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The biexciton (excitonic molecule) is theoretically studied in a one-dimensional (1D) tight-binding
model having both long-range Coulomb interactions and on-site interactions. We solve the four-
fermion problem by the numerical diagonalization method for finite systems. The effect of particle
correlation over the lattice-constant length scale is shown to be essential, which makes both of the
conventional variational or Heitler-London approximations and the continuum models inadequate.
In the phase diagram for the biexciton state, a crossover in the response to an increase in the long-
range interaction is found to emerge, and occurs concomitantly with the Frenkel-Wannier crossover
for single excitons. The dependence of the biexciton binding energy on the electron-hole mass ratio
is also found for varying strength of the Coulomb interaction, where the behavior drastically differs
from those in 2D or 3D continuum models. Two-photon absorption spectra are also obtained.

I. INTRODUCTION

The biexciton (or excitonic molecule), a bound state
of two electrons and two holes, provides an interesting
many-body problem, since a biexciton may be thought
of as a “positronium molecule” or a hydrogen molecule
with variable electron and hole masses realized in semi-
conductors. The analogy with the positronium molecule
for two Wannier excitons has resulted in a number of
studies to clarify its nature.l™3

Conventionally, however, a biexciton is regarded as a
bound state of two bosons (Wannier excitons), but this
picture is too crude for an obvious reason: When two
excitons are bound into a biexciton, we are faced with a
four-fermion problem, with the correlation effect on the
length scale of the lattice constant, and a bosonic picture
of the biexciton where the fermion degrees of freedom are
ignored cannot capture the binding mechanism. We have
to instead look into the way in which two electrons and
two holes are reshufled. This should be important es-
pecially in evaluating optical properties, since they are
determined by the dipole matrix elements between biex-
citon states and single-exciton states, which are in turn
sensitive to the wave function. As we shall see, the de-
formation of the biexciton wave function from a superpo-
sition of two excitons does indeed enhance these matrix
elements. Thus, it is imperative to treat the biexciton as
a composite of four fermions. To the best of our knowl-
edge, there has been no theoretical study of the biexciton
from this viewpoint, although there exist some studies of
the biexciton in terms of the “effective exciton-exciton
interaction”* as we shall mention later.

Four-fermion approach also enables us to separately
examine the electron-electron (or hole-hole) repulsion
and the electron-hole attraction. The repulsion and at-
traction are different in magnitude, in general, so that it
is necessary to study the formation of a biexciton as a
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function of their ratio.

Another strong motivation for the present study is the
importance of working with lattice models. In a previous
paper on a single-exciton problem,® we have shown that
the exciton should be modeled on a discrete lattice, for
which we can incorporate the intra-atomic interactions
on top of the long-range Coulomb interactions, while con-
tinuum models have to make cutoff procedures. This is
particularly important in one-dimensional systems, since
the lower the dimensionality, the more the exciton wave
function becomes compact and the behavior of electrons
and holes on the atomic length scale becomes essential.®

From the single-exciton study on a lattice, a unified
picture for the crossover between the strong-coupling
(Frenkel) and weak-coupling (Wannier) regimes has in-
deed emerged. Namely, when we increase the strength
of the long-range interaction relative to the intra-atomic
one, a Frenkel exciton expands while a Wannier exciton
shrinks. It becomes an intriguing problem to ask how
this Frenkel-Wannier crossover manifests itself in biexci-
tons. We shall show that the crossover does appear in
biexcitons in that a long-range interaction prevents the
formation of a biexciton in the Wannier regime, whereas
the long-range part helps its formation in the Frenkel
regime. Further, the exciton transfer processes via elec-
tromagnetic dipole-dipole interaction are tractable only
in lattice models, which provides another necessity to
adopt lattice models. ~

In this paper, we focus on the one-dimensional (1D)
problem. The reason is twofold. First, there is a class
of 1D semiconductors, e.g., o-conjugated semiconducting
polymers such as polysilane, where 1D excitons coupled
weakly to phonons are realized as opposed to the strong
electron-lattice coupling as in polyacetylene. Quantum
wires in semiconductor structures are also interesting.
We must note, however, that they can only be regarded
as 1D in terms of the excitonic properties when the width
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of the wire is made smaller than the size (effective Bohr
radius) of an exciton (~ 100 A for GaAs).”®

Second, an exciton is more tightly bound in 1D (Refs.
5 and 7) than in higher dimensions, so that the strong
correlation effect in the composite four-fermion problem
will become more pronounced. We shall confirm this by
comparing the 1D result with those in higher dimensions.

Thus, the aim of this paper is to present a unified pic-
ture of the biexciton on a 1D lattice that encompasses
both the Frenkel and Wannier limits. For this purpose,
we employ a tight-binding lattice model with long-range
and on-site interactions, which is solved by a numerical
diagonalization for finite systems.

In doing so, we also look into the validity of con-
ventional continuum models and the applicability of
the Heitler-London and/or variational approximations
around the Frenkel-Wannier crossover. One notable work
is by Bényai et al.,® who studied the biexciton in a 1D
continuum model using the effective-mass approximation
and the Heitler-London scheme in terms of an “effective
hole-hole potential,” to obtain the binding energy as a
function of the ratio of the electron and hole masses. Sev-
eral approximations are involved there, however, and we
reexamine the problem quantitatively with a numerical
diagonalization method.

This paper is organized as follows. Section II describes
the 1D lattice model. Stability of a biexciton is studied in
Sec. III in terms of the biexciton binding energy and the
hole-hole density correlation to obtain the phase diagram.
Dependence of biexciton properties on the electron-hole
mass ratio is also discussed and the deviation from the
conventional biexciton picture is clarified. In Sec. IV, the
optical response of the biexciton is investigated in terms
of the two-photon absorption process. Conclusions are
given in Sec. V.

J
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FIG. 1. The model employed in the present study.

II. THE LATTICE MODEL OF BIEXCITON

A. Hamiltonian with long-range and on-site
interactions

We employ the model with long-range interac-
tions (electron-electron and hole-hole repulsion and the
electron-hole attraction) on top of the on-site interaction
(the interaction within a unit cell), as depicted in Fig.
1. We consider two electron-hole pairs (two electrons in
the conduction band and two holes in the valence band),
where each pair is assumed to be a spin singlet, since
we consider photoexcited pairs. We further assume that
the two holes have antiparallel spins, since otherwise the
bound states of the four fermions are not formed, due to
Pauli’s principle. Hence, if we neglect the electron-lattice
coupling, the model Hamiltonian is expressed as®

H=—t. Z(ahqoaw—}—Hc)—ch(cl+1ac,a+Hc)+EOZc Cio

‘1(7

t t
E U,Ja acha,cg,:+ E Vij (a awaw,aﬂ,:+cwcwcw,cw

i,3,0,0'

1,5,0,0'

_Vd Z (az+1,acz+1,—aci,—a'aia + HC) y (1)

1,0

where aw (c ,) creates an electron in the conduction
band (a hole in the valence band) with spin o at site
i, te (tn) is the transfer energy of electrons (holes), and
€0 is the energy difference between the two orbitals from
which conduction and valence bands arise. We assume
the same sign for t. and ¢, (as appropriate to a semicon-
ductor with a direct gap at I'). The attractive electron-
hole interaction between the sites ¢ and j is denoted by
U;;, while V;; represents the repulsive electron-electron
and hole-hole interactions.

At large distances U;; should behave like 1/|¢— 3|, since
the screening effect is negligible for a system with few
electron-hole pairs. To take care of the localized nature
of Wannier functions, we have in addition considered the

intra-atomic energy when an electron and a hole come
to the same unit cell, which we denote by U;; = Uy and
Vii = Vo. Thus, we end up with

L= { U (i =3)
0o ={ Ot 7 @)
v, = { Vo (i = 3)

s={ R (7 )

where physically Uy > U; > 0,Vo > V3 > 0, and we
assume V; = U;j for simplicity. Since the intraband in-
teractions should be stronger than the interband ones,



8982

we have Vy > Uy. Uy, defined as the energy required to
put two carriers in the same unit cell, is naturally finite.
This is in sharp contrast to the continuum models, in
which we have to take care of the 1/r singularity by such
tricks as a finite cutoff in the interaction.”® Hereafter the
lattice constant is chosen to be the unit of length and we
set # = 1. We also take Uy = 1 as a unit of energy below.

The last term in Eq. (1) represents the transfer of an
electron-hole pair from site to site, which comes from the
electromagnetic dipole-dipole coupling between atoms,
and the value of V; is determined by a corresponding
Coulomb integral. Thus V4, which induces a center-
of-mass motion of the exciton, increases the bandwidth
of the exciton:!° an exciton becomes immobile in the
Frenkel limit when we neglect this term.

In fact, the effect of V; on the biexciton formation is
of distinct interest. For a single-exciton, an introduction
of V; increases the exciton bandwidth'® but makes the
wave function for the relative motion of electron and hole
more compact.!! The former effect will favor the forma-
tion of a biexciton, while the latter will be unfavorable.
Thus, we must look into these competitive effects of V
in the formation of a biexciton. This is another strong
reason why we have to treat the four-fermion problem on
a lattice rather than on a continuum.

B. Numerical diagonalization

For a single exciton in a finite 1D system of length NV,
the Hamiltonian is expressed as a matrix of dimension
N. In this case, we employ Householder’s method for
the diagonalization. We have checked that the size of
the system is large enough by expanding the sample size
until physical properties become size independent. The
rate of convergence depends on the value of the param-
eters: larger sample sizes are required for weakly cou-
pled excitons. For instance, while v < 100 suffices for
(te + tn)/Uo = 0.1, N ~ 500 is required to make all the
physical properties converge for a larger (te+t4)/Uo = 2.

For two electrons and two holes, the dimension of the
Hamiltonian matrix becomes N3. We take the system
size of N = 81 (N3 ~ 5.3 x 10°) with periodic bound-
ary conditions, and diagonalize the Hamiltonian (1) with
the Lanczos method. The system size is large enough to
attain a convergence of the physical properties when the
electron-hole coupling is strong enough [(te+t4)/Us < 1].
Even in a weaker-coupling case [(te + t5)/Uo ~ 0.5], the
size of a biexciton remains of the order of ten lattice con-
stants (see Sec. IV), so that N = 81 is large enough for
accurate eigenvalues. On the other hand, the correlation
functions, which reflect tails of the wave functions, re-
quires N much larger than the size of an exciton, so that
the correlation functions may contain some finite-size ef-
fect.

In accordance with the terminology for the strongly
correlated electron systems, such as the Hubbard model
in the literature, we shall use the exact diagonalization of
finite systems as exact results to distinguish from approx-
imation schemes, such as the Heitler-London approxima-
tion described later.
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For finite systems, the long-range Coulomb interaction
must be treated with care. A way to apply the periodic
boundary condition would be to count the Coulomb in-
teraction between particles multiply, i.e., to include the
interaction with the mirror images. This would mimic a
finite concentration of excitons, and is somewhat differ-
ent from the weakly excited electron and hole system. To
concentrate on the two-exciton problem, here we intro-
duce a cutoff in the interaction range at half the system
size. This is allowed because we are interested in bound
states of excitons and the system size considered is con-
siderably larger than the spatial extension of the bound
states.

III. PROPERTIES
OF SINGLE-EXCITON STATES

Before presenting the biexciton problem, we recapit-
ulate the properties of one-exciton states in the present
model.5!! For the system with one electron and one hole
only, the repulsion between the like particles, V;;, is irrel-
evant. Since we consider only a spin-singlet electron-hole
pair created by photoexcitation, we can omit the spin
indices also.

A. Excitons with finite-range interactions

If we truncate, for heuristic purposes, the interaction
U;; at a finite range r., the single-exciton problem allows
algebraic solutions. The number of bound states is at
most (27.+1). For the nearest-neighbor interaction (r, =
1), the lowest bound state is expressed as®

1) = | Y alel + €Y wliilalcl | o), (4)

i#j

where « is the largest positive solution of the cubic equa-
tion,

zyr® + (2% — y)K? + (z + zy)k — 2% = 0, (5)

withz = t/(Uo+2Vya),y = Uy /(Uo+2Vy),and C = t/(t—
Uik). Here, t = te + tp, which is inversely proportional
to the reduced mass of an exciton. The binding energy,
E4, is given by

By = —t(k + 1/K). 6)
The first excited exciton state is given by!!

|3y = Al=l(ale! — alcf)|o), (7)
%]

which exists when A = ¢/U; < 1, with an energy

Ez = —t(A + 1/A). (8)

The second excited state exists when
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vt
Uy Up—t

> 0. (9)

The wave function and the energy have the same form
as Eqgs. (4)-(6) if x is taken to be the second largest
positive solution of Eq. (5). C becomes negative in this
case, which makes the relative motion of the electron and
hole possess two nodes as it should.

When we further simplify the model into on-site inter-
actions only, the wave function and energy of the ground
state reduce to

|@orsite) = 3~ ¢lilalel|0), (10)
i
Egrsite = —[(Up + 2Vy)? + 4¢%]*/2, (11)
with

_ [(Uo +2Va)? + 4£2)Y/2 — Uy — 2V
N 2t ’

3 (12)
This is the simplification adopted by Egri,'? whose re-
sults obtained by an approximate method coincide, some-
what accidentally, with the exact solution above.

In the one-exciton problem, Uy + 2V, cos k becomes a
relevant energy scale, where k is the momentum of the
center of mass of the electron and hole.!® This is con-
firmed from the fact that E(k) — —(Up + 2V cosk) in
the Frenkel limit (¢t/Us — 0). Thus, the presence of
V4 effectively increases Up in the single-exciton problem,
which also applies to the k& = 0 states that are relevant
to optical processes.

B. Wave function

The relative motion of electron and hole is described
by the electron-hole density-density correlation function,

a(r) = <pr+rp?> = <‘1’ > ali.aipcle ‘I’>
i ex 3

(13)
where ()ex denotes the expectation value for |¥), the
single-exciton wave function including both translational
and relative motions. Figure 2 shows a typical exact
result for the relative motion of electron and hole for the
long-range Coulomb interactions (Up = 2). Each wave
function exhibits an exponential decay at large distances.
In the case of the on-site model (U; = 0), a(r) is given
as

aemsite (1) — (1 - gz) £, (14)

C. Binding energy

We define the binding energy of an exciton by

Eg(Uo,Uy,t) = —[E(Uo, Uy, t) — E(0,0,t)]
—E(Uyp, Uy, t) — 2t, (15)
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0.8 — T T
t=2

FIG. 2. Wave functions for the relative motion of the elec-
tron and hole, a(n), for the lowest three states are shown for
t =1, and U; = 0.75.

which is the energy gained by turning the interaction on.
Figure 3 shows the exact result for Ep against ¢t. It is
seen that Fg decreases, but remains finite as the transfer
energy is increased. This property is shared by the model
with U; = 0,114 for which we have

Eg(Uo,0,t) = [(Uo + 2Va)? + 4t%)*/2 — 2t. (16)

Thus, an electron-hole pair is bound in 1D no matter how
small the interaction between the electron and the hole
may be, which is in contrast to higher-dimensional cases,
where bound states only appear above some threshold
strength of the interaction.

D. Frenkel exciton versus Wannier exciton

A closer look at wave functions reveals a conspicuous
difference between weak-coupling and strong-coupling ex-
citons. There is actually a continuous crossover be-
tween them over the whole parameter region,® while the
usual practice is to only mention the physical property

08}
0.6 T R e _U=0.75
© T T —
T N
T ...U,=0.5
Y N SOE
02l U,=0
0 02 04 06 08 1 12 14 16 18 2

t

FIG. 3. The binding energy of an exciton, as a function of
t for Uy =0, U; = 0.5, and U; = 0.75.
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of the Wannier (strong-coupling) limit or Frenkel (weak-
coupling) limit.2

For that we can look at the radius of the exciton, R,
defined by

R= <Z(’ —j)zpfp?> (17)

I ex

as a function of ¢t in Fig. 4, its U; dependence reverses as
t is varied: For ¢t < 1, an exciton expands with U;, while
an exciton shrinks with U; for ¢ > 1. Interestingly, the
curves for various values of U; cross each other near, but
not exactly at, a single point. In a previous paper,® we
have thus proposed that the change in the behavior of R
may be used to define the boundary between the Frenkel
and Wannier exciton regimes.

E. Bandwidth of an exciton

As mentioned in Sec. II A, V; determines the effective
mass (bandwidth) of an exciton.'?'5> We have calculated
the band dispersions for the exciton for a finite Vg = t./2,
with t.(= t, = t) = 0.1(a), 1(b) with a fixed U; = 0.75
in Fig. 5.

The width of the lowest exciton band always increases
with Vg, but its effect is more pronounced for the Frenkel
exciton, in which the electron and hole are bound too
tightly to move separately. The mobility of an exciton
is thus primarily dominated by V; rather than by ¢. In
the strong-coupling limit, t/U — 0, t. and t, in fact,
become irrelevant to the exciton bandwidth. Conversely,
the electron and hole are loosely bound in a Wannier
exciton, so that, in the weak-coupling limit ¢t/U — oo,
te and t; dominate the exciton bandwidth and V; exerts
little effect, since the probability of finding an electron-
hole pair on the same site is negligible. This is why V4
may be neglected in special cases (the Wannier limit or
continuum models). We should note that V; does not
affect the bandwidth of the odd-parity excited states for
which «(0) = 0.

U:=0

Radius of exciton

02 04 06 08 % 12 14 16 18 2

FIG. 4. The radius of the exciton, R, as a function of t for
U1 = 0, U1 = 0.5, and U1 = 0.75.
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Energy

-10¢} i

T X r X

FIG. 5. The band structure of exciton for vanishing V4 = 0
is shown for t.(= tn) = 0.1(a), 1(b) with a fixed U; = 0.75.

Another factor that determines the bandwidth is the
ratio of the effective masses between electron and hole,
o = m}/m}, = tp/t.. Here, we can consider 0 < o <1
without a loss of generality. The width of the lowest
exciton band is plotted as a function of o for t = 2,
Va =0, and U; = 0.4 or 0.75 in Fig. 6.

From an analogy with a hydrogen atom, W, ~ M,
decreases as o is decreased from unity, since the total
mass, M o 1/te + 1/tp ~ (1 + 0)?/0o, is a decreasing
function of o. If we turn on Uy, Wy is expressed as

Wex(Ur = 0) = /1 +4(te +tr)2 — /1 + 4(tc — t1)?
= 4/1+ 4t2

—V1+42[1- o)1+ o).  (18)

Energy

T X r X

FIG. 6. The band structure of the exciton for a finite
Vi = te/2 is shown for t.(= tn) = 0.1 (a), 1 (b) with a fixed
U1 - 075
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14+

U;=0.75
1.2+

wu

0.8+
06| U;=0.4 4

04t . 4

0 02 04 06 038
me*/ mp*
FIG. 7. The width of the lowest exciton band, as a function
of o = m;/mj, for t =2, V4 =0, and U; = 0.4 and 0.75.

For a finite U;, we have numerically calculated W, in
Fig. 7, which is seen to again increase with o.

As for the dependence on the interaction, W,y increases
with U;. Namely, although the dispersion of an exciton
shifts downwards with Uy, both at I" and X points in the
Brillouin zone, the shift of the former overcomes that of
the latter. For the long-range Coulomb interaction (and
also for finite-range ones), Wy is given by

Wex = E(UOaUlyte - th) - E(UO’Ulyt)

1—-0 140 14+0
= [J Lyt EL,L 1t'
1 E( 0)1 1 ) (0 1 )

1
(19)

Since E(oo,Uy,t)(— —Up) is finite, the first term be-
comes negligible in the vicinity of ¢ = 1. Hence the
decrease of the second term causes an increase in Wey.

IV. PROPERTIES OF BIEXCITON STATES

We now come to our original question of the forma-
tion of a biexciton. To discriminate a biexciton from two
unbound excitons, we have looked into two quantities.

(a) Binding energy of a biexciton — This is defined as
the energy required to separate two excitons to an infinite
distance,

Ebiex = _(E2e2h - 2-EB), (20)

where Ep is the energy of a single exciton calculated
in Sec. III (Ref. 5) and Eajeap is the energy of the four-
fermion system. A positive Epjex implies that a biexciton
is formed, while a negative Fy;cx means that two excitons
repel each other. In this case, a finite | Epiex| is an artifact
of confining them to a finite system: the quantity will
vanish in the thermodynamic limit.

(b) Hole-hole correlation function — the spatial exten-
sion of the biexciton is usually evaluated from the hole-
hole correlation function,® which, in the Heitler-London
approximation, reduces to the wave function for the rela-
tive motion, i.e., the biexciton wave function. The func-
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tion is defined as

Chh (7‘) = <Z C;!-+rTCi+rTCL,Cil> ’ (21)
biex

%

where ( )piex is the expectation value for the biexci-
ton wave function. From this quantity, we can identify
whether the two like particles, despite their repulsion,
participate in the bound state, due to the presence of the
carriers of opposite charge in analogy with a hydrogen
molecule.

We first discuss the case with V3 = 0, while the effect
of V; will be discussed in the last subsection.

A. Biexciton binding energy
1. Weak- and strong-coupling regimes

Figure 8 shows FEypjex as a function of t = t. + t; for
Ui = 0 or 0.75 with Vy = Uy and m}/m} = 1. Epjex in-
creases with ¢ for both on-site interactions and long-range
interactions with each curve starting from Ehiex = O at
t = 0, which is obvious from the static configurations of
electrons and holes. The result, which shows that Fpjex
is an increasing function of t/Up for ¢ < 2, is in con-
trast with the prediction of the continuum models, which
show that the binding energy of a biexciton is a decreas-
ing function of the strength of Coulomb interaction.®
We identify this as an indication that continuum models
fail to describe the atomic-scale behavior of the biex-
citon wave function. However, Epiex should eventually
decrease to zero as t goes to infinity, since the results
in the weak-coupling regime should coincide with those
with continuum models.

When the strength of the Coulomb repulsion Vy be-
tween like particles is increased, the formation of a biex-
citon becomes less favorable. Figure 9 for Epiex as a
function of the ratio, V;/Up, indeed shows that Epiex
monotonically decreases as V; /U is increased from unity.

0.7
0.6}
0.5}
““Uy=0
]
w o4}
N
]
w 03}
02}
0.1 4 I U——————
— U,=0.75
0 = 1 L L I
02 0.4 0.6 0.8

t

FIG. 8. The binding energy of a biexciton for mZ/mj, =1,
as a function of ¢t for U; = 0 and U; = 0.75, with a fixed
Vo/Uo =1 and Vd = 0.
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FIG. 9. The binding energy of a biexciton for m}/mj} =1,
as a function of V5 /Uy for U; = 0 and U; = 0.75, with a fixed
transfer £t =1 and V3 = 0.

However, the binding energy does not vanish even when
Vo/Up is as large as 1.5. There the exciton wave function
(relative motion) spreads over several lattice spacings for
t = 2, and this will “dilute” the effect of V to favor the
formation of a biexciton.

2. Dependence on U, /U,

While continuum models in the existing literature con-
cern long-range interactions only, here, we can single out
the effect of the strength of the long-range interaction,
U, relative to the on-site interaction (Up = 1) in the
formation of a biexciton. The result for E};.x as a func-
tion of U; (Fig. 10) shows that the effect of U; reverses
as we vary the value of Up: When the coupling is weak,
t/Uy > 0.1, Epiex increases with Uy, while Fy;ex decreases
with U, for a strong coupling, t/Up < 0.1. This crossover
may be understood in terms of the single-exciton states,
which is discussed in Sec. IVD on the phase diagram.

04
t=2

03} l
3
uf 02+f 5,

o1} B

0 . " ’ L
0.2 0.4 0.6 0.8 1

Uy

FIG. 10. The binding energy of a biexciton for m;/mj, = 1,
as a function of Uy, with V5 /Uo =1 and t = 2.
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3. Mass ratio

The dependence of Epiex on the mass ratio, ¢ =
m?}/m}, has been investigated by various authors for
2D systems'” and 3D systems,1'>!8 as well as for 1D
systems.® For the present model, we show in Fig. 11 the
exact result for Fyex normalized by Ep (the binding en-
ergy of a single exciton), as a function of o = t3/t. =
m}/m}.

We first note that the absolute value, |Epiex/EB|,
monotonically increases as a function of o. This is under-
stood in a manner similar to that provided by Wehner!®
and by Adamowski et al.2° for continuum models. We
can also prove that the derivative, d(Eviex/Eg)/do, van-
ishes at o = 1.

As the transfer energy t decreases, d(Epiex/Eg)/do
for a fixed o becomes smaller. Since the bandwidth of
a single exciton increases with o as shown in the last
section, the loss in the kinetic energy in forming a biex-
citon becomes larger for larger 0. Thus, Ehiex/Ep de-
creases with 0. On the other hand, the derivative of
the bandwidth of an exciton, dW.y/do, is smaller for the
strong-coupling case (see Fig. 7). Hence, Eyiox/Ep varies
less pronouncedly with o for a stronger electron-hole cou-
pling.

B. Correlation functions:
Comparison with the Heitler-London approach

1. Heitler-London approzimation

Now we turn to the validity of the variational and
Heitler-London approaches for the biexciton, which is
one of the key questions raised in the Introduction.
Since a Heitler-London approximation disregards the
four-fermion correlation effect, we can see to what ex-
tent the correlation is appreciable.

The Heitler-London approximation may be applied to

the present model in the following manner. First, we
0 _ t=0.1 _
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0.4 0.6 03
me™*/ my*

FIG. 11. The binding energy of a biexciton, as
a function of the mass ratio, ¢ = m./m;}, for
t = 0.1, 0.15, 0.2, 0.25, 0.4, 0.5, 1, 1.33, and 2, from top to
bottom with U; = 0.75 and V4 = 0.
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introduce a trial wave function |¥yy) defined by

[WuL) =D F(G9) (G 5k L) 451 [9)]ig; kL)

ijkl
=LY Lk 1 |8)ig; Lk)),
ijhl
where
lig; ki) = alial clicf,0) (23)
and
lio; jo’)y = al,cl,.|0). (24)

|¢) denotes the lowest single exciton, and f(,j) is the
biexciton wave function usually discussed in former stud-
ies and corresponds to (P®(r) in the present paper. We
have then numerically solved the secular equation deter-

mining £ (3, 5),
SN 606,55k, 1) s RUHY S KT
'3 klk'l!

x@(i',§'s k', U)f (i, 5') = Ef(5,4), (25)

to obtain Heitler-London results for the present model.
Figure 12 shows that Fyiex in the Heitler-London scheme
gives only about half the exact result for the whole range
of t. This discrepancy indicates that the correlation ef-
fect is, in fact, significant, and the Heitler-London ap-
proximation is inadequate.

2. Electron-hole density correlation

To elaborate how these approximations fail, we have
calculated, in addition to the hole-hole correlation, the
electron-hole density correlation function defined by

;g' (T) = <Z aIaaich+r,a' ci+7‘y¢7'> . (26)
i biex

0.12

0.1+

0.08 exact
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&
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002t [ 7
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FIG. 12. The exact result and the Heitler-London result
for the binding energy of a biexciton, Epiex, as a function of
t for Uy = 0.75, V4 = 0, and Vo /Up = 1.
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A typical result for Cﬁ‘(r) is given in Fig. 13. The figure
covers both the biexciton regime (Vp/Up, = 1) and the
unbound regime (V,/Up = 1.5), and the decay of ﬁ‘ is
seen to be faster when the electrons and holes are bound
into a biexciton. When the biexciton is formed, C;i‘ (r) for
the biexciton system, which cannot be fitted to a single
exponential form, deviates at large distances from that
for a single exciton, Cfi‘ (single-exciton) ~ exp(—3.36r).5
As for the spin indices, (Zh(r) # (", (r) only when Vg #
0, which is discussed later.

When we apply the Heitler-London approximation to
the present model, we find that the hole-hole correla-
tion, ¢PB(r), is more spatially extended as shown in Fig.
14. Even when we turn to a variational approach, which
could potentially go beyond the Heitler-London approxi-
mation, there remains the problem of how to choose trial
functions for the biexciton state. Already for the single-
exciton state, there exist no analytical wave functions
when we consider long-range interactions (U; # 0), which
play an important role in the biexciton formation. In the
weak-coupling limit, however, the electron-hole (relative)
motion asymptotically becomes exponential.

Hence, the approximations compared here are ex-
pected to give reasonable results only when the electron-
hole relative motion is spatially extended. Wannier ex-
citons in higher dimensions correspond to this case. We
stress, however, that in 1D systems the correlated mo-
tion of electrons and holes over the length scale of lattice
constant as exhibited in a structure in (8, (r) is essential
even in the weak-coupling case, which is why the approx-
imations become unreliable.

C. Correlation functions: comparison with
continuum models

We now turn to a comparison with continuum models
for the correlation functions. Bényai et al.® have calcu-
lated the wave function of the relative motion of two holes

0.5
045k t=2
0.4 U,=0.75
0.35
0.3
£025
G
02} \ . .
. single exciton
0.15
0.1 Vo/Uo=1.5
0.05 N
.................... Vo/Uo=1.2
0 % 10 15 20 3 30

FIG. 13. The electron-hole density correlation function,
¢ (r), for mi/m;, = 1 for Vo/Us = 1, Vo/Us = 1.2, and
Vo/Uo = 1.5 with fixed t = 2, V4 = 0, and U; = 0.75. The
line denoted as “single” shows the correlation function for a
single exciton.
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FIG. 14. The hole-hole correlation function, ¢"*(r), for
Vo/Uo = 1 (a) or 2 (b) with fixed t = 2, Uy = 0.75, Va = 0
and m./mj; = 1. The correlation function calculated with
Heitler-London approximation is shown in each figure.

in a continuum model within an approximation that sepa-
rates the four-fermion wave function into an electron-hole
part and a hole-hole part. As an electron-hole wave func-
tion, they have assumed a product of the single-exciton
wave function, thereby neglecting its deformation due to
the many-body effect. Although their result reproduces
a known tendency that the biexciton binding energy is
larger for lower dimensions,'''” the quantitative accuracy
of their approximation is not clear, especially for 1D biex-
citons.

Here, we present a numerical result for the correlation
functions to explore this point. For the typical cases
of (a) a biexciton and (b) unbound excitons, the hole-
hole correlation function ¢**(r) [Eq. (21)] is shown in
Fig. 14. The result implies that Banyai’s approximation
holds only in the weak-coupling regime, where the hole-
hole correlation is peaked at a finite distance [Fig. 14(a)],
while (PP (r) decays faster for the strong-coupling regime,
where a biexciton is more compact and the size of the
biexciton is of an atomic scale.

D. Phase diagram for V; =0

Now we discuss the phase diagram (Fig. 15) for the
biexciton system on the plane of the transfer (t = tc+t)
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FIG. 15. Phase diagram on the (¢, Uo/Vo) plane for the
biexciton state for (a) Uy = 0 and (b) U; = 0.75 with
m;/my, =1 and Vg =0.

and the ratio (Vo/Up > 1) of the electron-electron repul-
sion and the electron-hole attraction with m}/mj; =1
and V3 = 0. The figure depicts the contour representing
Epiex = 0, which gives the boundary between the biex-
citon regime and the unbound regime. The boundary
should start from the point t = 0, Vp/Up = 1, since a
biexciton is formed for U > V, while it decomposes for
U<V whent=0.

If we compare the result for U; = 0 [Fig. 15(a)]
and U; = 0.75 [Fig. 15(b)], the long-range interaction
is seen to play a critical role in the formation of biex-
citons. Namely, whereas long-range interactions exert
an unfavorable effect on the biexciton formation in the
weak-coupling regime, the formation of biexciton is fa-
vored by the presence of long-range interactions in the
strong-coupling regime. These opposite tendencies make
the two lines in (a) and (b) cross, where the crossover
occurs around t ~ 0.1.

If we recall the behavior of the radius, R, of a single
exciton as a function of ¢t and U; presented in Sec. III, the
introduction of the long-range interaction increases R in
the strong-coupling (Frenkel) regime, while it decreases
R in the weak-coupling (Wannier) regime. If we fit this
result to the effect of the long-range interaction favoring
(suppressing) the formation of biexcitons in the Frenkel
(Wannier) regime, we may postulate that the formation
of a biexciton is favored as the spatial extension of the
relative motion of an electron and a hole increases. Thus,
an important finding here is that the Frenkel-Wannier
crossover does appear in the biexciton phase diagram as
well.
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E. Effect of dipole-dipole interactions

As we have stressed in Sec. IIID V; affects both the
relative and translational motions of single excitons. Now
the problem is the effect of V; on biexciton formation,
which is only relevant to singlet electron-hole pairs as
seen from the Hamiltonian, Eq. (1).

To detect the effect of V;, we show in Fig. 16 a typ-
ical result for the hole-hole density correlation function,
¢P(r), along with the electron-hole density correlation
function [Eq. (26)] in the biexciton state. By looking at
the latter, we can see how each exciton is deformed in
a biexciton, or how the Heitler-London picture modifies
into a “molecular orbital” picture. The wave function
of one-exciton state for the same values of parameters is
also displayed in the figure for comparison. It is seen that
C;.}Ll (r) does not significantly deviate from the one-exciton

wave function, while Cfi‘ (r) almost coincides with ¢ (r).

From this we can see that a finite V; drastically changes
the picture of a biexciton back into a weakly interacting
two excitons having a weak “covalent bond” (in analogy
with a hydrogen molecule). When each exciton is slightly
deformed, the exciton-exciton interaction is weak, since
it is an interaction between neutral objects. A loosely
bound exciton has a (P?(r) spreading beyond the system
size (N = 81) considered here.

For the physical case of V; exceeding Uy, the biexciton
state becomes rapidly unstable, and a biexciton is broken
into two excitons even when Vp (= 1.1Up) exceeds Uy only
slightly. Thus, the phase diagram is completely different
from the V3 = 0 result (Fig. 15). This implies that
biexcitons in realistic conditions exist only for a stringent
condition of very small V.

V. TWO-PHOTON ABSORPTION

One way to experimentally detect biexcitons is the
two-photon absorption (TPA). Within the electric-dipole
approximation, the interaction between an electron-hole

0.7

t=2
U1=0.75
V4=0.5

0.6

¢*(n)

“"..‘biexciton

FIG. 16. The hole-hole correlation function and the elec-
tron-hole density correlation function, (;i‘(r), form;/mj, =1,
t=2,V3=0.5and U; = 0.75.
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system and electromagnetic waves is described by the
Hamiltonian,

Hint = - Z (Deh Ia I —o Deeazoa]U
ijo
+Dh}‘cwcja> + H.c. (27)

Here, the first term creates an electron-hole pair, and the
second (third) term transfers an electron (hole) from site
7 to i. The dipole matrix element in an electric field Eq
is defined as

D;f = (ai|D|B3), (28)

where we have D = r - Eg coswt for an incident light of
frequency w, and |at) denotes an orbital in the conduc-
tion band (a = e) or the valence band (h) at site ¢ (see
the Appendix).

The polarization dependence of the TPA in one-
dimensional exciton systems has been discussed in Ref.
21 and we assume here that the polarization of the light is
parallel to the chain. The orbitals in the valence and con-
duction bands in each unit cell are assumed to have differ-
ent parities to allow the optical transition to the lowest
exciton state. This assumption is justified for polysi-
lane from both the experimental results for absorption
spectra??:23 and the theoretical band calculation.?4

In the TPA process, the one-exciton states enter as
intermediate states of the second-order optical process,
and all the terms in Eq. (27) are relevant. The TPA
transition rate is then given by

TENEES> Z<u|D|u><v|D|o> S e (29)

where |0) denotes the initial state with no exciton, |v)
the intermediate state, and |u) the final state with two
electron-hole pairs. The quantlty Arpa(w) is propor-
tional to Imyx(®), where x(3 is the third-order nonlin-
ear susceptibility for the TPA process.?® Here, we shall
choose the lowest two-electron two-hole state as |u).

The numerical result for the TPA spectrum is shown in
Fig. 17 for various values of t, with Uy = V,, U; = 0.75,
and V3 = O for near one-photon resonance. The larger
peaks come from the biexciton, while the small ones are
due to the single-exciton resonance. Thus, the energy
difference between these peaks gives the binding energy
of a biexciton.

The biexciton peak is always larger than the single-
exciton peak, since the matrix element between the low-
est exciton state (as an intermediate state) and the biex-
citon state is enhanced, due to the deformation of the
four-body wave function. This is a typical biexciton ef-
fect in TPA spectrum, which appears irrespective of the
dimensionality of the system. If we turn on Vj, this dras-
tically reduces Epjex, so that it becomes difficult to dis-
tinguish two peaks in TPA spectrum for a finite Vj.

As for the t dependence, the TPA response is found
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FIG. 17. absorption

Two-photon
one-photon resonance is shown for various values of ¢t with
U1 = 0.75, Vd = 0, and Vo/U[) =1.

spectrum near

to be more intense in the Wannier regime than in the
Frenkel regime, in contrast to the one-photon absorption.
If we remember that the spatial extension of the biexci-
ton decreases as t decreases, Fig. 17 is reminiscent of the
“giant oscillator strength” in the two-photon absorption
known in 3D continuum models.?¢ Here, however, the
different behaviors in the Frenkel and Wannier regimes
come not simply from the spatial extension as in the or-
dinary giant TPA, but also from the deformation of wave
functions from a biexciton effect.

VI. CONCLUSION

We have studied the formation of a biexciton in a 1D
lattice model in the coexistence of long-range Coulomb
and on-site interactions. We have concluded the follow-
ing.

(1) Different effects of long-range interaction on the
formation of a biexciton may be used to identify Frenkel
and Wannier regimes, which goes hand in hand with the
crossover for single excitons.

(2) The formation of a biexciton also involves a com-
petition between the electron-electron repulsion (V,) and
the electron-hole attraction (Up), so that the ratio Vo /Uy
is crucial.

(3) The electromagnetic dipole-dipole coupling, which
transfers the electron-hole pair, drastically affects the
biexciton phase diagram.

(4) The deformation of the constituent exciton (rela-
tive motion of an electron and a hole) on atomic scales
invalidates the conventional (Heitler-London, variational
or continuum) models, especially when the electron and
hole masses are similar (o ~ 1).

(5) The same deformation accounts for an effect
of biexciton formation on the two-photon absorption
(TPA). To be more precise, the oscillator strength of the
TPA is larger in the Wannier regime than in the Frenkel
regime, in contrast to the one-photon absorption. The
difference is a biexciton effect, which is the enhancement
of polarization, due to the deformation of the relative
motion of electrons and holes.
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The message here is that a crucial factor in the biex-
citon formation is the carrier correlation (deformation of
the electron-hole wave function from a simple superpo-
sition of two-exciton wave functions) on atomic length
scales.
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APPENDIX: MATRIX ELEMENTS
OF THE DIPOLE MOMENT

The matrix element of the dipole moment may be cal-
culated by taking the Slater orbital as the radial part of
the atomic orbital assigned to each site. As for the an-
gular part, we take s orbitals for the atomic orbitals that
constitute the valence band and p, orbitals (with z-axis
along the chain) for the conduction band. This makes
the direct transition at the band edge optically allowed.
If the radial part of the Slater orbital is denoted to be
o exp(—r/d), the matrix elements are given as

- 2[5

+3|i;j' +3} exp (—‘i;ﬂ),

b - -] (152)

o V3d|(li-4]\? i —3]\?
D =~ [(—d +2 (=

+3¥ + 3:| exp (——

Here, d is the effective range of the dipole moment, to
which the value of the matrix elements is sensitive. In
the present calculation, d is set equal to 0.3 in units of the
lattice constant, which is considered to be a reasonable
value for polysilane.
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