
PHYSICAL REVIEW B VOLUME 52, NUMBER 12 15 SEPTEMBER 1995-II

Exciton/biexciton energies in rectangular GaA.s/Al„Gai „As quantum-well wires
including finite Al-graded band offsets with application to third-order optical susceptibilities

Frank L. Madarasz
Optical Science and Engineering Program and Center for Applied Optics, University ofAlabama in Huntsville,

Huntsville, Alabama 35899

Frank Szmulowicz and F. Kenneth Hopkins
Wright Laboratory, Materials Directorate (WL/MLPO), Wright Patte-rson Air Force Base, Dayton, Ohio 45433-7707

(Received 21 February 1995; revised manuscript received 13 April 1995)

Exciton and biexciton binding energies and wave functions are calculated with a three-parameter vari-
ational model in an effective-mass approximation for a rectangular GaAs quantum-well wire surrounded
by an Al„Ga& As cladding. Moreover, the Al interdiffusion into the wire and the Gnite band offsets be-
tween the wire and the cladding have been included. For the range of dimensions studied, the inclusion
of the Al interdiffusion had a pronounced effect on the binding energies when compared to those ob-
tained from the infinite barrier model [Frank L. Madarasz, Frank Szmulowicz, F. Kenneth Hopkins, and
Donald L. Dorsey, Phys. Rev. B 49, 13 528 (1994); J. Appl. Phys. 75, 639 (1994); Phys. Rev B 51, 4633
(1995)]. Using the results of the exciton and biexciton calculation, we calculate the third-order nonlinear
optical susceptibility as a function of pump-probe frequencies in a small range about the exciton absorp-
tion resonance. We have found, depending upon wire dimensions, broadening parameter(s) size, and the
amount of pump detuning, values of the imaginary parts of the susceptibilities to be on the order of
—10 esu and a fairly large off-resonance absorption due to biexciton formation.

I. INTRODUCTION

Excitonic properties have been extensively modeled in
quantum wells, wires, and dots. ' ' For the lowest-
dimensional confinement of a quantum well, it is possible
to construct analytically a model which incorporates ac-
curately the physics and the geometry " finite barrier
potentials and band offsets, barrier penetration, parabolic
shaped wells, etc. Rectangular quantum-well wires
(QWW's), on the other hand, are more difficult. In gen-
eral, because of two-dimensional confinement, the Hamil-
tonian is not precisely separable unless the two orthogo-
nal potentials are infinite. ' ' ' Because of this prob-
lem, most exciton structure modeling has been done for
the ideal case of cylindrical wires with an infinite poten-
tial at the circumference of the wire. When considering
the biexciton binding energy —which is needed for the
calculation of y' '—an effective one-dimensional
Coulomb potential in the radial direction was employed;
still, g' ' was not explicitly calculated. In a subsequent
publication, Banyai et al. , the authors of Ref. 5, ex-
tended that work to the calculation of the total absorp-
tion coefficient and total refractive index (both related to
the total y) for various beam intensities in a two-photon
absorption model. On the other hand, Glutsch and
Bechstedt' have approximated the separation of the two-
dimensional potential in orthogonal directions in a square
wire with the condition that the potential in one direction
is infinite while in the other direction is finite. Their in-
terest, though, was only in calculating the spatially non-
local absorption y'" by single excitons; no attempt was
made to determine y' '.

Madarasz and co-workers' ' have calculated exciton
and biexciton binding energies and wave functions in rec-

tangular GaAs wires, and have applied the results to the
problem of y' ' for a pump-probe experiment. The calcu-
lation was done variationally utilizing three variational
parameters. The Coulomb interaction terms were treated
exactly in their full three-dimensional form throughout
the calculation, especially in the case of the biexciton,
which is a more physically realistic procedure than em-
ployed in previous calculations that relied upon an
effective one-dimensional potential(s). As a result, if one
dimension of the rectangular wire is nonzero, no matter
how small, the other may be collapsed to zero without
giving rise to an infinite energy. A unique feature of the
calculation was its use of a two-dimensional Fourier ex-
pansion of the Coulomb potential(s), which removes the
numerical difficulty with the 1/r singularity, and consid-
erably reduces the computational effort. The results of
the excitonic electronic structure computation were then
applied to the problem of the third-order nonlinear opti-
cal susceptibility. With the goal of determining peak
values of susceptibilities for various cross-sectional wire
dimensions, g' ' was first expanded in the density-matrix
formalism, and then evaluated for near-resonant exciton
absorption in the rotating-wave approximation (RWA). '

Values of ~imp' '~ on the order of 10 ' esu were ob-
tained.

High quality rectangular QWW's have most recently
been manufactured via Al-Ga interdiffusion from the
cladding material due to local heating by means of a fo-
cused laser. A similar technique is being pursued using
focused ion-beam technology. In both cases, the poten-
tials in the lateral directions are graded due to the Al
interdiffusion. The previous model by Madarasz and co-
workers' ' assumes an abrupt infinite potential in the
lateral direction. In the present paper we refine and ex-
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tend that model to include finite graded barrier potentials
for the electrons and holes in the lateral direction. In
Sec. II A, we review the original exciton/biexciton
theory, making the necessary changes to include the Al
interdiffusion. In Sec. IIB we display the expression of
the third-order optical susceptibility, now including
terms beyond the RWA. Results and discussion are
given in Sec. III. Finally, a summary is given in Sec. IV.

II. THEORY

In the present work we build upon the existing infinite
potential barrier model of Madarasz and co-
workers. ' ' The reader is referred to our original pa-
pers for the complete and quantitative details of our basic
model. Here we will outline the basic theory including
the appropriate modifications needed to incorporate the
Al interdiffusion into the wire from the surrounding clad-
ding material.

A. Excitonic properties

The interdiffusion is in the lateral direction, here taken
as the z direction. Since the potential in the orthogonal
direction is square and we are interested only in the
lowest-lying states, we may approxima'e it, relative to the
lateral direction, as infinite. Figure 1 defines the quanti-
ties needed in order to calculate the electron and hole po-
tential energies V, and V&, respectively. The finite con-
duction AE, and valence AE, band offsets are taken to be
in the ratio of 60/40. All quantities are graded with the
interdiffusion Al composition distribution x(z). Follow-
ing the work of Madarasz and Szmulowicz on Cd
interdiffusion across Hg Cd& Te heterojunctions, the
Al grading distribution will be taken as

Finite Potential Well and Aluminum
Inter diffusion
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2
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where xo (here zero) and x, are the Al compositions in
the wire and cladding material, respectively, zo =+ JY/2,
and 2C is the Al grading width in which the Al composi-
tion changes by 85%.

The Schrodinger equation for single-particle states in
the lateral direction is

fi d 1

m; [x(z)]
du (n)(z)

+ V; [x (z) ]u "'(z)
dz

=E "'u "'(z), i =e, h, n =1,2, 3. . . ,

where E "' is the eigenenergy of the nth subband. Equa-
tion (2) must be solved numerically. This we did with a
modified fourth-order Runge-Kutta routine which ac-
counts for the values of the variable coeKcients m [x(z)]
and VI [x (z)] between the node points of the integration
mesh. Here m and V,. are written as functions of x (z)
to emphasize their implicit dependence on the Al compo-
sitional grading; x(z) should not be confused with the
coordinate x.

In the envelope-function approximation (EFA), the ex-
citon Hamiltonian is given by

2 2 2
Pye I'ya Px

2m,* 2m ~ 2p

+E + V, (z)+ Vl, (z),

2

E&x'+p'
(3)

where m,' is the electron conduction-band effective mass,
m ~ is the heavy-hole valence-band effective mass perpen-
dicular to the axis of the wire, p is the heavy-hole exciton
reduced mass, e is the charge of an electron, c is the static
dielectric constant, E is the fundamental band gap of the
wire material, and p = (y, —

yh ) + (z, —
zl, ) is the exci-

ton cylindrical radius in the confined directions.
Even for this relatively simple Hamiltonian no exact

solution is possible. The envelope function is then chosen
to be a trial wave function in a variational procedure:

=2g= —g, (x;q„)cos(k y, )cos(k y„)u,'"(z, )u„"'(z„),
~0

AE„[x(0)]

1xG &-xA GaAs AlxG &-xA

where g, (x; rl ) is a Gaussian-type orbital function,
1/4

1 2 X
g, (x;q„)= — exp (5)

Graded Potential Energies

V, (z) = 0.6 E [x(z) ]—E [x(0) + E (x = 0)

V „(z)= -0 .4 Eg [x (z) ]—Eg [x (0)

FIG. 1. Definition of quantities used in the calculation of the
finite Al-graded band-offset potential energies.

in which g is the e-h variational parameter, and
k =n./L.

The variational parameter g is determined by minim-
izing the expectation value of the exciton Hamiltonian
with respect to g; its value will reAect the dimensions of
the wire and specific values of the material parameters
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used. The only components of the Hamiltonian which
depend on g„are the kinetic energy of the relative
motion, and the e-h interaction term. Together, they
de6ne the exciton binding energy

The integrand is given by

I(Q )=exp(Q„ /2+2) [1—erf(Q„ /2&2)],

where erf is an error function. The factor HL~=HLH~,
where

and

V,b = V(lxi+P, —
Pb I )

(7a)
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"—cospz, lu,'"(z, )lz

x 00 Ix

Q„
z& exp —i cos zI, u&" z& (9b)
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The biexciton Hamiltonian is considerably more complicated, since it involves the interaction of four particles. The
kinetic-energy operator is

fi 8 8 fi B + 8 8 8
2P a ',. a '„

ll

8 b. a

8 82+
2m By By

iri2 $2 $2
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(10)

where I
~~

is the effective mass parallel to the wire axis,
and the potential energy is

1
l. Pla02b +42a Plb NbaS xb,

(12)
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where 1 and 2 label the electron coordinates, and
a and b label the hole coordinates, x ~&

=x —x&,
p ~=(y —y&)j+(z —z&)k, and u, P= 1, 2, a, or b.

Since it is not possible to solve a four-body problem ex-
actly, again a variational approach is employed. The trial
wave function includes the Heilter-l. ondon approxima-
tion for the e-h pair contributions and is of the form'

Eg"=2' +W(ri„„;g). (13)

where Ez is the total kinetic energy of a single exciton,
and

is of the general form of Eq. (4) but with

g, (x;ri„)=g~&(x & , g„„) given b'y Eq. (5), but not nor-
malized, where g„ is the e-h variational parameter
within the excitonic molecule, and gb, =gb, (xb, ', g),
which is normalized, is a function of the hole-hole varia-
tional parameter g. S (xb, ) is the normalization factor.

The Gnal expressions for the expectation values of both
the kinetic and potential energies are long and complicat-
ed. They may be found in their entirety in the paper by
Madarasz et al. ' What is important for the present
work is just their functional forms, which are represented
by A' and P. The kinetic energy and potential energies
are
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2
1(ba).I(1a) 1(1a) 1(1a).1(21) 1{21) I(21)

XX

(14)

where the I's are functions of Q„,g„„,and g, and each
XX

is made up of two terms similar in form to Eq. (8).
HL ~(Q„,Q) is identical to Eq. (9), but with g„

XX

As in the case of the single exciton, the biexciton Hamil-
tonian must be minimized with respect to the variational
parameters in order to obtain the biexciton binding ener-
gy-

Since the biexciton wave function of Eq. (12) is made
up of single-particle states —now given by Eq. (4)—the
Al-graded potential will also affect the biexciton binding
energy.

B. Nonlinear optical properties

Pump-probe spectroscopy is used experimentally to ex-
tract excitonic optical nonlinearities from other non-
linearities in semiconducting materials. %e restrict our

I

calculation to the optical nonlinearity via the biexciton
state arising from the population saturation of the exci-
ton state. For resonant excitation, the expression for y' '

in the RWA (Ref. 20) is given by Refs. 14—16. Howev-
er, here we wish to investigate the frequency dependence
of g' ' in a narrow range about the resonant exciton ab-
sorption line. The general derivation of y' ' for low-
density exciton/biexciton systems is given in the Appen-
dix of our previous paper it is based on the summation
over 16 double Feynman diagrams. ' The spurious size
dependence which generally accompanies the derivation
of y' ' for a local two-level system has been eliminated by
taking into account the Pauli exclusion principle; that is,
one physical site is not allowed to be doubly excited. '

In the frequency range of interest, the lowest-lying
states are the major contributors to g' . Accordingly,
the general expression reduces to

x( 3 ) ( —)2 a p

m &2m. 1

7f mp2~ p (co& cogp+/I &p)
r

1

[co, co p+c—ob„(ri„„,g)+i I b ]

1 1 1

r=1 ~ (rpr ~2+'r) &o 2 gp sp sp

1 1 1

(~ +~ 2~,p+rPb—.(ri„„,g)+i&bp) (~& ~,p+il „) (~, ~„+—il „) (15)

where m2 and co1 are the pump-probe frequencies, respec-
tively, no is the average areal density of unit cells, mo is
the rest mass of an electron, e is the charge on an elec-
tron, EI, is the Kane matrix element and Ace&„ is the biex-
citon binding energy. y and I;- are longitudinal and
transverse relaxation/broadening parameters, respective-
ly. The ij indices refer to the o-system ground state, g-
exciton ground state; and b-biexciton ground state.
1/y = 1/I;, is the population decay time for state i, and
1/I," is the dephasing or lifetime of the coherent super-
positions between states i and j. Note that, if all trans-
verse relaxation parameters are assumed to be equal, the
model reduces to the independent boson model. Then,
when the biexciton binding energy approaches zero so
does the third-order susceptibility, because of the first
bracketed factor in Eq. (15), as it should.

tron and hole states. As a part of this numerical ap-
proach one must search for the integration range, i.e., nu-
merical infinity, in which the wave function appropriately
tends to zero and yields the correct corresponding eigen-
value: this must be done for every set of cross-sectional
dimensions and for each characteristic Al-grading width
2C. In turn, the values of the three variational parame-
ters are changed; one must further search for an accept-
able starting value of the exciton variational parameter in
order to start the minimization process. Needless to say,
the whole process is time consuming. Thus, for illustra-
tive purposes, we have limited ourselves to one set of wire

0
dimensions —L, X 8'=125X75 A —and four charac-
teristic diffusion lengths —C = W/16, W/8, W/4, and
W/2. This particular set of wire dimensions was chosen
because it is on the order of the bulk exciton radius and

III. RESULT'S AND DISCUSSION TABLE I. Physical parameters for Al Ga& As.

In order to calculate the exciton and biexciton binding
and ground-state energies and optical susceptibilities, we
employed the physical parameters summarized in Table
I. All parameters needed but not listed in Table I are
shown in the figures.

The Al interdiffusion in the lateral direction requires a
numerical solution to Eq. (2) for the single-particle elec-

x =
EO

m
m e

ll
0.027mo ~Refs. 4 and 14)

no=7. 89X 10' /cm

'Eg(x) =1.512+ 1.155x+0.37x .

0.0
1.512 eV'
0.450m 0
0.067m 0

Ep =23.0 eV

0.3
1.899 eV'
0.576m 0

0.092m 0
a=12.5
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TABLE II. Infinite versus finite potential barrier results.
L X 8 = 125 X 75-A QaAs wire/A1Q 3GaQ 7As cladding'.

c', {mev}
c,

&
(meV)

(aQ)
E&x (meV)

t/, h (meV)

EgQ (eV)

g(ao)
g„„(aQ)
Ez (me V)

V (me V)
Exx (ev)
z(0.01u,"',„) (A)
Z(0.01ug",„) (A)

P /16 P /8 g /4 P /2

99.75 38.67 41.69 51.38 47.24

14.85 9.66 11.11 16.73 16.76
362.20 395.45 393.58 389.95 395.12

—14.23 —12.27 —12.35 —12.54 —12.29
—19.69 —16.85 —16.97 —17.25 —16.88

1.662
1024.43

1.597 1.602 1.617 1.668
1116.79 1111.62 1101.55 1115.88

293.38 320.36 318.86 313.96 318.09
—9.71 —8.36 —8.42 —8.55 —8.38

—53.61 —45.88 —46.22 —46.97 —45.97
3.31 3.186 3.195 3.225 3.328

97.00
61.00

99.00
62.00

100.00
63.00

115.00
69.00

'Band o6'sets —0.6 conduction, 0.4 valence.
—' A1 grading width.

corresponds to a peak third-order optical susceptibility
calculated for the infinite barrier model. The results of
the electronic part of the calculation are summarized in
Table II.

With reference to Table II, we first note that the in-
clusion of finite band offsets lowers both electron and
hole single-particle subband energies for the narrowest
grading (almost abruptly), W/16, giving approximately a
61% difference for the electron and a 35% difference for
the hole. Of course this is precisely what is expected to
happen. Fixing our attention on just the electron states
for the moment, we see that, by increasing the diffusion
length from W/16 to W/g and then from W/8 to W/4,
the subband energies rise. The reason for this trend is
clear especially when we consider the graded well struc-
ture plotted in Fig. 1: as the diffusion width is increased
the bottom of the mell narrows, pushing the states up.
However, when increasing the diffusion length from W/4
to W/2 the trend appears to be reversed. The cause of
this reversal is also clear: the well is now "overgraded. "
That is, under this condition, there is enough Al concen-
tration located at the center of the well to change the fun-
damental gap from that of pure GaAs to some percentage
of Al Ga, „As—the gap is increased and the well, as it
rises, begins to Aatten out. Relative to the bottom of the
graded well the subband energy has indeed become small-
er, but relative to the bottom of the GaAs well it has con-
tinued to rise. In fact, as the fraction of Al in the center
of the graded well approaches x =0.3, the subband(s)
coalesces at the bottom of the well and forms the conduc-
tion band in bulk Al„Ga& As; the lowering of subband
energies is to be expected.

A similar argument can be made for the hole subband
energies. However, it is apparent from Table II that,
when the diffusion length reaches W/4, the subband en-
ergy exceeds that of the infinite barrier model. The cause
of such a result is not totally unexpected. The barrier
height for the holes is two-thirds of that for the electrons.

This means that the corresponding Al grading of the
valence band produces a well which is narrower for
z ( W/2 and wider for z ) W/2 than that of the conduc-
tion band. One then expects a larger percentage increase
in energy for the lower-lying hole subband bands. For
example, changing the diffusion length from W/8 to
W/4 produces about a 19% increase in the electron sub-
band energy, and about a 34% increase in the hole sub-
band energy.

The exciton and biexciton binding energies are lowered
with the inclusion of the finite band offsets by approxi-
mately 14% for the smallest diffusion length of W/16.
The evolution of their respective values with increasing
Al grading width can easily be explained in terms of the
arguments given above for the electron and hole sub-
bands. Similarly, the exciton and biexciton ground-state
energies are lowered mith the inclusion of the finite band
offsets. Since each is dominated by the fundamental
band-gap energy, their change is rather small, both being
approximately 4% for the smallest diffusion length of
W/16. Because of such a small change in the exciton
ground-state energy, the effect on the magnitude of the
optical susceptibility is negligible. However, at higher
densities of excitons and biexcitons than considered here,
the lower binding energies do affect the stability of the
system and will thus limit the operational conditions un-
der which peak y' ' values may be obtained and main-
tained.

The structure in y' ' is a strong function of the values
of the longitudinal and transverse relaxation parameters.
These parameters are quite difficult to obtain accurately
by experiment, and there are no first-principles theoreti-
cal models of which we are aware. In addition, they are
probably strong functions of the confinement dimensions
as well as the population density of the excitons and tem-
perature. ' Consequently, some researchers have
chosen them to be equal —for example, Refs. 18 and
19—while some have used them as fitting parameters-
for example, Refs. 17 and 19. There is, however, good
reason to beheve that the longitudinal parameter is
perhaps as much as an order of magnitude smaller than
the transverse parameters. ' ' Accordingly, for compar-
ison, we have calculated y' ' for values y =0.11 0 and all

I; =I 0, and for y =I; = I o, where V'21 o corresponds
to the full width at half maximum (FWHM) of the Gauss-
ian representing the exciton linear absorption.

In Figs. 2—7 we have calculated Imp' ' for a two-beam
experiment in which one beam, the pump, is fixed and the
other, the probe, is allowed to vary over a frequency
range in which the pump is fixed. Specifically, in Figs. 2
and 3 the pump is fixed right on the exciton resonance,
and in Figs. 4 and 5, and also in Figs. 6 and 7, the pump
is detuned from the exciton resonance by ++21 0/2 and
—v 21 o/2, respectively. The abscissas on all plots are in
dual energy units: on top are the more conventional meV
units, and on the bottom are the FWHM units of &21 0.
We have chosen the FWHM units in order to give a mea-
sure of the relative strengths of the optical susceptibility
and exciton absorption. The peak value of exciton ab-
sorption for all plots given here is 1.94X10 cm '. Fig-
ures 2, 4, and 6 have values of y =0.1I 0, while Figs. 3, 5,
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FIG. 2. The imaginary part of the third-
order optical susceptibility as a function of the
probe energy for a dual-beam pump-probe ex-
periment. The pump is set at exciton reso-
nance and the longitudinal broadening param-
eter is one-tenth the value of the transverse
broadening parameters.
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FIG. 3. Same as Fig. 2 but with the longitu-
dinal broadening parameter equal to the trans-
verse broadening parameters.

-0.4-

-0.6-

-0.8-

-1.0

E'o =1.597 eV

Eb ——12.27 meV

Eb' ——8.36 meV

0.7

0.5-

0.3—

~IIIX (~tIprobe) &~ Eprobe —E

(pump is detuned from the exciton resonance)

~2
Epump=E o+ 2 I o

E' = 1.597 eV

Eb ——12.27 meV

b
——8.36 meV

0

-0.1—

obe Ego (meV)
12.0 16.0

I

3.0 4.0

(units of ~2I o)

FIG. 4. Same as Fig. 2 but with the pump
detuned slightly above the exciton resonance.
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FIG. 5. Same as Fig. 4 but with the longitu-
dinal broadening parameter equal to the trans-
verse broadening parameters.
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FIG. 7. Same as Fig. 6 but with the longitu-
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and 7 have values of y=I; =I 0. Note that —Imp' ' is
proportional to —ha, the differential change in optical
transmission.

In comparing Figs. 2 with 3, 4 with 5, and 6 with 7, it
is immediately apparent that Figs. 2, 4, and 6 all possess a
rather abrupt, narrow negative peak for probe energies
near or equal to the pump energies. The genesis of these
peaks may be directly traced back to the 1/[co„uz—+i y ]
factor in Eq. (15) for the susceptibility. When y' ' is
separated into real and imaginary parts, this factor leads
to a resonance factor in both parts which goes as
I/[(co„—co2)] +y ]. co2 corresponds to the pump, and
the index r on co„ is summed over values of 1 (probe) and
2. Since co, is the probe, it is varied, and, when in reso-
nance with co2, the resonance factor becomes dominant
[in the RWA the third line of Eq. (15) is negligible com-
pared to the first two lines]. Its strength, however, is ex-
tremely sensitive to the magnitude of y: when y =0.1I 0,
its strength is 10, or two orders of magnitude larger then
when y = I 0, as is the case in Figs. 3, 5, and 7. Physical-
ly, y is related to the population decay rate of the exciton
state. A smaller y, then, means the lifetime of the exciton
state is larger and that the exciton system is more stable.
In turn, there is a higher probability of forming an exci-
tonic molecule in a two-step photon absorption process.
The resonance spiking is only significant if the detuning
of the pump lies within 1 —2 FWHM of the exciton ab-
sorption peak. Note that in Figs. 4 and 6 the curves tend
to have a relative minimum at peak exciton absorption.
Of course, when the pump is in resonance with the peak
exciton absorption, the spiking is amplified even further,
resulting in the curve displayed in Fig. 2. On the other
hand, the curves displayed in Figs. 3, 5, and 7, those for
which y =I 0, show no sign of the abrupt spiking: the res-
onance factor is now approximately ten times smaller
than before. The larger y not only smears out the reso-
nance spiking but it reduces the overall magnitude of
each yi ' curve (note the scales of these curves are a fac-
tor of 10 times smaller).

The negative peak in all of these spectra, indicating
transmission, is due to a bleaching (saturation) of the
one-pair exciton transition. Physically, the initial exciton
population created by the pump beam tends to amplify
the probe beam, by way of stimulated emission, when the
probe energy is tuned at or near the exciton linear ab-
sorption peak.

Another feature in all of the curves is the optical
absorption —the region of positive Imp' '. The absorp-
tion may be attributed to the formation of the excitonic
molecule. ' ' The initial exciton population enables the
probe to be more strongly absorbed when its energy
matches the exciton-biexciton transition energy
ficogo —%cob, . In the present case, the biexciton binding
energy is 8.36 meV. The maximum of each curve occurs
at energies slightly greater than —2.Ox V'21p = —9.3
meV; in other words, very near the biexciton binding en-
ergy. Calculations for a wire of dimensions
I X 8'=225 X 175 A substantiate this interpretation. In
that calculation, the biexciton binding energy was —5.55
meV, and the maxima of the Imp' ' curves occurred at
energies slightly less than —1.3 X&21 p

= —6.61 meV.
In the last two plots, Figs. 8 and 9, we show typical

curves for a single-beam pump-probe experiment, where
y=0. 110 and I 0, respectively. Since the pump and
probe beams are always in resonance, the factor
1/[(co„—co2) +y ] becomes just 1/y, which is constant,
and it now acts to modulate the magnitude of Imp' '.
Both curves exhibit a similar structure but, as expected,
the curve for which y =0.1I"0 is approximately an order
of magnitude larger.

IV. SUMMARY

We have solved the exciton/biexciton binding-energy
problem in a three-parameter variational calculation in
the effective-mass approximation for a rectangular GaAs
quantum wire surrounded by Alo 3Ga~ 7As cladding ma-
terial with finite Al graded band ofFsets included. For the
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biexciton part of the problem, we employed a Heitler-
London-type wave function.

Because of the inclusion of the graded finite band
offsets, the single-particle states which make up the
exciton/biexciton envelope functions had to be obtained
numerically. For illustrative purposes we limited our-
selves to one set of wire dimensions —L X 8'=125X75
A —and four characteristic diffusion lengths C = W/16,
W/g, W/4, and 8 /2. We then compared the single-
particle and exciton-biexciton binding energies results
with those of the previous calculation with infinite poten-
tial barriers by Madarasz and co-workers. ' ' All ener-
gies were lowered with the inclusion of the finite band
offsets. For the narrowest grading, we found a percent
difference of approximately 61% for the electron
ground-state subband energy, while for the hole it was
approximately 35%. The exciton and biexciton binding
energies were both reduced by approximately 14%. As
the grading widths increased, so did all energies, because
as the diffusion width is increased the bottom of the well
narrows, pushing the states up.

Next we applied the results of the exciton/biexciton
calculation to obtain the nonlinear optical susceptibility

Unlike our previous work, ' ' in which we calcu-
lated only peak values of

~
Imp' '~ for resonant exciton ab-

sorption using the RWA, here we studied Imp' ' as a
function of pump-probe frequencies in a narrow range
about the exciton resonant absorption. To do so, we used
the general expression derived in the Appendix of our
previous paper via a double Feynman diagram method
16 diagrams all told. We then reasoned that near reso-
nance the ground states of the exciton and biexciton
would be the major contributors to y' '. Accordingly, we
simplified the general expression, retaining only ground-
state terms.

With the resulting expression, we calculated values for
Imp' ' as a function of the pump and probe frequencies

for dual- and single-beam experiments. In each case, we
repeated the calculation using two different sets of relaxa-
tion parameters: y=0. 1I o and all I;1=I o, and for
y=l'; =I o. We found, in general, the structure of the
Imp' curves to be strongly dependent on the values of
relaxation parameters used. Specifically, in the present
calculation, we found the overall magnitude and struc-
ture of the curves to be a strong function of the longitudi-
nal relaxation parameter, y. The smaller the value of y,
i.e., the longer the mean lifetime of the exciton, gave re-
sults which were systematically about an order of magni-
tude larger than when the larger value y was used, and
considerably enhanced the resonance when the probe
equaled the pump in the dual-beam case, which was espe-
cially dramatic when the pump was slightly detuned from
the exciton resonance. The maximum values of the re-
sulting

~

lmy' ' 's were on the order of 10 —10 ' esu.
A feature of all the curves was a region of positive

Imp' ' for energies below the exciton saturation. The op-
tical absorption was attributed to the biexciton forma-
tion. This absorption region was also of considerable
magnitude but was displaced within 1 —2 FWHM below
the exciton resonance absorption, peaking at approxi-
mately the exciton-biexciton transition energy.
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