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Plasmons in imperfect parabolic quantum-well wires: Self-consistent calculations
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The effects of deviations from the bare perfect parabolic confining potential of a quantum-well
wire on the dispersion relations of quasi-one-dimensional plasmons are studied. We calculate self-
consistently the ground state in the Hartree approximation and the density response in the random-
phase approximation. We find that for a bare perfect parabolic potential, one intersubband mode,
the fundamental or Kohn’s mode, is pinned at the bare harmonic oscillator frequency independent
from the electron density. It is shown that small nonparabolic imperfections shift the fundamental
mode to higher or smaller frequencies and depend on the electron density.

I. INTRODUCTION

Synthetic low-dimensional electron systems are
presently a subject of enormous interest. Much insight
into the electronic properties of such electron systems is
gained from optical investigations, i.e., from far-infrared
(FIR) transmission spectroscopy and resonant inelastic
light scattering. Quantum confinement of the electrons
in two spatial directions results in gquantum-well wires
(QWW’s), in which the electrons are only free in one
spatial direction. The most important collective excita-
tions of the quasi-one-dimensional (Q1D) electron sys-
tem, synthesized in a QWW, are the plasmons. Their
spectrum depends characteristically on the properties of
the quasi-one-dimensional electron gas (Q1DEG).

Q1D plasmons have been investigated theoretically
and experimentally!®726 in isolated QWW’s and lateral
multiwire superlattices. Caused by the size quantiza-
tion, the excitation spectrum is split in intrasubband and
intersubband excitations. The intersubband plasmons
have frequencies above the corresponding single-particle
transition frequency for usual electron number densities.
This frequency shift is a measure of the strength of the
Coulomb interaction. Within the random-phase approxi-
mation (RPA) this frequency shift results from resonance
screening and is called depolarization shift. Optical inves-
tigations of QWW'’s have demonstrated that in etched?”
and field-effect samples,?® the bare confining potential
Vo is of parabolic shape in a good approximation. In
the case of a perfect parabolic potential, the generalized
Kohn’s theorem??:3° predicts that in a FIR experiment,
the Q1DEG absorbs radiation only at the bare harmonic
oscillator frequency, independent of the electron-electron
interaction and the number of electrons in the QWW.
This intersubband resonance (dimensional resonance) is
called the fundamental mode (or Kohn’s mode) and corre-
sponds to the center-of-mass motion of all confined elec-
trons. In the presence of nonparabolicity of the confining

1—14

0163-1829/95/52(12)/9031(13)/806.00 32

potential, besides the fundamental mode, higher inter-
subband resonances become visible.22:26 For this reason,
optical measurements are useful in characterizing depar-
tures from ideal parabolicity in experimental samples. In
agreement with Kohn’s theorem, it has been shown!?! for
a bare (initial) perfect parabolic confining potential that
a self-consistent calculation of the ground state and the
response of a Q1DEG results in a frequency of the low-
est intersubband plasmon, which is nearly identical to
the bare harmonic oscillator frequency and independent
from the density of the Q1DEG for nearly vanishing wave
vector. Only this mode is dipole active. Increasing wave
vector results in an increasing frequency of this mode
and a redistribution of the FIR oscillator strengths, i.e.,
higher modes become also dipole active.

The aim of this present work is to study how the dis-
persion relations of the Q1D plasmons in QWW?’s change
from the perfect parabolic case, when different imper-
fections are present. The work is performed by self-
consistent calculations of the ground state and the re-
sponse in the framework of the Hartree approximation
and the RPA, respectively.

II. GROUND STATE

The model used in this paper is the following. The
electrons are totally confined in an effective potential
Vest(x) = Vem(y) + Vesr(z) assumed separated for the y
and z direction, which is within the Hartree approxima-
tion a sum of the bare potential Vp(x), resulting from
the tailoring of the conduction-band edge and a possi-
ble applied external electrostatic potential. Because in
the experimental realized samples the potential in the
growth direction (z direction) is very narrow in compar-
ison to the width of the potential in the lateral direction
(y direction), we can study the QWW by a model in
which the electrons are confined in a zero-thickness z-y
plane along the z direction at z = 0. The electrostatic

9031 ©1995 The American Physical Society



9032

potential ®(x) is a solution of
V- lea(x) V)] = - [molx) - N3Gl (1)

where no(x) = no(y)d(z) is the electron number density
of the ground state, N} (x) = Nj (z) is the density of the
positive charges, necessary to maintain charge neutrality,
€5(x) is the background static dielectric constant, €o the
permittivity in vacuum, and the electron charge is —e.
Neglecting image effects in Eq. (1) and assuming that the
length of the wire L, is very large, the Hartree potential
Vi (y) = —e®(y) is given by

o2
Vu(y) =

*° Yo
dy'no(y') In ——— (2)
/;oo |y - yll ’
where yo is a free constant, to which this potential is de-
termined. With respect to the translational symmetry in
the z direction and the assumed separation of the effec-
tive potential, the motion of the electrons separates. The
wave functions and eigenvalues are given by

jL_m e*e® £1.(y) 0(2);

lo(2)]* = 8(2) 3)

2TEQE S

(x|Lkg) = Yk, (x) =

h2k2
Ep(ks) = €L+ =

2me

; L=0,1,2,3,.... (4)

In the following, we suppose spin degeneracy and omit
the spin index. In the above expressions, k, is the wave
vector component in z direction and m, is the effective
conduction-band-edge mass of the electrons. The sub-
band energies £7, and the envelope wave function £z,(y)
are obtained from the one-dimensional Schrédinger equa-
tion,

K 42
(—2—me et Veff(y)) €L(y) =€ éLly), (5)
where Veg(y) = Vo(y) + Vu(y), Va(y) is given by Eq. (2)
and no(y) = 3, n§” (), with

n ) = 2\ 162 (w) PV Er — €2 O(Er — £1) . (6)

In this equation, nff')(y) is the contribution of the Lth
subband to the electron number density no(y), ©(z) is
the Heaviside unit step function with @(z) =1 for z > 0
and ©(xz) = 0 for z < 0. The Fermi energy Ep is deter-
mined from the 1D electron number density (number of

electrons per unit length) nipgc = >, nglf))EG, where

4 Me
n{Bec = A\ 5 VEF— €L O(Er ~ L) (7)

is the number of electrons per unit length in the Lth sub-
band. The Fermi wave vectors of the different subbands
are given by

if Er>¢&L (8)

@ — [ V2me(Ep — EL) /R
F 0 if Ep <&,
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and the corresponding Fermi velocities are v;.L) =

ﬁkg‘)/me. The self-consistent solution of Egs. (5), (6),
(7), and (2) gives the subband energies, the charge-
density profile, the Fermi energy, and the effective po-
tential. For the bare potential, we use

Vo(y) = Va(y) + Vap(v), (9)
with the perfect parabolic part

Q2
Ml 2, (10)

Voly) = —5

and the deviation, i.e., the nonparabolic part
Vap(y) = Asy® + Aay* + Asy® + Aey® . (11)

To perform the self-consistent calculations of the
ground state, the envelope wave function is represented

by the closure set of wave functions {g’)(y),

&)=Y CLrétdw), (12)

L'=0

where {{20)(31)} are the eigenfunctions of Eq. (5) with
Ve (y) = Vp(y) and are given by

0y, _ 1 y? Y
33 (y) = —————(ZLL! 7r1/2lg)1/2 exp (—2—lg> Hy, (E) .

(13)

Herein, Hp(y) is the Hermite’s polynomial and lg =
[R/(meQ)]}/2. The corresponding eigenvalues read

géo):hQ(L_F%); L=0,1,2,.... (14)

Using Eq. (12) in the Schrodinger equation, Eq. (5), and
multiplying this equation from the left with fg),? (y) and
subsequently integrate it over y, we recover the eigenvalue
equation,

> Crul(Er — EEN)oppn — VAL — ViRl =0, (15)
Ll
where
VA, = / dy £2(v) Var(v) €9 (),

vee = /_ dy £9() Vo (v) £9(9) - (16)

The matrix elements of the Hartree potential are given
by
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VHL = 2 O(Er — £)VEr — £

wzheoe

X Z C');,L'C'LLHffIILuLIL2 s (17)

L',L"

where the form factor reads
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= [t [ o/ ) )

Yo__ () (0) ()
ly—yl s W)€ (W) -

For L; > L, the matrix elements of the nonparabolic
part of Vo(y) are given by

X In (18)

l 3
VL1L2 =43 (_9_) [3L2/25L27L1—1 + \/Ll(Ll - l)(Ll - 2)5142,1/1—‘3}

V2

l 4
vy (ﬁ) [6(L2 + L + 1/2)61, 1, + 4(Ln — 1/2)VEx(Br = D10, 2

V2

+v/Ly(Ly — 1)(Ly — 2)(L1 — 3)81,,1, 4]

l
+As ( L ) [IO(Lz + 1/2 V (SLz,L1 1+ 5(L1 = 1)\/L1 L, — 1)(L1 - 2)(5[,2’1,1._3

75

+\/L1 Ll - 1)(L1 - 2)(Ll - 3)(L1 - 4)5L2,L1—5]

l 6
+Ag¢ (—ﬁ) [20(L3 + 3/2L% 4+ 5/2L1 + 3/4)é1,,, + 15(L2 — Ly + 1)y/L1(L1 — 1)

V2

X(SLZ’LI_Z + 6(L1 — 3/2)\/[/1(1/1 - 1)(L1 — 2)(L1 - 3)(SL2’L1_4

+v/L1(Ly — 1)(L1 — 2)(L1 — 3)(L1 — 4)(L1 = 5)éL,,1,-6] -

Because the potential V(y) is infinitely high, the wave

functions 520) (y) are real and hence, Vi, = VH, and
Vir, = Vi, are valid. From Eq. (15), the renormalized
single-particle subband energies £y, follow as solutions of
the determinantel equation,

det[(€r — EQ)opipn — VE L, —VEEL]=0.  (20)

For the numerical calculations throughout this paper,
we assume a QWW prepared on a GaAs—Gaj_;Al, As
heterojunction with the material parameters for GaAs:
€s = 12.87, m, = 0.06624mg, where mg is the bare
electron mass and AQ2 = 2 meV. Further, we assume
that the effective confining potential is mirror symmetric
at the plane y = 0, which is the typical case for ex-
perimentally realized samples. Hence, we have Az =
As = 0 in Eq. (11) and we use the boundary condi-
tion 8/0yVeg(y)|y=0 = 0. The free constant yo is chosen
in such a manner that the Fermi energy is Er = 0 as a
reference level without loss of generality.

Figure 1 shows the different bare potentials consid-
ered in the following for the self-consistent calculations.
We consider two types of deviations from the perfect
parabolic potential: (i) A4 > 0 and Ag = 0, which ef-
fectively narrows the well and (ii) A4 < 0 and Ag =
0.166813 A2/(AQ) — 0.058 32 A4/l3 > 0 is chosen to de-
sign the bare potential with a flatter bottom.

(19)

In Fig. 2 we show the renormalized subband energies
as a function of the electron density in the QWW for
three different bare potentials. For A4 > 0, the increase
of the nonparabolicity increases the intersubband sepa-
ration, and the onset of the occupation of a subband is

Vo/hQ

y/la

FIG. 1. Bare potentials Vp(y) used in the self-consistent
calculations: (1) bare perfect parabolic potential (heavy solid
line), As = A¢ = 0 and bare nonparabolic potentials,
Ay > 0,A¢ = 0 (thin solid lines); (2) As = 0.0574Q/l%;
(3) A4 = 0.1 ﬁQ/l?I and Ay < 0,46 > 0 (dashed
lines); (4) A4 = —0.05kQ/14, As = 0.003335Q/1%; (5)
Ay = —0.1hQ/l4, Ae = 0.0075 AQ/15,.
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shifted to higher electron densities. For A4 < 0, the ef-
fect of the nonparabolicity on the subbands is twofold:
(i) for lower subbands the subband energy spacing de-
creases but (ii) for higher subbands the subband energy
spacing increases. The occupation of the subbands starts
at nearly the same electron density as for the bare perfect
parabolic potential.

In Fig. 3, we show the subband energies as a func-
tion of A4 for three different electron densities. It is seen
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FIG. 2. Subband energies as a function of the electron
density in the QWW measured from the Fermi energy:
(a) A4 = Ae = 07 (b) A4 = Olhﬂ/l}‘], As = 0; (C)
Ay = —0.1AQ/1%, Ae¢ = 0.0075AQ/1S,. The parameters of
the QWW are given in the text.
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that the nonparabolicity of the bare potential influences
the higher subbands stronger than the lowest-lying sub-
bands. Further, the deviation with A4 > 0 induces much
more change in the subband energies. This increases with
increasing electron density.

Figure 4 shows the charge-density profiles for the dif-
ferent bare potentials and different electron densities. It
is seen that for A4 > 0 the effect of the nonparabolicity
is to broaden the charge-density profile for small electron
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FIG. 3. Subband energies as a function of the strength of
the nonparabolicity parameter A4 with A¢ = 0 for A4 > 0
and As = 0.16681%A3/(AQ) — 0.05832 A4 /1% for A4 < O for
the electron number densities: (a) nipgg = 1.5 x 10° cm™?,
(b) nipec = 4.5x10° cm™?, and (c) nibee = 7.5x10° cm™ 1.
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densities, where one and two subbands are occupied and
for higher electron densities the quartic potential induces
a convex correction to the nearly uniform charge distri-
bution in the center of the perfect parabolic QWW. For
Ay < 0, the effect of the nonparabolicity on the charge-
density profile is more dramatic as for A4 > 0. It is seen
that with increasing magnitude of the nonparabolicity,
the charges become concentrated more and more at the
edges of the well for higher electron density, i.e. if more

ng(10°cm=2)
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subbands are occupied. Figure 5 shows the different ini-
tial potentials (bare potentials) and the corresponding
self-consistent potentials for two different electron densi-
ties.

III. DENSITY RESPONSE OF A Q1DEG

In this chapter, we calculate the response of a Q1DEG
to an external potential on a quantum-mechanical level
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FIG. 4. Charge density profiles in different QWW’s: (a) As = As¢ = 0; (b) As = 0.055Q/1,46 = 0; (c)

Ay = 0.1KQ/I4, A¢ = 0; (d) As = —0.05kQ/l4, As = 0.003337HQ/1%; (e) As = —0.1hQ/ls, As = 0.0075AQ/15. The
heavy solid lines denote the profiles at different densities: the lowest curves correspond to niprc = 0.5 x 10° cm™?! and the

higher curves are calculated with Anipge =1 X 10%° cm™ 1.
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within the RPA, using the self-consistent field (SCF)
method. The single-particle Hamiltonian of the elec-
trons of the QIDEG in the presence of the perturbation
is written as H = Hgy + H,, where Hy is the unperturbed
Hamiltonian of a single electron in the QWW, which sat-
isfies the Schrodinger equation Ho|L, k;) = £|L, k) and
H, = V®°(x,t) is the self-consistent potential. Writ-

(Vesr — Ep)/hQ2

-4 -2 0 2 4

v/la

FIG. 5. Bare potential Vo(y) (dashed line) and effective
potential Veg(y) (solid line) for two different electron densities
(1) nipEe = 1.5 X 10° cm™* and (2) nipec = 4.5 X 10° cm™?
of different QWW’s: (a) A4 = As = 0; (b) A4 = 0.1 AQ/13,
Ae = 0; and (c) As = —0.1 AQ/lS, Ae = 0.0075 hQ/1%,.

L. WENDLER AND R. HAUPT 32

ing the statistical operator pg of the system as pg =
p(GO) + pg), where pg’) is the statistical operator of the
unperturbed system, and pg ) is the correction to the sta-
tistical operator to the first order in the perturbation, it

follows from the single-particle von Neumann equation,

np(Er (kz)) — nr(€L(ks))
h',(w + 15) + ng(ké) - SL(kz)

<L7 kclpg)lLla k:l) =

(L, ko |V (x,w)| L', kL) | (21)

where p(C?)IL, k.) = np(€L(k:))|L,ky is used with
np(€r(ks)) = O[Er — €L(ks)], the Fermi distribution
function at T = 0 K. The total electron number density
n = ng + Njnq of the QIDEG is a sum of the equilibrium
ground-state electron number density no and the induced
electron number density ninq(x,w) = Tr{pg )6(x — Xe)}
caused by the perturbation. The evaluation of the trace
(Tr) gives

Pana (%, @) = / Bz’ PO (x, X [0) V< (x,w) . (22)

In this equation, P(1)(x,x’|w) is the irreducible RPA po-
larization function of the Q1DEG,

1 . ]
PO (x,x'|w) = . D et PO (geixy, ) w)
x
9z

(23)

PO (goyx 1, % |w) = 3 PiY(geyw) nos (x)npp (X))

L,L'
(24)
with the RPA matriz polarization function
Pi2) (42, w)
2 np(Eri(kz)) — nrl€r (ke + ¢z)]
= » (25
L, kzh(w+i6)+£L.(k,)~£L(ka,+qz) (25)
nor (x1) = €r(y) €1 (y) 6(2), (26)

and x; = (0,y,z). Within the RPA and at T = 0 K the
real part of the matrix polarization function is®

Re P{Y),(¢z,w)

L' q m
_ m. kg;. )+?m‘—‘_:‘(w—QLLI)
T ah2 J q m,
mh e kS )——2£+gqi(W—QLL’)
kg;vL) + q?z + —;Zlqi(w —QLLI)
+In k(L) _ & _ Me (w —QLL:) ’ (27)
Foo2 hge

where Qrr = (€L — €1+)/Ah is the subband separation
frequency, and the imaginary part reads



52 PLASMONS IN IMPERFECT PARABOLIC QUANTUM-WELL ...

Me L") 9z Me
- A = Me
F2| g | {9[ £ Y b

Im PI(}L), (eyw) =

m

e [k}’“’ Pt e - Qw)] ® [k%” -t Pew- QLL')] } :

The self-consistent potential V*¢(x,w) is a sum of the
external potential V°**(x,w) and the induced poten-
tial Vind(x,w), which results from the induced density:
Vee(x,w) = Ve*t(x,w) + Vi*d(x,w). In the RPA and
neglecting retardation effects, the induced potential is
related to the induced density by Poisson’s equation,

2
V - [es(x) VViIRd(x,w)] = —-Z—O Nind (X, w) . (29)
The use of £,(x) in Eq. (29) takes into account the static
screening of the optical phonons, which have frequen-
cies usual larger than those of the collective excitations
of the QIDEG. The case that the frequencies of both
excitations are in the same order makes it necessary to
include the contribution of the optical phonons to the
self-consistent potential dynamically, as developed in Ref.
8. Further, the frequencies of the acoustic phonons are
much smaller than those of the collective excitations of
the Q1DEG and hence, can be neglected. On the grounds
of this typical situation, we can use the €, approximation
for the screening of the dielectric background.
Neglecting image effects and using the translational
symmetry of the QWW along the z axis by one-
dimensional Fourier series,
Vind (x’ w) —

1 . .
£ Sy (gx o) (30)
x
qx

and

Vind(qz;XJ_Iw) — /da: e—iqzz Vind(x’w) ,

/dzwl
X /dzsc'i Ko[|gz(xL — x,)|]

xPM (gg;x!) , %] |w) V*°(go; x| |w) ,
(32)

(31)

the self-consistent potential is given by

Vo (qr; x4 |w) = V=¥ (gp;x1) +

2TEQE,

where K is the modified Bessel function of zeroth order.
Performing matrix elements of this equation, using Eq.
(24) and assuming that the collective excitations of the
Q1DEG exist under the condition that V¢ # 0 while
Vext — 0, the existence condition for the collective exci-
tations reads

Z 6,200,
LL

Vi 120 0(42) PED (42, w)] VES (goyw) =0, (33)
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(w—QLL:)] (S [k;;'L’) 22—4— (w—QLL,)]

Fiq

5 ha. (28)

where

62

V£1L2L3L4(Qw)=27r806 / dy / dy' €1, (v) €L, (y)

X Kollge=(y — ¥ €1, (%) €L, (¥'),
(34)

and

Vig(gaw) = [

— 00

oo

dy £1,(y) V(g ylw) € (y) - (35)

If the confining potential is mirror symmetric, the ef-
fective potential has the same spatial symmetry. In
this case, i.e., if Veg(y) = Ves(—y), the parity of the
single-particle states {1 (y) results in V7 1 ; ;. (gz) =0
if (Ly + Lz + L3 + Ly4) is an odd number. Further, for
bound electrons under consideration the envelope wave
functions £z, (y) are real and hence we have the symme—
tries: VP .10, = Vi,0,050, = ViiLar,r, = LoLalyLs
and Vi§, = f/LFL What fgollows is that Eq. (33 sp lits
into two separate systems of equations:

m-1[5]

Z Z Or,,L.0L;,L4+2n

L=0 n=0

8 1 C
—VL1L3L+2nL(qw)X(L[),+2n(qmvw)] V£L+2n(q37w) =0

(36)
and
m—1[¥-1]
Z Z [6L1,L6L2,L+(2n+1)
L=0 n=0
8 1
_VL1L2L+(2n+l)L(qm)x‘([,[),+(2n+1) (qmvw)]
XVEE+(2"+1)(qz,w) =0, (37)
where [z] denotes the integral part of . In Egs. (36)

and (37), we have assumed that we restrict the consider-
ation on N subbands, from which M < N subbands are
occupied: L; = 0,1,2,...,N — 1. The restriction on a
small number of subbands L, L’ = 0,..., N —1 is possible
because the matrix polarization function has the proper-
ties Pélg,(qw,w) — 0 for large |L — L'|, PI(Jlg, (¢z,w) =0
if Ep < €1, €1 and usual only a few subbands are occu-
pied. In Eqgs. (36) and (37), we have defined

LL'(q:mw) + PL.L(qz,w)
1+ (sLLI

XLL’ (@, w) = (38)

Equation (36) describes collective electron transitions
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between states with the same parity, whereas Eq. (37)
describes such transitions between states with opposite
parity. The corresponding secular equations,

8 1
det[6z, 2812 L+2n — Vi, LoD s2nr (42) XS24 9n (e w)] = 0,
(39)

with determinants of order M x [(N + 1)/2] and

det[dr, L0L, L+ (2n+1)

s 1) _
_VL1L2L+(2n+1)L(qw)X(IJL+(2n+1)(qw’w)] =0,
(40)

with determinants of order M x [N/2], are the disper-
sion relations of the symmetric Q1D plasmons (even par-
ity modes) and the antisymmetric Q1D plasmons (odd
parity modes), respectively, under the condition that

Imx(ng,(qm,w) = 0. The symmetric modes are con-
nected with all electron transitions between states with
the same parity and the antisymmetric modes are con-
nected with all electron transitions between states with
opposite parity. We remark that all the transitions be-
tween states of the same parity are coupled but in-
dependent from that between states of opposite par-
ity. Only in a diagonal approzimation, i.e., by retain-
ing only the elements of V¢ ; ; (q;,)x(Ll‘l)L3 (¢e,w) =

00,0500,0,VE 1,1, L, (q:,g)xg;L1 (gzw), do all the intersub-
band transitions become independent and to each tran-
sition exists one Q1D plasmon. Then a plasmon is
called an (L — L) intrasubband plasmon if the collec-
tive electron transition is within the subband £, and
it is called an (L' — L) intersubband plasmon if the col-
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lective intersubband transition is between the subbands
€L & €. With coupling between the different transi-
tions, the Q1D plasmons become hybrid (or mized) modes
with different branches of dispersion curves. The re-
gions, where Imxgg,(qa,, w) # 0 define the regions in the
w — ¢, plane for the existence of the single-particle exci-
tations (SPE’s). Within the RPA, the SPE’s are not cou-
pled because noninteracting electrons are considered and
hence, represent independent single-particle transitions:
(i) within one subband, which are called single-particle
intrasubband excitations, and (ii) between different sub-
bands, which are called single-particle intersubband exci-
tations. The SPE’s have a continuous spectrum with the
boundaries,

o | e 2
wiy = i—fn& + % + QL (41)
and
, Rk Pq,  hg?
wif = e e Ly (42)

To solve the dispersion relations, Egs. (39) and (40),
in the self-consistent procedure, we use the renormalized
subband energies £1, and wave functions &1(y) from Eq.
(15). Then the Coulomb matrix element reads

2

FEtarar, (@) = (“1)" 200 i ppingineon VI L Lsl et e® 37 3 S (-1)

[
ViiLarsr,(3=) = 7 Y Cruy Croiy ClLer,
TEQPE s
LiLyLgLy
c
xCr,ry fripyryry (2=) (43)
with
Ly Li A
mz=0m4=0v=0
AC2(2X - DK

(A~ 1IK, (a) »

X I
mz!m4!(L2 — m2)|(L4 — m4)'(L1 - L2 + mz)'(L;; — L4 + m4)‘()\ — I/)'

wheren =0,1,2,...,a = (lnq./2)%, A = ma+mq+ (L1 —
Lo+ Ls—Lg)/2, 2= D =1-3.....(2A —1), and

cAz{mflm if v #0

1 if v=0.

(45)

Equation (44) is valid for Ly > L, and L3 > Lg.
The opposite case follows from the symmetry relation
I 1.0s0.(2) = fE 1, 0.0,(dz). The coefficients Cry,
are the expansion coeflicients of the wave function in Eq.
(12).

IV. COLLECTIVE EXCITATIONS:
SELF-CONSISTENT CALCULATION
OF Q1D PLASMONS

A. Bare perfect parabolic potential

In this chapter, we represent numerical results of the
self-consistent calculation of the dispersion relation of
Q1D plasmons in parabolic QWW?’s. The self-consistent
full RPA dispersion relations of the Q1D plasmons (heavy
solid lines) in dependence on the wave vector are plotted
for a perfect parabolic QWW in Fig. 6 for the symmet-
ric modes and in Fig. 7 for the antisymmetric modes.
In addition, the shaded areas are the SPE continua with
the boundaries given by Egs. (41) and (42). In these
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calculations, we have assumed for the number of sub-
bands L =0,1,...,N —1 in the calculation: N = M +3,
i.e., we use a (M + 3)-subband model, where M is the
number of occupied subbands. The case of one occu-
pied subband is plotted in Figs. 6(a) and 7(a) and Figs.
6(b) and 7(b) show the Q1D plasmon dispersion curves
for two occupied subbands. In the case of one occupied
subband [Fig. 6(a)], there are two symmetric plasmon
modes, denoted by wgo and wf,o, both accompanied with
the collective electron transitions 0 <> 0 and 0 + 2.
The branch wgo is accompanied mostly with collective
electron transitions within the lowest subband 0 < 0,

whereas w2 is dominated by 0 > 2 transitions. Hence,

one should identify w° as an intrasubband (-like) plas-

mon and w2 as an intersubband (-like) plasmon. If

2.5

201

1.5

w/

1.0

o5l © >

FIG. 6. Dispersion relation of the symmetric plasmons cal-
culated self-consistently in RPA in dependence on the wave
vector component g, for a bare perfect parabolic potential:
(a) one subband is occupied (niprc = 1.5 x 10° cm™!), (b)
two subbands are occupied (nipeg = 4.5 x 10° cm™!).
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two subbands are occupied, the Q1D plasmons are the
mixed (0 — 0)—(1 — 1)—(2 — 0)—(3 — 1) plasmons with
four branches of dispersion curves. It is seen that the
branches denoted by wl! and w3!, which are dominated
by the collective electron transitions 1 +> 1 and 1 + 3,
respectively, appear in this case. It was shown!¢ that
the electron densities induced in subbands &y(k.;) and
&1(k.) oscillate in phase if branch wgo is excited, but in
antiphase if the branch w]! is excited, i.e., w3® behaves
like an optical and w;,l like an acoustic plasmon. The
antisymmetric modes of a perfect parabolic QWW with
one occupied subband are the mixed (1 —0)—(3 —0) plas-
mons with two branches, w}® and w3°, of the dispersion
relation. It becomes obvious that the branch w°, which

“ H
w A
P 2L
e /////"".otm X
= = & XL
D77, % RS
LLELLLRRLS 0:0

N
XXX
XXX
RRRRLLRRERL

- P B %
0.5 TR

?17._-”.-)':;;7‘}/‘//‘/ /

w/N

0 0.5 1.0 1.5 2.0
qx(10°cm™1)

FIG. 7. Dispersion relation of the antisymmetric inter-
subband plasmons calculated self-consistently in RPA in
dependence on the wave vector component g, for a bare
perfect parabolic potential: (a) one subband is occupied
(nipre = 1.5 x 10° cm_l), (b) two subbands are occupied
(nibEG = 4.5 x 10° cm™?).
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is mostly accompanied by the collective electron transi-
tion 0 + 1, has for ¢, = 0 a frequency identical to the
bare harmonic oscillator frequency: wzl,o(q;, =0) = Q.
Hence, this mode becomes for vanishing wave vector the
so-called fundamental or Kohn’s mode, i.e., is accompa-
nied only by the center-of-mass motion of the confined
electrons. The manifestation of Kohn’s theorem in the
spectrum of Q1D plasmons is that the renormalization of
the subband separation frequency from € of the perfect
bare potential to Q19 = (€1 — &)/k of the effective po-
tential is exactly compensated by the depolarization shift
A = wzl,o(qz = 0)—Qo, i.e., 2 = Q1O+A11,° is valid with
a finite depolarization shift. This corresponds with our
earlier result,® where it was shown analytically by first-
order perturbation theory that the Hartree renormaliza-
tion of the subband energy spacing is compensated by
the Hartree screening of the collective intersubband res-
onance. In the case of two occupied subbands, it is seen
that the hybrid modes w2! and wj' occur in addition to
the case of one occupied subband and the mode w},o splits
into two branches: wl°* and wl®". The lower-frequency
mode occurs inside the gap of the single-particle (1 — 0)
intersubband continuum.® It was shown recently4 that
the electron densities induced in subbands &y(k.) and
E1(k.) oscillate in antiphase if the branches wzl,O:h are ex-
cited, i.e., wlll,oi behave like acoustic plasmons. It is seen
that for ¢, = 0, the branch w %" has the frequency £,
i.e., is independent from the number of electrons in the
QWW.

In the FIR transmission experiments with perpendicu-
larly incident light, only the intersubband resonance (di-
mensional resonance) w:’(gz = 0) = Q is measured in
difference to the occurrence of many branches of collec-
tive intersubband transitions. The calculated modes are
the independent free oscillating states of the QWW. If the
applied light couples with the modes, the corresponding
positions of the minima in the FIR spectrum give the
frequencies of the modes. But only those modes which
have a nonvanishing induced electric dipole moment can
couple with light. In the case of a bare perfect parabolic
potential and vanishing wave vector component ¢, = 0,
only the collective intersubband resonance wl® = Q has a
nonvanishing induced electric dipole moment and hence,
is observable in a FIR experiment. All the other modes,
which are accompanied with relative electron motions,
cannot be detected in this case with FIR spectroscopy.

Figure 8 shows the dispersion curves of the antisym-
metric modes w{;‘"l’l’ of a QWW with a bare perfect
parabolic potential in dependence on the electron den-
sity in the wire. It is seen that for g, = 0, the branch
wp? is pinned at the bare harmonic oscillator frequency.
The small deviations of w1’ from Q2 are due to the ap-
proximations used. Notice, that for q, = 0 the SPE
continua degenerate to the lines Qy7:. The general-
ized Kohn’s theorem is an exact result, but, here, we
use the Hartree approximation for the ground state and
the RPA for the response and further neglect higher-
frequency modes than wX*%L. Tt is seen that the modes
w2! and w3? start at the onset of the occupation of the
subbands £;(k;) and &;(k.), respectively, and have a
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very small depolarization shift. Hence, for large electron
densities, we have only one mode with a large depolar-
ization shift, wi®, but M — 1 modes forming a band of
modes which have only small depolarization shifts, i.e.,
the band is placed near the corresponding single-particle
transition frequencies. This physical property of the col-
lective intersubband resonances in QWW/’s with bare per-
fect parabolic potentials is qualitatively very similar to
the case of a QWW with an effective perfect parabolic
potential Veg(y) = mQ2y?/2.4? For a finite wave vector
component ¢, it is seen that for electron densities where
the second subband becomes occupied, the gap region in
the single-particle (1 — 0) continuum is opened in which
the mode wl®~ exists and with the occupation of the
third subband, the gap region in the single-particle (2—1)
continuum is opened, having the mode wf,l_ inside. For
gz 7 0, Kohn’s theorem becomes invalid and this is man-
ifested in Fig. 8(b) by a frequency of w;°* higher than Q.
Additionally, the frequency of w2’ slightly depends on
the electron density. With increasing wave vector, this
dependence increases in magnitude. Figure 9 shows the
dispersion curves of the symmetric modes w{;‘"z’[‘ of a
QWW with a bare perfect parabolic potential in depen-
dence on the electron density in the wire. It is seen that
already for ¢, = 0 the frequencies of all modes depend
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FIG. 8. Dispersion relation of the antisymmetric intersub-
band plasmons w}f‘ *1.L in dependence on the electron density
in the QWW with a bare perfect parabolic potential for (a)
gz = 0 and (b) ¢ = 1 x 10° cm™*. For g, = 0, the continua

of the SPE degenerate to the lines Qr41,.
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nipeg(10°cm™1)

FIG. 9. Dispersion relation of the symmetric intersubband
plasmons w{;*‘z’l‘ in dependence on the electron density in
the QWW with a bare perfect parabolic potential for ¢, = 0.
For g. = 0, the continua of the SPE degenerate to the lines

Qr42,L.
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FIG. 10. Dispersion relation of the antisymmetric intersub-
band plasmons wl‘+1 L at ¢. = 0 in dependence on the elec-
tron density for dlﬂ'erent imperfections of the bare parabolic
confining potential: (a) A4 = 0.05AQ/l§, Ase = 0 and (b)
As = —0.05hQ/l4, As = 0.003337%Q/1}. For q- = 0, the
continua of the SPE degenerate to the lines 2r41,r-
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on the electron density. This underlines the very special
feature of the mode w;O (9= = 0) = Q in the case of bare
perfect parabolic potentials.

If one performs FIR transmission experiments on
QWW’s with a grating coupler directed orthogonal to
the wire axis on top of the sample, it is possible to ex-
cite the plasmons with ¢, = %i’in;n = 0,+1,+2,... (d
denotes the period of the grating). For a bare parabolic
potential, one observes in the case q, # 0 all the an-
tisymmetric modes because these modes become dipole
active.

B. Bare nonparabolic potential

Let us examine the nonparabolicity effects of the bare
potential on the dispersion curves of the Q1D plasmons.
In Fig. 10, the dispersion curves of the antisymmet-
ric modes w£’+1'L of a QWW are plotted for g, = 0
in dependence on the electron density for different bare
nonparabolic potentials. It is seen from all figures that
the nonparabolicity causes a deviation of the branch w]®
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FIG. 11. Dispersion relation of the antisymmetric intersub-
band plasmons wL+1 L at g = 1 x 10° cm™! in dependence
on the electron densnty for different imperfections of the bare
parabolic confining potential: (a) A4 = 0.05AQ/ls, As = 0
and (b) Ay = —0.05 AQ/l%, A = 0.003 33 AQ/1%.
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from Q and results, in general, in an increasing mag-
nitude of w}® with increasing electron density. In the
case that the quartic term is positive (44 > 0), the
fundamental mode w)® is shifted above 2 and increases

monotonously with n;pgg. The branches w2! and wzz

are also shifted to higher frequencies in comparison to
the perfect parabolic case and decrease more rapidly with
n1pEg as for Ay = Ag = 0. But in this case, the branches
w?2! and w3? appear with a negative depolarization shift,
i.e., an “antiscreening” of the corresponding transitions
takes place. For Ay < 0, the modes w}® and w?' are
shifted to smaller frequencies at their low-density start
point, but wgz is shifted to higher frequencies in compar-
ison to the case of a bare perfect parabolic potential. The
modes w2! and w3? again have a negative depolarization
shift. The curve w!® in dependence on nipgg shows a
broad minimum slightly below the critical density, where
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FIG. 12. Frequency of the mode w;’ (intersubband reso-
nance) at g = 0 in dependence on (a) the electron density in
the QWW with different confining potentials; (1) bare perfect
parabolic potential (heavy solid line), A4 = A¢ = 0 and bare
nonparabolic potentials, A4 > 0, As¢ = 0 (thin solid lines); (2)
As = 0.058Q/1%; (3) As = 0.1AQ/l§ and Ay < 0,46 > 0
(dashed lines); (4) A4 = —0.05 AQY/lh, Ae = 0.003 33 AQ/1S;
(5) As = —0.15Q/1l§, Ae = 0.0075 k2/1%; and (b) in depen-
dence on the nonparabolicity parameter A4 (Ae see Fig. 3)
for three different densities (see Fig. 3).
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the second subband becomes occupied. Figure 11 shows
the corresponding dispersion curves for g, # 0. For the
mode w.%, nearly the same happens as for g, = 0. More
dramatic is the effect of imperfections of the parabolic
confining potential on the modes w2'* and w3**. Besides
of appreciable frequency shifts, the existence regions of
these modes become shifted drastically. This becomes
obvious from Figs. 8(b), 11(a), and 11(b), where the
mode w1271+ exists for A4 > 0 only in a very small density
range. But this range increases with increasing A4. To
see the influence of the nonparabolicity on the fundamen-
tal mode w.® more explicitely, we have plotted its depen-
dence on the density for the different potentials and its
dependence on the nonparabolicity parameter in Fig. 12.
Figure 12(a) shows very clear the deviations from the spe-
cial situation, where Kohn’s theorem is valid. In general,
it is seen that nonparabolic confining potentials influence
the collective intersubband transition w},o in such a man-
ner that its frequency increases with increasing densities
in the general tendency. From Fig. 12(b) it becomes ob-
vious that for A4 > 0, the frequency of the mode %1]0
increases with increasing A4, but for A4 < 0, the behav-
ior of w!® on A, depends on the electron density. If our
calculation would be an exact procedure, i.e., it would be
possible to include all the exchange-correlation processes
in the ground state, as well as in the response and include
all modes, all the curves plotted in Fig. 12(b) must be
identical at A4 = 0.

Our calculations show how the free oscillating states
(modes) of the nonparabolic QWW shift their frequen-
cies in dependence on the type and strength of the non-
parabolicity. As long as the confining potential is sym-
metric, all antisymmetric modes become dipole active.
FIR transmission spectra show all these antisymmetric
collective intersubband resonances even at q, = 0, i.e.,
for perpendicularly incident light without a grating cou-
pler. Hence, the mode spectrum contains for parabolic
and nonparabolic QWW?’s the same modes, shifted only
slightly, i.e., the mode spectrum is universal, but the FIR
spectrum of a nonparabolic QWW shows peaks at w}°,
w3, w3 w2, ... in difference to the FIR spectrum of a
parabolic QWW, which has only the fundamental peak
at wl®.

It is seen that deviations from the perfect parabolic
potential have an appreciable influence on the Q1D plas-
mons. These imperfections cannot be the source of ad-
ditional modes. But the nonparabolicity of the confining
potential, which breaks Kohn’s theorem, shifts the mode
frequencies, has a measurable influence on the range of
existence (w, ¢z, n1pEc) of a definite mode and makes all
the antisymmetric modes dipole active, i.e., they become
observable with perpendicularly incident FIR light.

V. SUMMARY

In this work, we have studied the changes that dif-
ferent types of nonparabolicity of the bare confining po-
tential induce on the dispersion relations of plasmons in
quantum-well wires. Assuming spatial symmetric correc-
tions to the bare perfect parabolic potential described by
terms of fourth and sixth power, two types of modes oc-
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cur, symmetric modes connected with collective electron
transitions between states having the same parity and
antisymmetric modes connected with collective electron
transitions between states with opposite parity. For a
bare perfect parabolic potential, the self-consistent cal-
culations of the ground-state and the response show that
the so-called fundamental or Kohn’s mode wzl,o has a fre-
quency identical with the bare harmonic oscillator fre-
quency, independent from the electron density, if the
wave vector is zero. In this case, according to the gener-
alized Kohn’s theorem, this mode is connected with the
center-of-mass motion of the confined electrons, all the
other modes are connected with the relative motion of the
confined electrons. Finite wave vectors and nonparabol-
icity of the bare confining potential of the QWW?’s break
Kohn’s theorem and hence, deviations in the spectrum
of the Q1D plasmons occur.

(i) For small electron densities, the nonparabolicity can
shift the mode w;O to larger and smaller frequencies in
comparison to the bare harmonic oscillator frequency .
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(ii) With increasing density, the frequency of the fun-

damental mode wr}o increases.
L+1,L

(iii) The higher modes w, are also shifted to higher
or smaller frequencies in dependence on the shape of the
nonparabolic corrections.

(iv) There are no additional modes as well as mode
crossing or anticrossing behavior, induced by the non-
parabolicity of the bare confining potential.

Our self-consistent calculations of the ground state in
the Hartree approximation and the response in the RPA
explicitely show the cancellation of the corrections to the
single-particle energy spacing by the Hartree potential
(€2 — Q40) with the depolarization term of the response
A}l,o.
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