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Geometrical-confinement effects on excitons in quantum disks
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Excitons confined to Qat semiconductor quantum dots with elliptical cross sections are considered
as we study geometrical effects on exciton binding energy, electron-hole separation, and the resulting
linear optical properties. We use numerical matrix diagonalization techniques with appropriately
large and optimized basis sets in an effective-mass Hamiltonian approach. The linear optical sus-
ceptibilities of GaAs and InAs dots for several different size ratios are discussed and compared to
experimental photoluminescence spectra obtained on GaAs/Al Gap As and InAs/GaAs quantum
dots. For quantum dots of several nm in size, there is a strong blueshift of the luminescence due to
geometrical-confinement effects. Also, transition peaks are split and shifted towards higher energy,
in comparison with dots with circular cross sections.

I. INTRODUCTION

The development of clever fabrication techniques in
semiconductors has brought the reduction of the ef-
fective dimension of electronic states from their usual
three-dimensional character in bulk materials, to "zero-
dimensional" states in quantum dots. The quantum ef-
fects of these lower-dimensional systems have attracted
much attention in recent years, due in gart to possible ap-
plications which include electronic devices based on par-
allel and perpendicular transport, quantum-well lasers,
and optical devices. Two-dimensional quantum-well or
quantum-film structures, which provide confinement in
one space dimension, have been well investigated, and
quantum exciton effects observable even at room tem-
perature have been studied. The confinement of excitons
has also been shown to result in very large electro-optical
shifts of the absorption peaks, producing the so-called
quantum-confined Stark effect. '

In quasi-zero-dimensional quantum dot systems, the
additional quantum confinement dramatically changes
the optical and electronic properties, compared to those
in higher-dimensional structures, as the whole single-
particle spectrum is now discrete. Correspondingly, the
excitonic spectrum is expected to be strongly affected.
The properties of excitons confined in quantum boxes
were first analyzed theoretically by Bryant, who used
variational and configuration-interaction representations.
Later on, excitons and biexcitons were studied, ' as well
as excitons in the presence of a strong magnetic field,
using numerical matrix diagonalization schemes.

On the experimental side, interband optical spectro-
scopies, such as photoluminescence, have been used to
study various quantum dot systems —such as those pro-
duced in the GaAs/Al Gaq As structure, with its band-
gap modulation. More recently, fascinating studies on
so-called "self-assembled" quantum dots, such as InAs
and In Gai As clusters on GaAs substrates, have also
been reported. 2 Most of the theoretical investigations

are based on the assumption that the shape of quan-
tum dots is a simple sphere or box, having a great deal
of symmetry, both because it simplifies calculations and
because quantities such as the exciton binding energy
scale very well with the overall dot size. However, real-
istic dot shapes are probably much less symxnetrical, as
well as being typically fIat and more two dimensional in
shape

Here, we consider the effect that less symmetric struc-
tures, namely fIat quantum dots with elliptical cross sec-
tions, or "elliptical quantum disks, " have on the exci-
tonic optical properties. To date, little work has been
reported on the properties of nonsymmetric quantum
dots, probably because this system has more compli-
cated solutions. ' Our studies within the effective-mass
approximation yield some very interesting consequences
of the elliptical asymmetry: apart from the expected
blueshift of the first excitonic transition for dots with
the same overall area but different axes, we find a rear-
rangement of the oscillator strength which characterizes
individual dot shapes. In particular, since elliptical cross-
section dots have less symmetry, some of the accidental
degeneracies in circular dots giving rise to stronger and
fewer peaks in the imaginary part of the optical suscep-
tibility are split. This gives rise to a more monotonically
decreasing peak intensity for higher-energy features in
the susceptibility of noncircular dots. This behavior can
in turn be used to structurally characterize specific dots
from their photoluminescence excitation response.

The remainder of the paper is organized as follows.
We introduce the theoretical method in Sec. II. Here, we
outline the effective-mass Hamiltonian approach and in-
troduce the various basis function representations, which
allow us to use numerical methods to calculate the eigen-
values and eigenfunctions of excitons in these quantum
dots. A great deal of care is needed to assure that the so-
lutions obtained are well behaved and converged with a fi-
nite computational effort. We discuss in this section how
this is accomplished. In Sec. III, we discuss the main ge-
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ometrical effects on various exciton characteristics, such
as the exciton binding energy, electron-hole separation,
and the linear optical susceptibility. Solutions for exci-
tons in quantuIn dots with both circular and elliptical
cross sections are shown, using large enough basis sets,
and a set of optimized basis functions, which improve
the accuracy of the solutions at a modest computational
cost. Finally, we summarize our conclusions in Sec. IV.
The Appendix contains an outline of the derivation of
the Coulomb matrix element with these basis functions.
The analytical expression presented there greatly simpli-
fies our calculations.

4v(x) = ( ~,) e ~'H~ (n~x), (4)

nM = QM~ /5, and

52Vr2
E, = (Nx+-)Ru +(Ny. +-)Ru„+ . (5)

The Hamiltonian of the center of mass is obviously a two-
dimensional harmonic oscillator in the XY plane, with
wave function il)'iv iv = P~ (X) P~ (Y), and energy
E, , where

II. THEORETICAL METHOD

For concreteness, and to simulate recent quantum dot
systems, i we assume quantum dots with an oblate
spheroidal profile where the lateral xy confinement is
much weaker (or larger size) than that along the z di-
rection. Correspondingly, the electrons and holes are
assumed confined in an effectively two-dimensional po-
tential with a constant z profile, V. We assume V to
be a hard-wall confinement potential, so that the z com-
ponent of the energy is 5~or /2mL„with L,L„))L, .
I'urther, we approximate the single z wave function in the
problein as a b function centered at the origin, so that
the problem can be described by a separable Hamiltonian
in two dimensions. The lateral confinement is modeled
via harmonic potentials with two difFerent &equencies u
and u» which yield the elliptical cross sections of the dots
with axes ratio given by L /L„= gu„/ur, for both elec-
trons and holes. The smoothly varying potential should
mimic well the situation in experiments where the dots
are effectively embedded in a dielectric matrix. ' 2,

The efFective-mass parabolic-band Hamiltonian for an
electron-hole pair is given by H = H, +Hh +H, h, , where
the subscripts e and 6 represent electron and hole, and

2

+ —m, u x + —m, ~„y, +VI' 1 2 2 1

2m 2
'

2

H,
P 1 2 2 1M~X + —M~ Y +Vz

with a similar expression for the Hamiltonian of the hole,
Hh. The Coulomb interaction between electron and
hole is screened by a background dielectric constant e,
so that H, h = e2/er, —

We rewrite the Hamiltonian into relative and center-
of-mass coordinates, described by r = r, —rh, and
R = (m, r, + mhrq)/M. The total and reduced masses
are given by M = m + m)„and p = m m)„/M, respec-
tively. The total Hamiltonian of this system can then be
written in the form H = H, + H, ~, with the expected
expressions

Here, N~ and %y- are quantum numbers for the center-
of-mass coordinate, and H~ is a Hermite polynomial.

The physics of the problem is determined to a great
extent by the ratio between the efFective Bohr radius,
a& ——h2e/ye, and the size of the dot, I, = gL L„,
where L, = QA/p~, . The strong confinement limit for
1. & a& is characterized by a weak electron-hole correla-
tion and by the Coulomb term being a small perturbation
of the single-particle confined-level energy. On the other
hand, the weak-confinement limit for I & a& reduces
asymptotically to the problem of a free two-dimensional
exciton for large I, where the Coulomb interaction dom-
inates the state of the exciton.

With this in mind, the effects of the Coulomb term
Hq in H, ~

——Ho + Hi, are treated by using the solu-
tions of Ho as the basis set in the diagonalization of H, ~.

The unperturbed Hamiltonian of the relative coordinate
Ho is also a two-dimensional harmonic oscillator, so that
the wave function of the interacting electron-hole pair
is described by a linear combination of wave functions,

(x)P„„(y), with the P's satisfying a siinilar
expression to Eq. (4), and correspondingly

E,'., = (n + —,') W + (ny + —,') Ru„+, , (6)
2p 2L~

where n~ and n„are quantum numbers for the relative
coordinate. (Notice the z confinement length for this
coordinate is 2L, .)

With this basis set, the interaction matrix elements
of the electron-hole pair can be calculated analytically
and expressed in terms of hypergeometric functions as
outlined in the Appendix. This analytical expression
greatly simplifies the calculation, as most of the com-
putational time is spent on the calculation of the ma-
trix elements rather than on the diagonalization of the
matrix. The resulting Hamiltonian matrix is real, sym-
metric, and sparse. The energies and eigenfunctions are
calculated &om the numerical diagonalization of the raa-
trix, for a given size of the basis. The diagonalization is
repeated with larger basis sets until the desired conver-
gence is achieved (see below).

and A. Circular limit

P 1 22 1 222 e2

Hre] — + p& x + pMy g +&' (3)
2p, 2 2 " egx2+ y2

As an additional test of our numerical procedures, we
use the resulting radial equation of the relative Hamilto-
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nian for the circular dot case u~ = ~„=u, which is then
given by

P 1 2 2 e2 2

arel — + P~
2p 2 cT

The resulting one-dimensional equation can be directly
integrated numerically, as reported by Que. ~ Further-
more, the problem can also be solved using a harmonic
basis set of radial states as those described above. For a
large enough basis set, this approach yields the same re-
sults as those obtained by direct numerical integration. 7

Notice also that the large dot limit (tu 1/I 0) is
easily solved as an expansion in terms of the Laguerre
polynomial-based solutions of the free exciton problem.
This allows one to obtain very accurate solutions for
1/L = 0 with little computation. These results, more-
over, allow us to test the convergence of the irreducible
two-dimensional nonsyminetric problem (~ g ~„), as
we discuss below.

B. Optimized basis

Solutions for these elliptic cylinderlike quantum dots
are also carried out using an optimized basis set, as
the solution method discussed above requires a rather
large number of states for full convergence, especially
for large dots. Here, one notices that for large dots it
is the Coulomb interaction that dominates the exciton
states (since confinement becomes less important). Cor-
respondingly, we choose a set of optimized frequencies 0
and 0„,which are larger than the original frequencies w

and u„. The values of the 0's are determined variation-
ally, and allow one to consider H-matrix systems that are
much smaller than those required when one uses the u
basis. The physical reason for this is that as the dot size
increases, the exciton size converges to a& (the radius of
the free two-dimensional exciton), and one needs a large
number of w states to describe the small-scale structure
of the exciton.

Notice that the harmonic 0 basis allows also an easy
calculation of the H-matrix elements in this case so that,
for example,

(n' n„' lHpln n„)ri = hA (n + -) + hAy(ny+. -) — (0 —u) )(n + -) — (0„—~„)(n„+-)

xb bY? I ill ~ 72 I ~YLy (0 —(u ) Qn (n —1)8, 2++(n +1)(n +2)h

nz(n& —1)b, „2+ (n„+ 1)(n„+2) b

Notice this reduces to the obvious diagonal matrix for 0 —+ u. This expression allows one to evaluate the Hamiltonian
matrix rather conveniently, even for this other basis set.

C. Exciton characteristics

The wave functions of the relative coordinate problem can then be written as l@) = g„a ln, n„), with
either the u or 0 basis states, which can be used to study various characteristic properties of the exciton system. For
example, the mean electron-hole separation r, is given by

(n*+ —,') Ia-. ,-.l'r.' = (@lr'l0) = ) . ~ (n~+ 2) +
pOy

" 2 pO

+—
2 pOy

g(n. + 2) (n. +1
2 pO

1)a„*+2„+Qn (n —1)a„* 2„a„
(n„+ 2) (n„+ 1) a* „+2+ n„(n„—1) a„* „2 a„.,„„

which gives an idea of the exciton size.
One can also use the diagonalization results to calcu-

late directly measurable properties, such as the linear op-
tical susceptibility of the quantum dot/disk. The linear
optical susceptibility is proportional to the dipole matrix
elements between one electron-hole pair j state and the

vacuum state, (OlPl1)~. . These in turn are proportional
to the interband matrix element, p, , which is the ma-
trix element formed between an electron and hole in the
conduction and valence bands, respectively. The form
of the dipole matrix. elements for a single exciton in the
envelope function approximation is given by '
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2

I(oI&l»l' = ls-I'14(o)l' ff«». ~.) ~~.~~.

(10)

I@(0)I' = (~/~~) v'~-~.

x ) (2" +""n !n„!) '~ a„„

where the a coeKcients are obtained from the diag-
onalization of the relative-coordinate Hamiltonian, and

2

0 (X., Y.)dX.dY.

= 47r hNy! Ny! t7rMgw my 2 «+

x (N~/2)! (Ny/2)! j (12)

Here, the wave function for the relative coordinate is
given as above, so that

heavy-hole excitons in GaAs quantum dots with ellip-
tical and circular cross sections. The solutions can be
calculated using a sufficiently large basis set and/or an
optimized basis set, as described above. Results obtained
from these methods and difI'erent basis sets are shown
in Fig. 1. The exciton binding energy and normalized
electron-hole separation are shown as a function of quan-
tum dot size ranging from 2 to 100 nm.

In the insets, results are shown for circular dots, with
dot, dashed, and dot-dashed curves showing results for
basis sets with M = 30, 100, and 500 wave functions,
respectively. Here, states with n and n' from 0 to 29,
99, and 499 are used in Eq. (7). (The matrix size is
obviously M x M, and is diagonalized by a QL decom-
position technique. ) The results of the one-dimensional
radial equation in the weak-confinement limit are shown
with the solid line for comparison, and represent the ex-
act quantity (both Eb and r, ) for large l. The transi-
tion between the strong- and weak-confinement regimes
comes appropriately when the size of the quantum dot is

with N~ ——even and Xy. ——even, for nonzero matrix
elements. Finally, the dipole matrix elements have the
form

I &01&l» I' = 4I&-I' —N~' Ny'

x 2 + (N~/2)! (Ny /2)!

)-(2 .+ .„.!ny!)
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The linear optical susceptibility can then be calculated
from

10
20

I

40

( ) = ).I(01&II) I'(~ —E —&I') ' (14)
1.0

L, I'nm)

I

1.0 g

where I' is introduced as a phenomenological level broad-
ening constant.

Notice also that since experimental systems are typi-
cally configured to analyze a large collection of nearby
dots, one should, in principle, be concerned by the eR'ect
of local fields. However, in typical experimental systems
so far, where the separation between dots can be several
microns, it is valid to assume that dots are basically in-
dependent. In the case of higher-dot densities, however,
the dynamical response of the system may be affected by
the local fields produced by neighboring dots, and one
can obtain that response from the individual microscopic
polarizabilities. ~

III. R,ESULTS

As an interesting example of a typical system, we use
parameters to describe GaAs quantum dots, so that the
dielectric constant is e = 13.1, and the carrier masses
are m, = 0.067rno, and (the heavy-hole eff'ective mass)
mhh ——0.37mo. We present the numerical results for

0.8
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0.4-
O. Z—

0.0
p

by

2p 40 6p 8p 1p(7
L (nm)

4y 4@~ 4+ 4@yg~

0.0 I

20
L (nm)

I

4C)

FIG. 1. GaAs quantum dot. (a) Exciton binding energy;
(b) normalized electron-hole separation as a function of the
quantum dot size for elliptical quantum dots with several size
ratios in the xy plane. L:L„shown are 1:1 to 2:1, and 3:1,
with diamonds, pluses, and triangles, respectively. Insets:
Solid, dot, dashed, and dashed-dot curves are the results for
the circular case and M = 30, 100, and 500 basis sets, re-
spectively. Diamonds show results for the M = 400 0 basis
set with optimized frequency, while triangles are for M = 400
in the original w basis. Inset in (a) also shows (scale on the
right) the value of Eo = 5A used in the calculation.
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near the effective Bohr radius, L —a& ——12.2 nm. Notice
that it is for L = 15 nm that the M = 100 curve (dashed)
departs from the exact result (solid line), and that one
requires larger M values as L increases to achieve better
convergence. The M = 500 basis set (dot-dashed curve)
yields the convergent solutions with acceptable accuracy
and execution time for a larger range of L values (( 60
nm). Similar behavior can be seen in the electron-hole
separation in the ground state [inset in panel 1(b)].

The inset in 1(a) also shows the difFerence between the
u basis and 0 basis results. Diamonds show results for
the M = 400 basis set with optimized 0 frequency, while
triangles show results for M = 400 with the original u
basis set. For both cases, the states with n, n&, n ',
and n„' from 0 to 19, respectively, are included for the
M = 400 basis set [see Eq. 8)]. These states are used
as the basis set for elliptical quantum dots. The results
with the optimized basis set are essentially identical to
the convergent solutions. The optimized frequencies used
are also given as a function of dot size in the inset 1(a)
(with Eri = hA) as a long-dashed curve. For dot sizes 30
nm and larger, the optimized frequency 0 converges to
80 meV, corresponding to a dot size I ri = gh/pO = 4.1
nm. This latter value is close to the two-dimensional
effective Bohr radius (a&D = a&/2~2 = 4.3 nm), as
one would expect. Notice that for most of the range of
L's shown, one is in the weak-confinement regime, where
L & a& . This is why the optimized basis set gives very
reasonable results with minimal effort. It is also inter-
esting that the agreement continues also for smaller dot
sizes, completing the range from 2 to 100 nm. The ex-
citon ground state binding energies and the normalized
electron-hole separation obtained with the optimized 0
basis approach are basically exact to the fully converged
results.

The main panels in Figs. 1(a) and 1(b) show the geo-
metrical confinement effects of excitons with several dif-
ferent size axis ratios in the xy plane. The plots show
results versus L = QL I„, the efFective size of the dot,
for ur /~„= 1, 4, and 9 (L„/L = 1, 2, and 3) with di-
amonds, pluses, and triangles, respectively. The exciton
binding energy increases for a small L as the axis ratio is
increased; meanwhile, the normalized electron-hole sepa-
ration is basically unchanged, except for small I values,
where the confinement energy dominates. Notice that
as the axis ratio increases, the single-particle and exci-
ton states move up in energy but the binding energy in-
creases. This increase in binding energy for the elliptical
dots is then related to the increase of the Coulomb en-
ergy relative to the confinement contribution to the total
energy. (In fact, since r, /L is basically unchanged with
geometry, the Coulomb interaction energy is nearly con-
stant in all these cases. )

To better explore the geometrical confinement effects
on excitons, we show the linear optical susceptibility of
the GaAs quantum disks with elliptical cross sections and
lateral mean size of L = gL L„=5 nm (Fig. 2) and 10
nm (Fig. 3). The dot thickness along the z direction is
kept constant at L = 3 nm, and several size ratios for
each axis in the xy plane are shown. We use here also
a value for the optical band gap of E'g = 1.51 eV. The

18C)0 2000
PHOTON ENERGY (rneV)

FIG. 2. Imaginary part of linear optical susceptibility for a
GaAs elliptic quantum dot with the same area but difFerent
axis ratios, as a function of frequency. Bottom trace is for a
circular dot, L = L„=5 nm. Upper two traces show results
for elliptical dots with size ratios L„:L = 2:1 (L„=7.0 nm
and L = 3.5 nm), and 3:1 (L„=8.7 nm and L = 2.9 nm),
respectively.

results presented here were obtained using the optimized
0 basis-set approach discussed above. Notice that since
this function represents all of the possible transitions of
this excitonic system, its features would be measurable
via photoluminescence excitation measurements. On the
other hand, the photoluminescence response would cor-
respond to the first (lower energy) feature in these traces,
associated with the ground state of the excitonic system.

Figure 2 shows the imaginary part of the linear optical
susceptibility as a function of frequency for a dot with

gL L„= 5 nm (a broadening of I = 2 meV is
used). The bottom trace is for a circular dot, so that
I = I„=5 nm. The upper two traces show results for
elliptical dots with a size ratio L„:L = 2:1 (L„=7.0 nm
and I = 3.5 nm), and 3:1 (L„=8.7 nm and L = 2.9
nm), respectively, all having the same mean size L = 5
nm. (Notice that although the peak heights are in ar-
bitrary units, the ratio between different peaks or traces

'I J60 t 780 ] 80G 'I 820 1840 1860
PHOTON ENERGY (meV)

FIG. 3. Same as Fig. 2 but for a size L = 10 nm.
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is real, refiecting the different dipole matrix elements in-
volved. ) One obvious difference among traces is that the
first transition energy shifts to higher values by 26 and
69 meV, as the size ratio changes &om 1:1to 2:1 and 3:1,
respectively. Notice that while increasing the size ratio,
the exciton binding energies increase &om 47 meV to 48
and 49 meV for each ratio. It is then clear that the larger
blueshifts are due mostly to the increasing confinement
as the disk becomes more elliptical, and not due to the
binding energy between electron and hole. In all the cases
shown, the transition involving the ground state of the
exciton is dominant, as the excited states appear only
with smaller oscillator strength. Notice further that for
the larger length ratio, the spectrum is understandably
sparser, as the levels associated with the narrow dimen-
sion are quickly pushed upwards in energy. Finally, since
the elliptical dots have lower symmetry, accidental de-
generacies are fewer and the transition peaks show nearly
monotonically decreasing intensities (unlike the circular
dot case). (Notice these all the susceptibility traces in-
clude transitions between difFerent center-of-mass states
up to the N~ ——Ny- ——10 levels. Ad.ditional N~ and Ng
values would yield higher-energy structure. )

Figure 3 shows also the imaginary part of the suscep-
tibility but for a dot size of 10 nm, and here with level
broadening of 1 meV. The first transition energy in the
circular quantum dot is 1.78 eV, while the values in the
elliptical dots are 1.79 and 1.80 eV, for ratios 2:1 and
3:1. The transition energies result here to be lower than
in Fig. 2 since the confinement is not as strong, reducing
the efFective gap energy. In this set of curves, the first
transition energy (involving the ground state of the exci-
ton) is shifted upwards, due to the increased confinement,
although the shift is not as large as in Fig. 2, since the
overall lengths are larger. The first excited state appears
split because the twofold degeneracy of the excited state
is broken as the dot becomes elliptical.

As dot size is increased, it is apparent that the geomet-
rical effects are not as prominent, producing only a small
shift of the spectrum of transitions. Incidentally, the on-
set of transitions for larger size dots (L 100 nm) com-
pares qualitatively well with experimental photolumines-
cence spectra in dots with similar disk geometry, where
features appear in the energy range 1.73—1.74 eV, for
dots with radius thought to be in the range 150—200 nm.
According to the experimental results, the additional
confinements give the observed blueshift, compared to
two-dimensional quantum-well exciton case. Similarly, a
blueshift appears due to the elliptical shape, although for
L = 100 nm they are only & 10 meV, as the size ratio
increases to 2:1 and 3:1.

As an example of the effects for difFerent materials,
Fig. 4 shows the imaginary part of the susceptibility
of InAs quantum dots with lateral mean size of 12 nm
and thickness of 2.8 nm having a dielectric constant
e = 14.6, m = 0.026mo, and heavy-hole efFective mass
mhh ——0.41mo. Here, the energy gap is taken as 0.43 eV,
and we also use the optimized 0 basis set to obtain the
results shown. The convergent optimized size, L~ ——10.5
nm, is close to the two dimensional efFective Bohr radius
(a& ——10.54 nm). In this case, the first transition energy

I

1060 )080 1100 1'120
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FIG. 4. Imaginary part of linear optical susceptibility for
InAs elliptic quantum dots with lateral mean size 12 nm
and thickness 2.8 nm (with I' = 2.0 meV), as a function
of frequency. The bottom trace is for a circular dot with

= L„= 12 nm. The upper two traces show results for
elliptical dots with a size ratio L„:L = 2:1 (L„=17 nm and
L = 8.5 nm), and 3:1 (L„= 20.7 nm and I = 6.9 nm),
respectively. Notice the similarity with Fig. 2.

shifts to higher values by = ll and 28 meV, as the size
ratio changes &om 1:1 to 2:1 and. 3:1, respectively. No-
tice the similarity with Fig. 2, although the energy scale
and size (12 nm) are completely difFerent here. This sim-
ilarity is due to the scaling of the problem in terms of
a&. For these InAs parameters, a& ——29.8 nm, so that
a&/L = 2.5, comparable to the value in Fig. 2 for GaAs,
where a& ——12.2, I = 5, and a&/L = 2.4.

IV. CONCLUSIONS

We have demonstrated that strong geometrical con-
finement effects appear on excitons in GaAs and InAs
quantum dots with elliptical cross sections. The solutions
have been obtained using sufIiciently large basis sets as
well as with an optimized basis set. The results obtained
with the optimized basis sets, such as exciton binding
energy and normalized electron-hole separation, are ex-
tremely close to the best converged results, and only with
a relatively modest computational efFort.

The linear optical susceptibilities are calculated for
several difFerent lateral size ratios of each axis (x and
y). Strong blueshifts in the susceptibilities are observed
as the size ratio is increased and the shifts due to the ge-
ometrical shape efFects are especially important for the
smaller dot sizes (( 25 nm). The shifts are due mostly
to the increasing confinement as the dot becomes more
elliptical, and not due to the interaction energy between
electron and hole. A splitting of the first few excited
states appears in the elliptical cross-section cases since
the symmetry-related degeneracy of the excited states in
the circular dot is broken. This also gives rise to a more
monotonic decrease of the peak intensities seen as the
energy of the transition increases.
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APPENDIX

The Coulomb interaction matrix elements of the electron-hole pair can be calculated analytically using the harmonic-
oscillator basis sets we use. With the basis set in Eq. (4), one can write

(
2 2

I e e pw
n* ny n+p ny

e x +y2
" " (2"'-+".+"'+"~ ' ~n ~n'n~. n~. n .ny. )

x dxdye- " "+"" '~

—OO —OO ~X +y/ 2 2

p(u
(Ai)

As the Hermite polynomials are represented by

n+ ~ n~ —2P
P! (n —2P)! (A2)

one can write,

1 I e e pQJ~
n~ ) ny n~~ ny

Q2 + g2 nr h

[ '. i2l [n*i2]
(( y (2~'. +~.+n'„+n„ I

~ ~
I

~ fq
—&/2 ) ).n&. n ~ ny ~ p

n=O P=0 p=0 b=O

(—1) +P+&+' n'! n !n'! n !
X

x' &' y y'

~'(n'. —2~)'P'(n* —2P) '~'(n' —») 'b'(n. —») '

n (+n~ —2n —2P"(") n (+ny —2y —2h

(
v

2 2n~( +n~ +ny( +ny 2' —2P—2 f 28

x dxdye-~"" *'+" "y'~ 1 n (+n —2' —2p n„(+n„—2p —2b

+~2 + y2
(A3)

Here, the integral factor,

I = dxdye & + 1 n (+n —2' —2P n (+n
y p

+~2 + y2

can be transformed to polar coordinates, so that

2' OO

I = —(ar cos g+ bv sin g) 1+m cos (p sin p
0 0

i &('+, ')&(, ) (m+i i+m
I'('+ + 1) ( 2 2 a ) (A4)

where a=((u /5, b= pu„/5, 3 =n i+n —2n —2P, m=n„i+n„—2p —2h, and n= z(i+m+1).
The interaction matri~ elements can be expressed in terms of hypergeometric functions as
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(
2

I / e
n~ ) ny n+p ny

X + g

I:~'. /21 I~-/~] ~"~/ ] l~v/2]
O' s

(
s +sy I

/ /
I t f)

—1/2 ) ) ) )
n=O P=0 p=0 /=0

( 1 )yy 2y~+yy —2'9

(A5)

f~y~ '
cr!(n' —2n)!P!(n —2P)!p!(n' —2p)!8!(n„—2b )!

1 1 1 &yxE —(s„ + 1) —p —8, —(s + s„ + I) —rl; —(s + s„) —rl + I; 1—

x r —,'(..+.„+I) —„r —,'(..+I) ~ p
x« —,'(s„+I) —q —8 /r —,'(s +s„)—rl+ I

where I" is a hypergeometric function, rl = n+ p+ p+ b, and the extra constraints of s„=n„+ n'„= even, and
8 = n + n = even, are required for this matrix element to be nonzero. Use of this equation in the calculation of
the Coulomb matrix elements was very important in the solution of the problem, as it reduces the computation time
substantially.
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