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Plasmons in imperfect parabolic quantum-well wires: Self-consistent calculations
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The e8'ects of deviations from the bare perfect parabolic confining potential of a quantum-well
wire on the dispersion relations of quasi-one-dimensional plasmons are studied. We calculate self-
consistently the ground state in the Hartree approximation and the density response in the random-
phase approximation. We find that for a bare perfect parabolic potential, one intersubband mode,
the fundamental or Kohn's mode, is pinned at the bare harmonic oscillator frequency independent
from the electron density. It is shown that small nonparabolic imperfections shift the fundamental
mode to higher or smaller frequencies and depend on the electron density.

I. INTRODUCTION

Synthetic low-dimensional electron systems are
presently a subject of enormous interest. Much insight
into the electronic properties of such electron systems is
gained from optical investigations, i.e. , from far infrared-
(FIR) transmission spectroscopy and resonant inelastic
light scattering. Quantum confinementof th, e electrons
in two spatial directions results in quantum-mell wires
(QWW's), in which the electrons are only &ee in one
spatial direction. The most important collective excita-
tions of the quasi-one-dimensional (Q1D) electron sys-
tem, synthesized in a QWW, are the plasmons. Their
spectrum depends characteristically on the properties of
the quasi-one-dimensional electron gas (Q1DEG).

Q1D plasmons have been investigated theoreticallyi
and experimentallyxs 2s in isolated QWW's and lateral
multiwire superlattices. Caused by the size quantiza-
tion, the excitation spectrum is split in intra8ubband and
intersubband excitations. The intersubband plasmons
have frequencies above the corresponding single-particle
transition frequency for usual electron number densities.
This frequency shift is a measure of the strength of the
Coulomb interaction. Within the grandam-phase approxi-
mation (RPA) this &equency shift results &om resonance
screening and is called depolarization shift Optical inves-.
tigations of QWW's have demonstrated that in etched
and Geld-efI'ect samples, the bare conGning potential
Vo is of parabolic shape in a good approximation. In
the case of a perfect parabolic potential, the generalized
Kohn's theorem ' predicts that in a FIR experiment,
the Q1DEG absorbs radiation only at the bare harmonic
oscillator frequency, independent of the electron-electron
interaction and the number of electrons in the QWW.
This intersubband resonance (dimensional resonance) is
called the fundamental mode (or Kohn's mode) and corre-
sponds to the center-of-mass motion of all conGned elec-
trons. In the presence of nonparabolicity of the conGning

potential, besides the fundamental mode, higher inter-
subband resonances become visible. ' For this reason,
optical measurements are useful in characterizing depar-
tures from ideal parabolicity in experimental samples. In
agreement with Kohn's theorem, it has been shown for
a bare (ixiitial) perfect paxabolic confining potential that
a self-consistent calculation of the ground state and the
response of a Q1DEG results in a &equency of the low-
est intersubband plasmon, which is nearly identical to
the bare harmonic oscillator frequency and independent
from the density of the Q1DEG for nearly vanishing wave
vector. Only this mode is dipole active. Increasing wave
vector results in an increasing frequency of this mode
and a redistribution of the FIR oscillator strengths, i.e.,
higher modes become also dipole active.

The aim of this present work is to study how the dis-
persion relations of the Q1D plasmons in QWW's change
from the perfect parabolic case, when different imper-
fections are present. The work is performed by self-
consistent calculations of the ground state and the re-
sponse in the framework of the Hartree approximation
and the RPA, respectively.

II. GROUND STATE

The model used in this paper is the following. The
electrons are totally confined in an effective potential
V ff (x) = V,tr(y) + V,ir(z) assumed separated for the y
and z direction, which is within the Hartree approxima-
tion a sum of the bare potential Vo(x), resulting &om
the tailoring of the conduction-band edge and a possi-
ble applied external electrostatic potential. Because in
the experimental realized samples the potential in the
growth direction (z direction) is very narrow in compar-
ison to the width of the potential in the lateral direction

(y direction), we can study the QWW by a model in
which the electrons are confined in a zero-thickness x-y
plane along the z direction at z = 0. The electrostatic
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potential 4(x) is a solution of

[s.(x) &C'(x)] = —[~p(x) —~~ (x)]

where np (x) = np (y) 8(z) is the electron number density
of the ground state, ND+ (x) = K~+(z) is the density of the
positive charges, necessary to maintain charge neutrality,
s, (x) is the background static dielectric constant, sp the
permittivity in vacuum, and the electron charge is —e.
Neglecting image efFects in Eq. (1) and assuming that the
length of the wire L is very large, the Hartree potential
V~(y) = —eC(y) is given by

and. the corresponding Fermi 'velocities are e&
hk&( /m, . The self-consistent solution of Eqs. (5), (6),
(7), and (2) gives the subband energies, the charge-
density profile, the Fermi energy, and the effective po-
tential. For the bare potential, we use

v, (y) = v„(y) + v„,(y),

with the perfect parabolic part

m 02
v, (y) =

2 OO

VH (y) = dy'np(y') ln
2~spy. Iy

—y'I
' (2)

and the deviation, i.e. , the nonparabolic part

where yo is a free constant, to which this potential is de-
termined. With respect to the translational symmetry in
the x direction and the assumed separation of the effec-
tive potential, the motion of the electrons separates. The
wave functions and eigenvalues are given by

V„(y) = Asy + A4y + Asy + Asy

To perform the self-consistent calculations of the
ground state, the envelope wave function is represented

by the closure set of wave functions 4 (y),
(o)

(xlLk ) = @l,g (x) =

lv (z) I' = ~(z)

1 e'" * (L(y) p(z); (I.(y) = ):&L,L, (l."(y),
L'=o

h2k2
El, (k ) = fi,+; I = 0, 1, 2, 3, . . . .

2m. '

In the following, we suppose spin degeneracy and omit
the spin index. In the above expressions, k is the wave
vector component in x direction and m, is the effective
conduction-band-edge mass of the electrons. The sub-
band energies fr. and the envelope wave function (L, (y)
are obtained from the one-dimensional Schrodinger equa-
tion,

where (4 (y) ) are the eigenfunctions of Eq. (5) with
V ff (y) = V„(y) and are given by

(p) 1 ( y'i fy)4 (y) =
(2 L - / l.),/. -p I~-2l. )l

H
l~l. )

Herein, HL, (y) is the Hermite's polynomial and ln
[5/(m, O)]~/ . The corresponding eigenvalues read

l( 6' d'
+ V ff (y) I

(z (y) = fz, (g (y)2me dy ) (5) EI ——hA(L+ 2); L = 0, 1, 2, . . . .

(I)( )
vr A. 2

'
I(~(y) I'v'E~ —~~ e(E~ —~~) (6)

where V,ff(y) = Vp(y) + VH(y), V~(y) is given by Eq. (2)
and np(y) = P&np( (y), with Using Eq. (12) in the Schrodinger equation, Eq. (5), and

multiplying this equation from the left with 4„(y) and
subsequently integrate it over y, we recover the eigenvalue
equation,

In this equation, np (y) is the contribution of the Lth
subband to the electron number density np(y), 8(x) is
the Heaviside unit step function with O(x) = 1 for x ) 0
and 8(x) = 0 for x ( 0. The Fermi energy E~ is deter-
mined from the 1D electron number density (number of
electrons per unit length) nqDEG = P& n&DE&, where

) CLL [(ti —E'l., )bI I —VL„I, —VL"„I,] = 0, (15)
LI

where

(L}
1DEG mh 2

' QEy —Zl, O(EJ; —tl, ) (7) dy 4 (y) V~(y) 4 (y)
(o) (o}

is the number of electrons per unit length in the Lth sub-
band. The Fermi wave vectors of the different subbands
are given by dy4-(y) v-v(y) 4 (y) .(o) (o) (16)

k(I.) /2m, (E~ —EI, )/52 if E~ ) El,
0 if E~ &fL,

The matrix elements of the Hartree potential are given
by
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V~ ~
— ' ) O(E~ —fr. ) JEST —E'I,

2~0~s

aX CLL& CLL && fL yL sir
1I L1I

)

where the form factor reads

fz, z.s.r, =. f ~v f du'4, (u) 4, iu)

x ln, (I i(y') (~( i(y') .
y y

For I q & L2, the matrix elements of the nonparabolic
part of Vo(y) are given by

V~ ~
——As

~ ~
[3Ii 6., I„ i + QLi(Li —1)(Li —2)8r.„s„—s]

„p & 4 'i s/2

& 2)

+A4
~

~
[6(L', + Li + 1/2)&Lg, Lg + 4(L1 1/2) QL1(L1 1)~L2,L& —2

& 2)
+JLi (Li —1)(I,i —2) (Ll —3)bL I —4]

+As i ~
[10(Li + 1/2) QLibL, „I„ i + 5(Li —1)QLi(Li —1)(Li —2)hl, „l„—s

t'&n l'
2)

+QL i (I i —1)(I i —2) (I i —3) (L i —4) h I.„I„-s]
6

+As
I ~

[20(Li + 3/2L', + 5/2Li + 3/4)6I2 L, + 15(I i —I i + 1)QLi(I i —1)
~ 2)

X bL, L —2 + 6(Ll 3/2) QL1 (Li 1)(Ll 2) (Ll 3)~L,I, —4

+QL (Li —l)(Li —2)(Li —3)(Li —4)(Li —5)SL, L, s] .

Because the potential Vo(y) is infinitely high, the wave

functions (& (y) are real and hence, V&&,
——VI, & and(0) H 0

VL"I, ——VL",I are valid. From Eq. (15), the renormalized
single-particle subband energies E'I, follow as solutions of
the determinantel equation,

In Fig. 2 we show the renormalized subband energies
as a function of the electron density in the QWW for
three different bare potentials. For A4 & 0, the increase
of the nonparabolicity increases the intersubband sepa-
ration, and the onset of the occupation of a subband is

det[(EL, —t~, )dL, .L, . —v~„~, —v~„~, ] = 0 .(o) H Dp (20) 12

For the numerical calculations throughout this paper,
we assume a QWW prepared on a GaAs —Gai Al As
heterojunction with the material parameters for GaAs:

12.87, m, = 0.06624mo, where mo is the bare
electron mass and hO = 2 meV. Further, we assume
that the effective confining potential is mirror symmetric
at the plane y = 0, which is the typical case for ex-
perimentally realized samples. Hence, we have A3
As ——0 in Eq. (11) and we use the boundary condi-
tion 0/OyV ff(y)]„o ——0. The free constant yo is chosen
in such a manner that the Fermi energy is E~ ——0 as a
reference level without loss of generality.

Figure 1 shows the different bare potentials consid-
ered in the following for the self-consistent calculations.
We consider two types of deviations &om the perfect
parabolic potential: (i) A4 ) 0 and As ——0, which ef-
fectively narrows the well and (ii) A4 & 0 and As
0.1668 l&A4/(hO) —0.05832 A4/l&~ ) 0 is chosen to de-
sign the bare potential with a Batter bottom.

1O I-

60

0

FIG. 1. Bare potentials Vo(y) used in the self-consistent
calculations: (1) bare perfect parabolic potential (heavy solid
line), A4 —— As —— 0 and bare nonparabolic potentials,
A4 ) 0, As = 0 (thin solid lines); (2) A4 ——0.05 M/lo;
(3) A4 —— 0.1 hO/1& and A4 ( 0, As ) 0 (dashed
lines); (4) A4 = —0.05 AO/lo, As = 0.00333 hQ/lo; (5)
A4 ———0.1 M/lo, As = 0.007550/lo.
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densities, where one and two subbands are occupied and
for higher electron densities the quartic potential induces
a convex correction to the nearly uniform charge distri-
bution in the center of the perfect parabolic QWW. For
A4 ( 0, the efFect of the nonparabolicity on the charge-
density profile is more dramatic as for A4 & O. It is seen
that with increasing magnitude of the nonparabolicity,
the charges become concentrated more and more at the
edges of the well for higher electron density, i.e. if more

subbands are occupied. Figure 5 shows the difFerent ini-
tial potentials (bare potentials) and the corresponding
self-consistent potentials for two difFerent electron densi-
ties.

III. DENSITY' RESPONSE OF A Q1DEC

In this chapter, we calculate the response of a @1DEG
to an external potential on a quantum-mechanical level

6-

O

(a)

Si

6-

o 4

O

0'

y/ln y/in

6I

4

(c)

6-

O 4-

(d)

y/&n y/&n

E
o 4
C)

O

0

y/in

FIG. 4. Charge density profiles in difFerent QWWs: (a) A4 —— As —— 0; (b) A4

A4 ——0.150/ln, As = 0; (d) A4 = —0.05hA/ln, As ——0.0033350/ln, (e) A4 ———O. lhQ/ln,
heavy solid lines denote the profiles at diRerent densities: the lowest curves correspond to n&DE&

higher curves are calculated with An~DEG ——1 x 10 cm

0.0550/ln, As —— 0; (c)
As —0.007550/l„. The
= 0.5 x 10 cm and the
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within the RPA, using the self-consistent field (SCF)
method. The single-particle Hamiltonian of the elec-
trons of the Q1DEG in the presence of the perturbation
is written as H = Ho+ Hi, where Ho is the unperturbed
Hamiltonian of a single electron in the QWW, which sat-
isfies the Schrodinger equation Ho!L, k ) = ZI, !L,k ) and
Hi ——V"(x, t) is the self-consistent potential. Writ-

ing the statistical operator pG. of the system as p~
pG + pG, where p& is the statistical operator of the(o) (i) (0) . ~ ~

unperturbed system, and p& is the correction to the sta-(~)

tistical operator to the first order in the perturbation, it
follows &om the single-particle von Neumann equation,

(i«L, k, nF(ZI, (k')) —nI;(E'I. (k ))
5((u + ih) + ZI. (k' ) —EI, (k )

x (L, k !
V"(x, u))!L', kg, (21)

4

I

0

where pI- !L,k ) = np(tI, (k ))!L,k ) is used with
n~(fI. (k )) = O[EF —E'L, (k )], the Fermi distribution
function at T = 0 K. The total electron number density
n = no + n;„~ of the Q1DEG is a sum of the equilibrium
ground-state electron number density no and the induced
electron number density n,„s(x,u) = Tr(p& b(x —x,))(i}

caused by the perturbation. The evaluation of the trace
(Tr) gives

x; ~(x, ~) = f d'x'P~'~ (x, x'~~)V" (x', ~) . (22)

6r

4~

t

2L
[

(b)

y/in

y/ln

In this equation, P( «(x, x'!u) is the irreducible RPA po-
larization function of the Q1DEG,

p( «(», x!~)= ) e ( «P( «(q; x~, xi!id),
q

(23)

P (q. ;»~, »~I~) = ) PL,', (q, ~) rII,I (x~)riII, (x'L),
L,L'

(24)

with the RPA matrix polarization function

PI I g (q~, 4))
(i)

2 ) nF(EI, (k~)) —nF [EI,(k~ + q )]
- h(cu + ib) + ZI, (k.) —ZI. (k. + q. )

'

rlIL'( &x) 6 (y) 6 (y) ~(z) (26)

and x~ = (0, y, z). Within the RPA and at T = 0 K the
real part of the matrix polarization function is

Re P~~, (q, (u)
(i)

—2(

(c«

y/lo

FIG. 5. Bare potential Vo(y) (dashed line) and effective
potential V,(r(y) (solid line) for two difFerent electron densities
(1) niDEa = 1.5 x 10 cm and (2) nioEo = 4.5 x 10 cm
of difFerent QWW s: (a) A4 ——As = 0; (b) A4 = 0.1 Ml/lo,
As = 0; and (c) A4 = —0.1 hA/lo, As ——0.0075 jiA/lo.

k(L')
me

g ln ~-+

(L) g~ mek + —+ (M

+ ln
(L) q m

k ——* — ' ((u—

XAe
(u) —OI,I, )

hq '
((u —AI, I, )

AI, I, )
)

AI, I. )
(27)

where QI,I, ~ = (tI, —FI,i)/h is the subband separation
frequency, and the imaginary part reads
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Im Prr, (q, ~) = — 8 kr,. + —— (w —Or, r, ) O &~ ——+ (~ —Qr. r, , )
(y) m/ (L ) q~ m/ (I ') g~ m~

52[q
l

~ 2 hq 2 hq.

—8 k +. —+ (~ —Ar, r.e) 8(I ) Cgg mg

hq. F (2s)

The self-consistent potential V"(x,w) is a sum of the
external potential V'" (x, ur) and the induced poten-
tial V'"~(x, (d), which results from the induced density:
V"(x,w) = V " (x, ~) + V'" (x, u). In the RPA and
neglecting retardation efFects, the induced potential is
related to the induced density by Poisson's equation,

where

2 OO OO

V',......(q-) = ...,
&Ito[lq*(y —y') ll G, (y') &i.(y'),

(34)

V' . [s, (x) VV'" (x, ur)] = ——n;„g (x, ~) .
8'O

(29)

V'" (x, cu) = ) e'~ *V'" (q;x~l(u) (30)

and

The use of s, (x) in Eq. (29) takes into account the static
screening of the optical phonons, which have frequen-
cies usual larger than those of the collective excitations
of the QIDEG. The case that the frequencies of both
excitations are in the same order makes it necessary to
include the contribution of the optical phonons to the
self-consistent potential dynamically, as developed in Ref.
8. Further, the &equencies of the acoustic phonons are
much smaller than those of the collective excitations of
the QIDEG and hence, can be neglected. On the grounds
of this typical situation, we can use the e, approximation
for the screening of the dielectric background.

Neglecting image efI'ects and using the translational
symmetry of the QWW along the z axis by one-
dimensional Fourier series,

Vee (q. , ~) = f ~»4(») V"(q. ;»ll~) (e (») (»)

M —x

L=O

[N —
&]

) [a...a... ,„
n=p

—i,i,i+2.i(q*)~ii+2. (q* ~)1 Vii+2. (q* ~) = oB (1) SC

(36)

If the con6ning potential is mirror symmetric, the ef-
fective potential has the same spatial symmetry. In
this case, i.e. , if V,~(y) = V,@(—y), the parity of the
single-particle states $r. (y) results in Vr' r r I (q ) = 0
if (I,i + L2 + Is + I,4) is an odd number. Further, for
bound electrons under consideration the envelope wave
functions (r, (y) are real and hence, we have the syrnme-

LLLLLLLLLLLLLLLL
and VLL,

——Vr';r. What follows is that Eq. (33) splits
into two separate systems of equations:

V' (q;xe)te) = f de e *e V'""(x,te),

the self-consistent potential is given by

(31) and

M-i [
—". -i]

). ). [~r.„r.~r.„r.+(2 +i)
2

V-(q. ;xil~) = V "'(q.;») +
2~a'OCB

x~ Kp Qz x~ —x~

xP ' (q~;x~&x~l(u) V-(q~;x~l(u) &

(32)

where Ko is the modi6ed Bessel function of zeroth order.
Performing matrix elements of this equation, using Eq.
(24) and assuming that the collective excitations of the
@1DEG exist under the condition that V" g 0 while
V " = 0, the existence condition for the collective exci-
tations reads

n=p
(~)

Z Z a+(2 +1)Z(q ))('gg+(2 +i)(q )]

Vr I +(2 +1)(q ~) (37)

where [z] denotes the integral part of x. In Eqs. (36)
and (37), we have assumed that we restrict the consider-
ation on N subbands, from which M & N subbands are
occupied: L, = 0, 1, 2, . . . , N —1. The restriction on a
small number of subbands L, I' = 0, . . . , N —1 is possible
because the matrix polarization function has the proper-
ties P&~&~, (q, ~) ~ 0 for large lL —L'l, P&~&~, (q, ~) = 0
if EF & fL, E'L and usual only a few subbands are occu-
pied. In Eqs. (36) and (37), we have defined

) [a,,s,„.
L,L'

(i) Pr, r, (q*& ~) + Pr, r. (q» ~)(~) (~)

Xr,L, & qx&~ 1+ bLL
(3s)

(~)(q*)P' '(q* )] V- (q* ~) =o (») Equation (36) describes collective electron transitions
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between states with the same parity, whereas Eq. (37)
describes such transitions between states with opposite
parity. The corresponding secular equations,

det l~L, L~L.L+2- —VL, L,L+2.L(q*)~LL+2. (q* ~)] = o(~)

(39)

with determinants of order M x [(N + 1)/2] and

det[bL LSL L+(2n, +1)
S (1)

Ly L2 L+(2n+1)L (K )XLL+(2~+1) (qx & ~)]
(40)

with determinants of order M x [N/2], are the disper
sion relations of the symmetric Q1D plasmons (even par-
ity modes) and the antisymmetric Q1D plasmons (odd
parity modes), respectively, under the condition that
ImyLL, (q, tu) = 0. The symmetric modes are con-
nected with all electron transitions between states with
the same parity and the antisymmetric modes are con-
nected with all electron transitions between states with
opposite parity. We remark that all the transitions be-
tween states of the same parity are coupled but in-
dependent &om that between states of opposite par-
ity. Only in a diagonal approximation, i.e. , by retain-

(~)ing only the elements of UL L L L (q )yL L (q, ur)

4„L„bL,L, VL L L L (q )yL L (q ~), do all the intersub-
band transitions become independent and to each tran-
sition exists one Q1D plasmon. Then a plasmon is
called an (L —L) intrasubband plasmon if the collec-
tive electron transition is within the subband SL„and
it is called an (L' —L) intersubband plasmon if the col-

LL' y I'

m. 2m
(41)

(L)hk~ q~
(d~ 4

me

hq2
+ ~LL'

2m
(42)

To solve the dispersion relations, Eqs. (39) and (40),
in the self-consistent procedure, we use the renormalized
subband energies EL and wave functions (L(y) from Eq.
(15). Then the Coulomb matrix element reads

VI., I.,I.,L, (q ) =
2e ) CI j L~ CL2L~ CLgL~

LI II II Lt1 2 3 4
C'

xCL, L,' fL, L,L I.,'(q ) (43)

lective intersubband transition is between the subbands
SI, ++ EI.I. With coupling between the different transi-
tions, the QlD plasmons become hybrid (or mixed) modes
with difFerent branches of dispersion curves. The re-
gions, where ImyLL, (q, u) g 0 define the regions in the(~)

u —q plane for the existence of the single-particle exci-
tations (SPE's). Within the RPA, the SPE's are not cou-
pled because noninteracting electrons are considered and
hence, represent independent single-particle transitions:
(i) within one subband, which are called single-particle
intrasubband excitations, and (ii) between different sub-
bands, which are called single-particle intersubband exci-
tation8. The SPE's have a continuous spectrum with the
boundaries,

L2 L4 A

fL L L L {q~) —( 1) ~Lg+L +I +L4, 2~ QL1 ~ L2 ~ L3 ~ L4 ~ e ) ) ) (—1)
m2 ——0 m4 ——0 v=0

a"C~ (2A —1)!!K„(a)
X

m2!m4!(L2 —m2)!(L4 —m4)!(L1 —L2+ m2)!(Ls —L4+ m4)!(A —v)! ' (44)

where n = 0, 1, 2, . . ., a = {111q /2), A = m2+m4+ (L1-
L2+ Ls —L4)/2, (2A —1)!!= 1 3 . . . . (2A —1), and

IV. COLLECTIVE EXCITATIONS:
SELF-CONSISTENT CALCULATION

OF QlD PLASMONS

I
(4+1)" (A~a)

if v=0. (45)

Equation (44) is valid for I 1 ) L2 and Ls ) L4.
The opposite case follows from the symmetry relation
fL L L L (q~) = fL L L L (q ). The coefficients CLL
are the expansion coeKcients of the wave function in Eq.
(»).

A. Bare perfect parabolic potential

In this chapter, we represent numerical results of the
self-consistent calculation of the dispersion relation of
Q1D plasmons in parabolic QWW's. The self-consistent
full RPA dispersion relations of the Q1D plasmons (heavy
solid lines) in dependence on the wave vector are plotted
for a perfect parabolic QWW in Fig. 6 for the symmet-
ric modes and in I ig. 7 for the antisymmetric modes.
In addition, the shaded areas are the SPE continua with
the boundaries given by Eqs. (41) and (42). In these
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calculations, we have assumed for the number of sub-
bands L = 0, 1, . . . , N —1 in the calculation: N = M +3,
i e ,. w. e use a (M + 3)-subband mode/, where M is the
number of occupied subbands. The case of one occu-
pied subband is plotted in Figs. 6(a) and 7(a) and Figs.
6(b) and 7(b) show the /ID plasmon dispersion curves
for two occupied subbands. In the case of one occupied
subband [Fig. 6(a)], there are two symmetric plasmon
modes, denoted by u„and u, both accompanied with
the collective electron transitions 0 ~ 0 and 0 ~ 2.
The branch u„ is accompanied mostly with collective
electron transitions within the lowest subband 0 ~ 0,
whereas u„o is dominated by 0 ~ 2 transitions. Hence,
one should identify woo as an intrasubband (-like) plas-
mon and u2o as an intersubband (-like) plasmon. If

two subbands are occupied, the /ID plasmons are the
mixed (0 —0)—(1 —1)—(2 —0)—(3 —1) plasmons with
four branches of dispersion curves. It is seen that the
branches denoted by u„and u„, which are dominated
by the collective electron transitions I E-+ 1 and 1 ++ 3,
respectively, appear in this case. It was shown 4 that
the electron densities induced in subbands Fo(k ) and
Zq(k ) oscillate in phase if branch ~„ is excited, but in
anti@hase if the branch u„ is excited, i.e. , cu„o behaves
like an optical and u„ like an acoustic plasmon. The
antisymmetric modes of a perfect parabolic QWW with
one occupied subband are the mixed (1 —0)—(3 —0) plas-
mons with two branches, ~„and ~„,of the dispersion
relation. It becomes obvious that the branch ~„,which
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FIG. 6. Dispersion relation of the symmetric plasmons cal-
culated self-consistently in RPA in dependence on the wave
vector component q for a bare perfect parabolic potential:
(a) one subband is occupied (nqDEo = 1.5 x 10 cm ), (b)
two subbands are occupied (nqoEo = 4.5 x 10 cm ).

FIG. 7. Dispersion relation of the antisymmetric inter-
subband plasmons calculated self-consistently in RPA in
dependence on the wave vector component q for a bare
perfect parabolic potential: (a) one subband is occupied
(TL1 &D=E1.5 x 10 cm ), (b) two subbands are occupied
(n~DEo = 4.5 x 10' cm ').
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is mostly accompanied by the collective electron transi-
tion 0 ++ 1, has for q = 0 a &equency identical to the
bare harmonic oscillator frequency: u„(q = 0) = O.
Hence, this mode becomes for vanishing wave vector the
so-called fundamental or Kohn's mode, i.e. , is accompa-
nied only by the center-of-mass motion of the con6ned
electrons. The manifestation of Kohn's theorem in the
spectrum of Q1D plasmons is that the renormalization of
the subband separation &equency &om 0 of the perfect
bare potential to Gyp = (E'] —Ep)/5 of the effective po-
tential is exactly compensated by the depolarization shift
&„"= ~„"(q = 0) —&$0 i.e., 0 = Oqo+4 is valid with
a finite depolarization shift. This corresponds with our
earlier result, where it was shown analytically by 6rst-
order perturbation theory that the Hartree renormaliza-
tion of the subband energy spacing is compensated by
the Hartree screening of the collective intersubband res-
onance. In the case of two occupied subbands, it is seen
that the hybrid modes u„and u„occur in addition to
the case of one occupied subband and the mode u„splits
into taboo branches: ~„+ and u„. The lower-&equency
mode occurs inside the gap of the single-particle (1 —0)
intersubband continuum. It was shown recently that
the electron densities induced in subbands Fo(k ) and
Eq(k ) oscillate in antiphase if the branches u~o+ are ex-
cited, i.e., u„+ behave like acoustic plasmons. It is seen
that for q~ = 0, the branch u„+ has the frequency 0,
i.e., is independent &om the number of electrons in the
QWW.

In the FIR transmission experiments with perpendicu-
larly incident light, only the intersubband resonance (di-
mensional resonance) u~o(q = 0) = 0 is measured in
difFerence to the occurrence of many branches of collec-
tive intersubband transitions. The calculated modes are
the independent free oscillating states of the QWW. If the
applied light couples with the modes, the corresponding
positions of the minima in the FIR spectrum give the
&equencies of the modes. But only those modes which
have a nonvanishing induced electric dipole moment can
couple with light. In the case of a bare perfect parabolic
potential and vanishing wave vector component q = 0,
only the collective intersubband resonance u = 0 has a
nonvanishing induced electric dipole moment and hence,
is observable in a FIR experiment. All the other modes,
which are accompanied with relative electron motions,
cannot be detected in this case with FIR spectroscopy.

Figure 8 shows the dispersion curves of the antisym-
metric modes u~+~ ~ of a QWW with a bare perfect
parabolic potential in dependence on the electron den-
sity in the wire. It is seen that for q = 0, the branch

is pinned at the bare harmonic oscillator &equency.
The small deviations of w„&om 0 are due to the ap-
proximations used. Notice, that for q = 0 the SPE
continua degenerate to the lines AI, L, . The general-
ized Kohn's theorem is an exact result, but, here, we
use the Hartree approximation for the ground state and
the RPA for the response and further neglect higher-
&equency modes than u„+ ' . It is seen that the modes

and cu„start at the onset of the occupation of the
subbands tq(k ) and 82(k ), respectively, and have a

very small depolarization shift. Hence, for large electron
densities, we have only one mode with a large depolar-
ization shift, su~, but M —1 modes forming a band of
modes which have only small depolarization shifts, i.e.,
the band is placed near the corresponding sin.gle-particle
transition &equencies. This physical property of the col-
lective intersubband resonances in QWW's with bare per-
fect parabolic potentials is qualitatively very similar to
the case of a QWW with an effective perfect parabolic
potential V,~(y) = m, A2y2/2. 4 9 For a finite wave vector
component q, it is seen that for electron densities where
the second subband becomes occupied, the gap region in
the single-particle (1 —0) continuum is opened in which
the mode u~ exists and with the occupation of the
third subband, the gap region in the single-particle (2—1)
continuum is opened, having the mode u„ inside. For
q g 0, Kohn's theorem becomes invalid and this is man-
ifested in Fig. 8(b) by a frequency of ur„+ higher than B.
Additionally, the &equency of u„+ slightly depends on.
the electron density. With increasing wave vector, this
dependence increases in magnitude. Figure 9 shows the
dispersion curves of the symmetric modes u +2' of ap.
QWW with a bare perfect parabolic potential in depen-
dence on the electron density in the wire. It is seen that
already for q = 0 the &equencies of all modes depend

2.0

(a)

o.sI
&1O

21

0

nqoEo(10 cm )

1.5
(b)

10+
P

21—
UP

nqDEo(10 cm )

FIG. 8. Dispersion relation of the antisymmetric intersub-
band plasmons u„+ ' in dependence on the electron density
in the QWW with a bare perfect parabolic potential for (a)
q =Oand(b)q =1xlO cm . Forq =O, thecontinua
of the SPE degenerate to the lines OL, +1 l. .
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FIG. 1. 12. Frequency of the mode &u„(intersubband reso-

the QWW with diferent confining potentials; (1) bare perfect
parabolic potential (heavy solid 1' ) A —Ainc~&, 4 —— 6 ——0 and bare
nonparabolic potentials, A4 ) 0, A.6 ——0 ~thin

4 ——0.0550/lo, (3) A4 ——0.1 50/lo and A4 ( O, A6 ) 0

dence on the nonparabolicity parameter A ~&A F4 ( 6 see ig. 3)
or three difFerent densities (see Fig. 3).

&om 0 and results in general, in an increasing mag-] 0 ~

nitude of u with 'ith increasing electron density. In the
case that the quartic term is positive (A 0) h
fundamental mode u„ is shifted above 0 and increases

are also shifted to hi he &g..er &equencies in comparison to
the erfect ar bp p abolic case and decrease more rapidly with

an u3 appear with a negative depolarization shift,
n ing ransi' ionsi.e. , an "antiscreening" of the correspond' t t'

a es p ace. For A4 & 0, the modes ~ and ~ are
shifted to smaller &equencies at th '

l -deir ow-density start
point, but ~„ is shifted to higher frequencies in compar-
ison to t e case of a bare perfect parabolic potential. The
modes u and (u ap p again have a negative depo larizat ion
shift. The curve w in +e
broad minimum slightly below the critical density where

the seconsecond subband becomes occupied. Figure 11 shows

mode (d

the corresponding dispersion curve f 0. F
mo e w„, nearly the same happens as for = 0. M

ramatic is the effect of imperfections of the parabolic
confining potential on the modes ~ + d + ]3
of ao appreciable &equency shifts, the existence regions of
these modes become shifted drastically. This becomes
o vious from Figs. 8(b), ll(a), and 11(b), where the
mo e u2 + exists for A4 ) 0 only in a very small density

see the inHuence of the nonparabolicity on the fundamen-

ence on the density for the different potentials and its
ependence on the nonparabolicity parameter in Fig. 12.
igure 12(a) shows very clear the deviations from the spe-

cia situation, where Kohn's theorem is valid. In general,
it is seen that nonparabolic confining potentials inHuence
the collective intersubband transit'ransi ion cu„ in suc a man-

i increasing ensitiesner t at its frequency increases w'th
in the general tendency. From Fi . 12 b 't blg. ecomes ob-
vious that for A4 ) 0, the frequency of the mode u
increases with increasing A4, but for A4 & 0, the behav-
ior o u„on A4 depends on the electron densit . If our
calculatation would be an exact procedure, i.e. , it would be
possible to include all the exchange- l tange-corre ation processes
in the ground state, as well as in the response and include
all modes, all the curves plotted in Fig. 12(b) must be
identical at A4 ——0.

Our calculations show how th ~ 'lle ee osci ating states
(modes) of the nonparabolic QWW shift their frequen-
cies in dependence on the type and stren th of the
p icity. As long as the confinin t t' l

g o e non-

g po en ia is synl-

FI
metric, a antisymmetric modes becom d le ipo e active.

IR transmission spectra show all th
co"ective int

ese antisymmetric
ll

'
ersubband resonances even at = 0, i.e. ,

ler.
for perpendicularly incident light w'th twi ou a grating cou-
p er. Hence, the mode spectrum co t ' fn ains or parabolic
an nonparabolic QWW's the same mod h'ft d lo es, s i e only
s ig y, i.e. , the mode spectrum is universal, but the FIR

in diff
s ows peaks at u„,

at ~io
parabolic QWW, which has onl th f ds on y e un amental peak

p.
It is seen that deviations from the perfect arab l

potential havep
'

have an appreciable inHuence on the 1D 1

er ec para o ic

mons.s. T..ese imperfections cannot be the source of ad-
e on e pas-

i ional modes. But the nonparabolicity of the confining
potential, which breaks Kohn's theorem, shifts the mode

existence (~, q» niDEG) of a definite mode and makes all
the antisymmetric modes dipole active, i.e., they become
observable with perpendicularly incident FIR light.

V. SUMMARY

In this work 0

fere nt
, we have studied the changes th t d'f-

rent types of nonparabolicity of the bare confining po-
ential induce on the dispersion l t fre a ions o p asmons in

quantum-well wires. Assumin t lspa ia symmetric correc-
tions to the bare perfect parabolic potential described by
erms of fourth and sixth power t t fwo ypes o modes oc-
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cur, symmetric modes connected with collective electron
transitions between states having the same parity and
antisymmetric modes connected with collective electron
transitions between states with opposite parity. For a
bare perfect parabolic potential, the self-consistent cal-
culations of the ground-state and the response show that
the so-called fundamental or Kohn's mode w has a fre-p.
quency identical with the bare harmonic oscillator fre-
quency, independent &om the electron density, if the
wave vector is zero. In this case, according to the gener-
alized Kohn's theorem, this mode is connected with the
center-of-mass motion of the confined electrons, all the
other modes are connected with the relative motion of the
confined electrons. Finite wave vectors and nonparabol-
icity of the bare confining potential of the QWW's break
Kohn's theorem and hence, deviations in the spectrum
of the @ID plasmons occur.

(i) For small electron densities, the nonparabolicity can
shift the mode (d„ to larger and smaller &equencies in
comparison to the bare harmonic oscillator frequency O.

(ii) With increasing density, the frequency of the fun-
damental mode ~ increases.p

(iii) The higher modes u++ are also shifted to higher
or smaller frequencies in dependence on the shape of the
nonparabolic corrections.

(iv) There are no additional modes as well as mode
crossing or anticrossing behavior, induced by the non-
parabolicity of the bare confining potential.

Our self-consistent calculations of the ground state in
the Hartree approximation and the response in the RPA
explicitely show the cancellation of the corrections to the
single-particle energy spacing by the Hartree potential
(0 —Bio) with the depolarization term of the response
~10

p
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