION OF PRESSURE PROFILES

If we consider a gasket between two anvils with circu-
lar tips and parallel faces a distance A apart, it can be
shown that the pressure gradient is given by> !

dP/dr =—0y/h=—0xF(P)/h . (2)

This simple plasticity equation closely describes the ex-
perimental results for deformation of pure aluminum be-
tween sapphire anvils when F(P)=1." From Eq. (3)

foPdP/F(P)=—aOOfrdr/h =oela—r/h . (3)

At r=0, P=P_,,. We choose to consider the case
where P, =6 Mbars; then the integral on the left side
equals 2.62. The yield strength for hot-formed molybde-
num is 0.021 Mbars and for heavily cold-worked
molybdenum is in the neighborhood of 0.063 Mbars.?
The gasket is reduced from a thickness of 200 um to only
about 3 um at room temperature in the DAC. While this
rather severe cold working could be expected to strain-
harden the gasket to a value nearer the upper limit given,
we chose a conservative value of 0(,=0.04 Mbars. In our
diamond anvil cells, ¢ =150 pm. Thus, using Eq. (3) with
P=6 and r =150, we obtain h=2.62 um. With h
known we can use Eq. (2) to obtain P(r). The results are
shown in Fig. 3. It is this pressure strengthening factor
along with the high yield strength of heavily strain-
hardened Mo at atmospheric pressure which enabled ex-
perimentalists to obtain pressures of 5.6 Mbars. >

Also shown by the dashed lines are the slopes at r =a
and at r =0. The dashed-dotted line passing through
r =a gives the pressure profile which would be attained if
there were no pressure-strengthening of the gasket. The
dashed line passing through » =0 has a slope equal to the
pressure gradient at » =0. The actual steep gradient near
to r =0, expected from pressure strengthening, makes
pressure measurement by the x-ray marker method
difficult because it involves an x-ray beam of a finite di-
ameter. Thus experimental profiles will appear rounded
at the top?® while actually increasing at nearly an ex-
ponential rate. The large pressure present would deform
the diamonds so the surface would have to be contoured
properly initially for the diamond surface to be flat when
P, =6 Mbars is reached. When still further load is ap-
plied the diamonds become cupped, i.e., # would be
smaller at » =a than at » =0. If we assume that Eq. (1)
approximately applies when 4 varies with 7, there is one
case which we can easily solve. We define H as a function
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FIG. 3. Computed pressure profile in a diamond anvil cell
with a molybdenum gasket, with, in the final state, parallel faces
2.62 um apart with a face diameter of 300 um. Inset: Experi-
mental pressure profiles from Ref. 21.

of 1—r/a as the ratio of 4 as a function of 1—r /a divid-
ed by h at r=a. If H versus 1—r/a is identical to F
versus P/P_ .., then

P=ow(l—r/a)/h (r=a), (4)

i.e., P versus r/a will be a straight line. With the same
parameters as before, for P , =6 Mbars we require
h(r=a)=1 pm in which case F(6 Mbars)=4.53 and
h(r =0)=4.53 pum. What is done experimentally to con-
tour the diamond anvil is to shape the 16-sided culet with
the diameter of 300 um with a center flat as small as 20
pm and a bevel of, perhaps, 8° from the 16-sided center
flat out to the culet perimeter.?

It is of interest to consider an earlier experiment in
which beveled anvils were used and the pressure profile
was measured, although this involved rhenium rather
than molybdenum.?! By observing the reflection of light
from the culet we could tell when the bevel had flattened
(when the maximum pressure was about 2 Mbars). This
corresponds to the bottom profile in the inset of Fig. 3.
This has the form of the present Fig. 3. The effect of a
small & is that the pressure gradient will be very large.
When the diamonds become cupped in such a way that H
versus 1—r/a is identical to F versus P/P,,,, then we
can expect a linear P(r) profile and this is approximated
by the middle profile in the inset of Fig. 3 . At still higher
loading, further cupping occurs and % (r =a) becomes
very small so [see Eq. (2)] the pressure gradient will be-
come large near the perimeter of the culet. Although Eq.
(2) is now only a rough approximation when A varies with
r, the salient features are still illustrated, with the A (r)
term dominating near r =a (leading to a very high gra-
dient) and with the F(P) term very important near r =0
(leading to a very high gradient) as shown in the top
curve in the inset of Fig. 3 (again the rounding at the top
is due to the finite beam size). Detailed calculations in-
volving elastic-plastic behavior of the gasket and non-
linear elastic behavior of the diamond using a supercom-
puter are under way and we hope that we will be able to
quantitatively describe the behavior when 4 varies with 7.

While the possible phase transition in Mo may pre-
clude reaching higher pressures with it as a gasket (the
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fcc may be weaker; dislocations may be annihilated at the
transition) calculations show that B, G, v, and the volume
are only slightly changed at the transition. Other strong
materials, such as rhenium, which is hcp and so should
strain harden rapidly, might suffice as gasket materials to
1 TPa. Since the diamond anvil also undergoes pressure
strengthening,!” it is conceivable that with proper anvil
design a pressure of 1 TPa may be attained.
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