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An atomic-structure model of quasicrystalline i-(Al(j 570Cuo l08Lio 322) is presented and compared with
models obtained earlier using difFerent approaches. The quasicrystal, assumed quasiperiodic, is
represented by a higher-dimensional crystal which is modeled directly in the hyperspace, unprejudiced
by any tiling assumptions. The modeling follows a method which systematically enforces chemical (ster-
ic and stoichiometric) constraints directly in the hyperspace. A detailed comparison and examination of
earlier models using this method reveals significant violations of the constraints, including some unphysi-
cally short interatomic separations.

I. INTRO)DUCTIQN

Since the discovery of quasicrystals in 1984,' many
researchers have concentrated their e6'ort on determining
atomic structures of quasicrystals. Structure determina-
tion is a necessary step in understanding and explaining
stability and other physical properties of quasicrystals.
Significant progress in quasicrystal structure determina-
tion has been achieved in the last few years. Most ad-
vances have been accomplished for decagonal quasicrys-
tals, but significant progress has been made also in mod-
eling icosahedral and, to a lesser extent, octagonal and
dodecagonal quasicrystals. Structural models for several
quasicrystalline compounds appear to be excellent candi-
dates for the final structure refinement. In addition to the
proposals for models of specific quasicrystalline com-
pounds, there are also beginning to emerge some general
principles and methodology of quasiperiodic crystal mod-
eling. Conceptual frameworks used in modeling
quasicrystal structures range from the large unit cell' '"
and crystal twinning models, ' through the bond-
orientationally ordered glass' and random tiling mod-
els, ' ' to the quasiperiodic crystal models. ' ' Al-
though there are now well-established "quasicrystalline"
materials belonging to each of these conceptual frame-
works, the quasiperiodic crystal concept appears to be
the most developed.

In this paper, we shall construct a quasiperiodic crystal
structure model of i-(AlQ 57QCuQ, QsLiQ 322). Our goal is for
the model to achieve a suKciently good fit of the experi-
mentally obtained di6'raction data, so that it can be used
as a starting point in the final structure refinement. Al-
though the major effort in quasicrystal structure deter-
mination is currently focused on compounds with much
more perfect quasiperiodic order, several groups attempt-
ed to construct quasiperiodic structure models of i-
(AlQ 57QCuQ tQsLIQ 322). We believe that the represen-
tation of i-(A1Q 57QCUQ ]QsL1Q 322) by a quasiperiodic crystal

should be useful even if it is only an idealization. Such a
view is supported by several observations. The quasicrys-
tal di6raction peaks can be indexed to within 10 A
using an icosahedral reciprocal lattice, and the coherence
length, measured by the inverse of the characteristic
half-width of the di6raction peaks, is not too
short, on the order of 1000 A. Moreover, the i-
(AlQ 57QCUQ fQ8L1Q 3pp) Patterson function is extremely
simple when viewed as quasiperiodic, which would
not be expected if quasiperiodicity were a bad assump-
tion. Similarly, the reconstructed quasiperiodic density
Of t (A1Q 57QCuQ $QsL1Q 322) is also very simple.

Although, based on general arguments, ' ' all current
quasiperiodic models of i-(A1Q57QCuQ fQ8LiQ 3/2) can be
represented as six-dimensional periodic crystals, some of
them are constructed as quasiperiodic tiling models in
real space, ' ' while others result from a more or
less ' direct six-dimensional modeling. By systemati-
cally enforcing steric and stoichiometric constraints
directly in six dimensions, our six-dimensional i-
(AlQ 57QCuQ ~QsLiQ 372) structure model is developed unpre-
judiced by any tiling assumptions. It incorporates the in-
formation obtained from our previous solutions of the
phase problem ' and from the subsequent density
reconstruction. ' In order to determine the model pa-
rameters, we fit the x-ray- and neutron-di6'raction data of
Ref. 25, collected for a sample with determined overall
density and stoichiometry. Having a well-characterized
sample is essential to our approach in which density and
stoichiometry are used as a priori constraints.

The result of our modeling is a quasiperiodic crystal
structure with space group symmetry I'53m. It has a
six-dimensional simple hypercubic lattice with three
species of hyperatoms (three-dimensional volumes) per
hypercubic unit cell. The three species are located at ver-
tices ( V), midedges (E), and body centers (B) of the hy-
percubic lattice, respectively. Each hyperatom is as-
sumed to be parallel to the inner space and to have homo-
geneous chemical composition. The shapes of these hy-
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peratoms are shown in Fig. 1, and their chemical compo-
sition is listed in Table I. The other model parameters
are the hyperatom Debye-Wailer factors and an overall
scale factor listed in Table II. In order to evaluate good-
ness of the fit obtained with our model, we calculated the
standard crystallographic measures, the so-called R fac-
tors, listed in Table III. We obtained an excellent R fac-
tor RF =0.068 for neutron-diffraction data and
RF=0. 123 for x-ray data. Structural models with such
residual factors are usually considered good starting
points for the refinement of periodic crystal structures.
We also list in Table III the deviations of the model's Al,
Cu, and Li number densities from the experimentally
determined ones.

A comparison of our i (Ale 5-7oCu&, osLio 322) structure
model with some earlier quasiperiodic structure models,
also listed in Tables I—III, is complicated by several fac-
tors. Some of these models were fitted to data obtained
on different samples. Moreover, the overall density and
stoichiometry ' of these samples or values of some of
the fitting parameters ' were often not given. After
making adjustments to deal with this, we find that al-
though some of the models report somewhat lower R fac-
tors, our model is the only one that both satisfies steric
constraints and produces atomic densities closest to the
experimentally determined ones. Therefore we conclude
that our model is an excellent starting point for the final
structure refinement of the quasiperiodic structure model
of i-(Ale 57QCuo ]osLlo 3pp).

(c)

FIG. 1. Shapes of the (a) V, (b) E, and (c) B hyperatoms in
our model of i-(AlQ 57QCUQ 1QSL1Q 322) structure. The small
volume in (a) shows the shape of the hole located at the center
of the Vhyperatom.

The rest of the paper is structured as follows. In Sec.
II we state and justify our modeling assumptions and for-
mulate a systematic approach for enforcing the chemical
(stoichiometric and steric) constraints. In Sec. III we in-
troduce a parametrization of hyperatom shapes and com-
positions for our modeling of i-(Alo 57oCuo, osLio 322) hy-
percrystal and we present the results of the diffraction
data fitting. Section IV is devoted to a discussion of the
results: an evaluation of the results, their comparison
with the earlier solutions of the phase problem, a sum-
mary of previous models, a comparison between the mod-
els, and a brief discussion of our model in the physical
space. Conclusions of this paper are summarized in Sec.
V. We also include four Appendixes in this paper. In

TABLE I. Optimal chemical compositions p„;of each hyperatom obtained in several models of i-
(AlQ 57QCuQ 1Q8LiQ 3/2) for which we knew a hypercrystal description, as described in Sec. IV C. Rows are
labeled by the source where the model was introduced. Only x-ray-diffraction data were used in the
modeling, unless a second row is listed for the same source, in which case it refers to the neutron-
diffraction data. For the sake of a comparison, results available from the embedding of R-
(AlQ 564CUQ 116LiQ 32Q) in the hypercrystal and from a solution of the phase problem are listed in the first
two rows. Numbers enclosed in parentheses are statistical errors in the last significant digits resulting
from the fits. Question marks indicate that the uncertainty was not given in the reference. If the partic-
ular composition was fixed in the model, no uncertainty is listed.

pv, A1 (%)pv, C. (%)pv, L (%)pE, A1 (%)pE, C (%)pE, Li (%) pB, A1 «o) pB, C (%) pB, Li (%)
34' 54( 1) 46( 1 ) 0 88.6(6) 11.4(6) 0 21.4 0 78.6
30 0 0 25(4) 0 75(4)

20"
23
24

Appendix C

22
25

Appendix D

This paper

84.6
69(?)
72(?)
69(1)
81(6)
64(8)
71.6(?)
71.6
76(1)
89(6)
64( 1)
77(6)

15.4
22(?)
19(?)
31(1)
19(6)
36(8)
28.4(?)
28.4
24(1)
11(6)
36(1)
23(6)

0
9(?)
9(?)
0
0
0
0
0
0
0
0
0

84.6
75(?)
75(?)
88.8(3)
85(2)
85(3)
87.9(?)
87.9
86.6(3)
82(2)
89.6(3)
86(2)

15.4
10(?)

11(?)

11.2(3)
15(2)
15(3)
12.1(?)

12.1

13.4(3)
18(2)
10.4(3)
14(2)

0
15(?)
14(?)
0
0
0
0
0
0
0
0
0

0 0 0
17(?) 0(?) 83(?)
15(?) 1(?) 84(?)
0 0 100
0 0 100

20.0 0 80.0
0 0 100
0 0 100
0 0 100
0 0 100
0 0 100
0 0 100

'Percentages of the Al and Li at B are set equal the ratio of the number of embedded Al atoms (30) and
the number of embedded Li atoms (110) to the total number of embedded atoms (140) at B (see Table IV
below}.
Locations of Li were not given in this model.

'Both x-ray and neutron data were fitted simultaneously, ' Al and Li are not mixed, but belong to distinct
hyperatoms associated with the body center.
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TABLE II. Optimal Debye-Wailer parameters 8, B, and 8, and the absolute scale s obtained in several models of
i(Alp 57QCUQ IQ8Lip 322) for which we were able to extract their values as described in Sec. IV C. Pairs of rows, the first obtained for x-
ray data and the second for neutron data, are labeled by the source where the model is presented. For the sake of a comparison, re-
sults available from solutions of the phase problem are listed in the first three rows. DW parameters are listed in the units of 10 A
for 8 and A for 8' and 8 . The absolute scale s is listed in the units of 10 e/A for x rays and 10 A for neutrons.X —2 —8

Ref. By BEl BEt 8 BE

30

1.24(2) 1.24(2)
1.20(3) 1.20(3)

1.24(2) 1.24(2)
1.20( 3 ) 1.20( 3 )

1.1(1) 1 ~ 3(2) 1.17(9) 0.8(5)

0.018(1)
0.39(7)

0.05(3) & 4.11(3)

0.018( 1)
0.39(7)

', & 1.16(7)
I & 0.2(2)

0.018(1)
0.39(7)

0.018( 1 ) 1.771( 1 )

0.39(7) 7.4( 1)

& 4.12(2) & 4.12(2) 7.1(5)

Appendix C

22c, d

25,52'

Appendix D

This paper

1.45(6)
1.4(1)

1.43(7)
1.9(2)

1.15(4)
1.26(8)

1.41(4)
1.30(6)
1.19(5)
1.3(1)
1.36(6)
1.2(1)

1.42(3)
1.21(4)
1.41(6)
1.9(2)
1.32(7)
2.0(3)

1.42(3)
1.21(4)
1.06(4)
1.10(8)
1.17(4)
1.10(8)

1.3(1) 1.14(6) 1.14(6)

0.8(3)
1.1(2)
1.6(2)

14(i)
1.6( &)

1.6(?)
2.2(3)
1.3(2)
1.5(2)
1.2(2)

—0.03(2)
0.0(2)

0
0

—0.040(1)
0.0(1)
0.012(3)

—0.004(3)

0.00(4)
0.0(3)

0
0
0.00(4)
0.0(3)
0.41(7)
0.3(4)

0.08(5)
0.0(3)

0
0
0.12(4)
0.0(3)
0.08(4)
0.0(2)

0.21(5)
0.9(2)

0
0
0.61(5)
1.1(2)
0.00(5)
0.0(1)

1.1(7)
0.9(8)

0
0
0.1(3)
1.6(8)
0.0(3)
3(1)

1.81(2)
7.4(2)

1.7( ~)

7.8(~)
1.64(1)
6.8(2)
1.69(1)
7.2(2)

'Only the overall, spherical 8 and 8 parameters are available.
Only parameters for the neutron data are available.

'All Debye-Wailer parameters were assumed to be spherical, 8« =8«.

TABLE III. Comparison between difFerent models. For each model, the difference between the model and the experimental num-
ber densities of i-(Alp 57QCup &«Lip»2), hn;, is listed in the first three columns for the three chemical sPecies i =Al, Cu, and Li. An
overall measure of these difFerences, An, is given in the fourth column. Each row is labeled by the source of the model. Only x-ray-
diffraction data were used in the modeling, unless a second row is listed for the same source, in which case it refers to the neutron-
diffraction data. For comparison, the last row gives uncertainties in experimental determination of these densities. Note that we ad-
justed for difFerences in the lattice constants of i-(Alp»pCup &Q8Lip 322) and the samples for which the models were developed by a uni-
form expansion or compression of the model. The frequency (per atom) of unphysically short interatomic distances occurring in the
model is given in the fifth column. The sixth and seventh columns give the R factors and the numbers of the fitted independent peaks
as found in the original papers. The remaining three columns list reduced y and two other common crystallographic measures for
the goodness of the fit.

Ref. AnA& (%) Snc„(%) hnI, ; (%) bn (%) n,h«, (%) Rp- (%) 2
gV WR (%)

20'
23,24b

Appendix C

22

21'

25,52

Appendix D

This paper

Expt. (Ref. 32)

16.8
8.4

14.3

—3.6

—14.8

—0.4

—4.3

—3.4

+1.5

11.9
—4.9

14.3

7.5

—14.8

—0.9

—4.3

—3.4

+3.1

24.2
—4.1

—24.5

0.8

—0.7

+3.4

31.8
10.6
31.8

8.4

20.9

9.5

6.2

49

4.8

4.2

=0.2

10
7.0

13.8
9.1

7.6
8.5

16
13

8
8
9.0
7.5

12.3
6.8

20
37
56 31.5
40 3.7
56
40
56
40
56 24
40 4
56 16.0
40 32
56 28.7
40 2.4

14.0
12.8

8
11
9.2
9.7

10.3
8.7

25.4
14.8

17
14
18.1
13.8
24.3
12.0

Locations of Li were not given in this model, and so we determine hnI; using stoichiometry of the modeled sample.
The results for the two models and samples are identical, but the additional 60 peaks measured in Ref. 24 cannot be fitted with either

of the two models.
'We assumed that Al/Cu stoichiometry is the same in the model as it is in the sample.
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Appendix A we summarize general results for calculating
structure factors of a quasiperiodic crystal starting from
the structure of its higher-dimensional crystal (hypercrys-
tal) representation and we set most of the notation used
in the paper. Readers, particularly those not very Quent
with the hypercrystal approach to quasicrystals, are
urged to read this appendix before proceeding to Sec. II.
The relationship between quasiperiodic crystals and their
periodic approximants is discussed in Appendix B from
the point of view of hypercrystals. An Ammann tiling
model of i-(Al(j 57pCup ipgLip 32/) is formulated and results
summarized in Appendix C. Another structure model of
i (Alp 57pCup ipgLlp 322) is analyzed in Appendix D.

II. CONSTRAINTS AND ASSUMPTIONS

In this section we shall introduce and justify several
general assumptions that will be made in our modeling of
the i-(Alp 57pCup ipgLlp 322) structure. Furthermore, we
shall analyze and implement constraints imposed on our
modeling by experimental observations. These assump-
tions and constraints will be based on experimental obser-
vations of i-(Alp 57QCup, pgLi(j 3/2) (Refs. 25,32) and its re-
lated crystal structure R-(Alp 564Cup ii6Lip 32p) (Ref. 34)
and on reconstructed Patterson functions and densi-
ties ' for x-ray and neutron scattering. Since we are
interested here in obtaining a good structural model of i-
(Alo. svoCuo. (ogLio. 3zz) which is to serve as a starting point
for a future refinement, it is expected that some of the
simplifying assumptions that we shall make will be aban-
doned at the time of the refinement. We have relegated
many of the technical definitions to Appendix A, and the
reader unfamiliar with Refs. 29, 35, 36, and 39 is advised
to check there if a term is not defined on its introduction.

Based on the observed positions of the di6raction
peaks, our fundamental assumption is that the i-
(Al(j 57(jCu(j, (jgLi(j 32/) structure is quasiperiodic and can
be described as a cut through a six-dimensional periodic
hypercubic crystal with the lattice constant a =7.15 A.
We shall adopt the six-dimensional description in which
the Cartesian basis e, j= 1, . . . , 6, of the six-dimensional
space is along the six orthogonal generators of the hyper-
cubic lattice and its projections on the physical and inner
space, ej. =—(1/&2)(ei, e ), are along the six fivefold rota-
tion axes of the icosahedral group. Whenever necessary,
we shall use the specific coordinate systems and indexing-
described in Refs. 35,36. We shall assume that i-
(Al(j 57pCup ipgLlp 3p2) has P53m space group symmetry
and that the embedding of the i-(Alp ~7oCup ipgLip322)
atoms into the hypercrystal results in three types of hy-
peratoms which are centered on vertices, edge centers,
and body centers of the hyperlattice. These hyperatoms
are assumed to be Hat with uniform chemical composi-
tions. The V and E hyperatoms may have di8'erent com-
positions, but are both assumed chemically disordered,
partially occupied by Al and Cu. The B hyperatom is as-
sumed to be composed exclusively of I,i.

Our model will be constrained to reproduce the overall
density and stoichiometry of the sample (within the ex-
perimental accuracy) and to respect the steric con-
straints, i.e., the minimal interatomic distances. We shall

(b) (c)

[ [

(&)

FIG. 2. Outer bounds for the (a) V or B and (d) E hyper-
atoms, resulting from their respective first [(b), (e)] and second
[(c), (f)] second nonoverlap shells.

determine the model parameters in the next section by
optimizing the difTerences between the predicted x-ray- or
neutron-di6'raction intensities and these observed in Ref.
25. This data set was collected using a sample with
specified density and stoichiometry that will be en-
forced in our model by fixing the volumes of the
hyperatoms to v j +6vz =5.48(7) X 10 A and
v~ =2.60(5) X 10 A . We shall also strictly enforce the
steric constraints by means of the restrictions they im-
pose on hyperatom shapes. Thus the hyperatom shapes
will be limited to the interior of certain "outer bounds"
shown in Figs. 2(a) and 2(d), and they will not be allowed
to have any overlaps when placed at the locations shown
in Figs. 3(a)—3(f).

(b)

FIG. 3. Relative positions and orientations of the outer
bounds in the first [(a), (c), (e)], and second [(b), {d), {fl], B-V
[(a), {b)],B E[{c),(d)], and V E[(e)-, (f)] nonoverlap sh-ells.
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A. Hyperatom positions and fluctuations

An analysis of the six-dimensional Patterson func-
tions ' and reconstructed densities ' of i-
(AlQ 57QCuQ, QsLiQ 323) is consistent with the P53m space
group symmetry of the hypercrystal and with the hy-
peratoms located at the vertex

r„=( 000000),
six equivalent edge centers

(2.1)

r@ =—(100000), . . . , rE = —(000001), . . . ,
1 6

(2.2)

and at the body center

r =—(111111)B (2.3)

of the unit hypercell.
These conclusions are reinforced by an analysis of the

R-(AlQ 564CuQ»6LiQ 32Q) structure, viewed as a rational ap-
proximant of i-(A1Q 57QCuQ $QsLiQ 32$). As shown in Ref.
29, a crystalline structure very close to R-
(AlQ 564CuQ J J6LiQ 33Q) can be obtained in physical space by
a linear distortion of the i-(AlQ57QCuQ, QsLiQ 322) hyper-
crystal. Conversely, as demonstrated in Appendix B, by
inverting this linear distortion, R-(AlQ564CuQ JJ6LlQ 32Q)

can be lifted into the hypercrystal unit cell to give a
discrete set of pointlike atoms at the locations listed in
Table IV and shown in Fig. 4. Since these pointlike
atoms should be located within the three-dimensional hy-
peratoms, their location and chemical composition may
provide useful information about the locations, composi-
tions, and, to a lesser extent, shapes of the hyperatoms.
As already noted, ' we can see that all seven orbits of
the R-(AlQ 564CuQ»6LiQ32Q) atoms can be grouped into
three sets in the hypercrystal: one around a vertex,
another around an edge center, and the last one around a
body center of the hypercubic unit cell. This association
with vertices, edge centers, and body centers would be ex-
act if the small physical space components hark listed in

the table were exactly zero. Therefore, in order to relate
the embedded R-(AlQ564CuQ»6LiQ 32Q) with the hypera-
toms in the i-(AlQ 57QCuQ JQsLiQ 32@), atomic coordinates in
R-(AlQ 564CuQ J J6LiQ 3QQ) need to be adjusted by expanding
the R-(AlQ 564CuQ»6LiQ 33Q) unit cell by a factor of
I. '=1.001 (to adjust the lattice constant of the crystal
to that of the hypercrystal) and by setting b,rk =0. The
last condition is consistent with the assumption that the
hyperatoms are fiat, i.e., s„(r ) =0. The shapes of the hy-
peratom domains U„must be also consistent with the
embedding of the so-adjusted R-(AlQ 564CuQ J J6LiQ 3$Q).
That is, the embedded atoms must fall within the
domains v„,as shown in Fig. 4.

We shall assume that any disordering of the hypera-
toms around their positions given by Eqs. (2.1)—(2.3) is
Gaussian and independent of r,

B„(r):—B„,p= V, EJ,B . (2.4)

and

(2.6)

where Bv, 8&, Bz, and Bz are positive parameters and I

and I are the unit matrices. For the edge center hyper-
atom at —,'e, the diagonal blocks are

BE =BEJeJeJ+B—E, (l eJej ), —
1

(2.7)

BJ BJ mJwJ +BJ ()j r J&l)
E

—— Eie e E,
—eje,. (2.8)

and the off-diagonal block is

From the Y& symmetry of the vertices and body centers
and the Dsd symmetry of the edge centers, we can also
determine the number of independent components of B„
tensors at these sites. Only the two diagonal blocks B„
and B„arenonzero for the vertex and the body center,
and they are scalars,

(2.5)

TABLE IV. Embedding of the R-(Alp 564Cup ]~6Lip»p) atoms into the hypercrystal. The crystal orbit
number k and its chemical composition, as given in Ref. 34, are listed in the first two columns. The
next column identifies the hyperatom type with which the embedded atom is associated. Multiplicity
(size of the orbit) of the embedded atoms with respect to the corresponding hyperatom site is listed in
the next column. Physical and inner space distances of the embedded atoms from the center of the as-
sociated hyperatoms are listed in the fifth and sixth columns. The inner space distances for the ideal-
ized R-(Alo, 44CuQ»&LiQ 32o) structure, in which case all

~ hark ~
=0, are indicated in the parentheses (Ref.

22). The R-(Alp 564Cup»6Lip 32p) crystal is uniformly expanded by the factor L =1.001 giving the
periodic lattice constant ap = 13.916 A.

Al:CU:Li

88.6:11.4:0
0.0 100
0:0:100
53.8:46.2:0
88.6:11.4:0
100.0 0
0.0 100

8
B
V
E
8
8

Orbit

10
20
60
60
20
30
30

0.0163
0.0898
0.0654
0.1714
0.0462
0.3295
0.1022

/~rJ,
J (A)

2.5995(2.5973 )

6.3841(6.3623)
8.2038( 8.2138)
5.2339(5. 1948)
4.5080(4.4989)

10.942( 11.020)
3.6492( 3.6733 )
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BE =—BEIe~e-, (2 9) and, as a consequence,

where BEI, BE„BEIand B~, are positive parameters and
(BE&) ~BF&Bz&. Because of the overall icosahedral sym-
metry, these parameters are independent ofj.

B. Hyperatom compositions and volumes

Although some of the inner space variation seen in the
reconstructed Patterson ' and density ' functions
may come from a compositional variation of hyperatoms
rather than from their Gaussian disordering, we shall
assume that the chemical composition of the hyperatoms
is homogeneous. In other words, we shall assume that

(2.11)

O~p„;+ 1,
gp„,=1,

(2.12)

(2.13)

However, in order to partially compensate for this
simplification and since i-(Alo 570Cuo iosLio 3gp}

could be chemically (Al/Cu) disordered like R-
(Alo g~Cuo i i6LiQ 320), we shall also assume that hypera-
toms are a pnon chemically mixed and that p„,. are only
constrained by Eqs. (A4) —(A6), namely,

p„;(r ) —=p„;, i =Al, Cu, Li, (2.10)

FIG. 4. Ideal inner space locations of the embedded R-{Alo,64Cuo»6Lio»0) atoms from Table IV. The clusters of embedded
atoms are centered (a) at a vertex for orbit K =4, (b) at an edge center for orbits k = 1 and 5, or (c) at a body center for orbits k =2, 3,
6, and 7. The spheres representing Li are the largest, with the size of spheres representing the other embedded atoms decreasing with
the increase in Cu fraction. The correct site symmetries result from the five equivalent ways of embedding the crystal symmetry Tz
into the hypercrystal symmetry Yz. We also show the edges of the hyperatoms determined in our model.
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7l PI =7lI. (2.14)

Clearly, by symmetry, we must have pE; ——pE; and

nE —=nE, independently of the edge direction. Further in-
J

formation about the chemical compositions p„;of the hy-
peratoms can be obtained from the i-(Alp 57QCup ipgLip 322)

density reconstruction. ' We shall also use the estab-
lished structural similarity between crystalline R-
(Alp 564Cup i«Lip 32Q), whose structure is well known,
and quasicrystalline i-(Alp 57pCilp ipgLlQ 322).

The reconstructed six-dimensional l-

(Alp 57QC Q lpgI. ip 322) density of x-ray scatters is
significant only at vertices and edge centers, while the
neutron scatterer density is appreciably positive at the
vertices and edge centers, but considerably negative at
the body centers. ' This suggests that the Vand E hy-
peratoms are chemically predominantly Al and Cu, while
the B hyperatom is predominantly Li. Namely, Al and
Cu are considerably stronger x-ray scatters than Li.
They also have positive scattering lengths, while Li has a
negative scattering length for neutrons. A more detailed
quantitative analysis of the reconstructed densities at the
vertex and edge center suggests that the Cu concentra-
tion is larger in the V than in the E hyperatom.

These conclusions are strengthened by results
of the embedding of the crystal structure R-
(Alp 564Cup ii6L1Q 32Q) into the hypercrystal as shown in
Fig. 4 and described above and in Appendix B. Indeed,
we see from Table IV that the Cu-rich orbit
(Alp 53gCup «2, orbit No. 4) is the only orbit which maps
into the vertex region, while the two Cu-poor orbits
(Alp gg6Cup i i4 orbits Nos. 1 and 5) are the only orbits
that map into the edge centers. Similarly, all three Li or-
bits (Nos. 2, 3, and 7) map into the body center. In addi-
tion, the pure Al orbit No. 6 also maps into a body
center.

Thus both the density analysis and the embedding of
the R phase into the six-dimensional hypercrystal, de-
scribed above, lead us to assume that the V and the E hy-
peratoms are each a mixture of Al and Cu only, with the
V hyperatom being richer in Cu than the E hyperatom.
Furthermore, we should also assume that there is a Li hy-
peratom and possibly an A1 hyperatom at the body
center. In order to simplify our analysis, we shall neglect
here the body center Al hyperatom, which, based on the
weak body center contribution to the x-ray Patter-
son and density ' functions, should have a small-
er volume. However, this Al hyperatom should be in-
cluded at the refinement stage. In summary, we shall as-
sume

P vLi 0& p vAl+P vcu (2.15)

pX,
"I =C'r

PljCJ

J

(2.18)

=n~&+ nc„+ni;=6.05(9) X 10 A (2.19)

leading to the characteristic physical and inner space
length scales I=nT ' =2.55 A and l =nT a =20. 1 A,
respectively. In addition, using our assumptions for p„;
[Eqs. (2.15)—(2.17)], we also obtain

and

n~ =nl; =1.95(7)X 10 A (2.20)

nz =ni —+6nz=nAi+nc„=4. 10(7)X10 A . (2.21)

Values of the hyperatom volumes will be constrained
by the density and stoichiometry of i-
(Alp 57pCllp ipgLlp 322) ~ Therefore it is more convenient to
deal with the inner space volumes associated with each of
the chemical species (by u; =n;Qu than with the densities
n; themselves. Using the densities of Al, Cu, and Li,
determined above, we find u &&

=4.61(7)X 10 A,
vc„=0.87(3)X10 A, and u„;=2.60(5) X 10 A . This
leads via Eq. (2.19) to the conclusion that the total inner
space volume of the hyperatoms in the hypercubic unit
cell, i.e., one at the vertex, plus six at the six mutually
equivalent edge centers (uE ——uE), plus one at the body

J
center, is

T V E B Al Cu Li
j. —

=8.08(9) X 10 A (2.22)

Similarly, from Eq. (2.20), the volume of the hyperatom
at the body center is

uz=ui;=2. 60(5)X10 A (2.23)

while from Eq. (2.21) the sum of the volumes of the hy-
peratoms at the vertex and at the six edge centers is

uz =—vv+6uz=v~&+vc„=5.48(7)X 10 A . (2.24)

where X, is Avogadro's number, m; is the atomic mass
(m&& =26.982 g, mc„=63.546 g, and mL; =6.941 g), and
c; is the number fraction of ith species in i-
(Alp 57QCup ipgLlp 322) [czi —0.570( 14), cc„=0.108(4),
and cl;=0.322(10)]. This results in n~&=3. 45(5) X10
A, n c„=0.65(2) X 10 A, and n L;

= l. 95(7 ) X 10
A . Therefore, following Eqs. (2.13) and (2.14), we may
immediately conclude that

nT =n V+6nE+nB

PE, Li 0& PE,Al+PE, cU (2.16)
C. Steric constraints

and

PB,cz PB Al 0, PB Lj 1 (2.17)

Using the measured mass density of p =2.46( 1) g/cm
and the i-(Alp 57QCup lpgLip 322) stoichiometry, we can
determine easily the number density n; of each chemical
species i from the equations

In order to complete the characterization of our i-
(Aip 57QCup, pgLip 322) structure model, we shall fully de-
scribe the shapes (the boundaries) of the hyperatom
domains U„in this section. We shall 6rst specify the con-
straints and the assumptions which we impose. An
analysis of i-(Alp 57pCup, pgLip 322) x-ray and neutron Pat-
terson and density ' functions strongly suggests
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that we may assume that these hyperatoms are "Bat,"
that is,

s„(r ) =0, p= V, E.,B . (2.25)

This conclusion is also supported by the embedding of
R-(Alp 564Cup»6Lip 3zp) in the hypercrystal described ear-
lier. We note in Table IV that all Ark are small, suggest-
ing that the corresponding hyperatoms are indeed Hat.

The condition that no unphysically short interatomic
distances are generated when the physical space cuts
through the hypercrystal imposes strict geometrical (ster-
ic) constraints on the shape of hyperatomic domains. It
follows from Eqs. (Al 1) and (2.25) that two hyperatoms,
one at r„and another one at R+r, where R is a hyper-
lattice translation, generate pairs of atoms in physical
space separated by

Then we shall examine the nonoverlap constraint in that
order (first shell, second shell, etc.). It is clear that going
beyond a certain shell will produce no additional con-
straints so that only a finite number of hyperatom loca-
tions will need to be examined.

This test has to be carried out for all p and v, but it is
useful to start with @=v since in that case symmetry and
the equivalence of r„and R +r„can be used most
efticiently to restrict the shape of v„.In cases with a
sufBciently high symmetry, this yields for a given p an
inner space (polyhedral) boundary, which we shall call
"outer bound(ary), " within which the hyperatom shape
v„must be contained in order for the steric constraints
between all pairs of atoms of type p to be satisfied. The
condition Eq. (2.27) with pAv can be used to further con-
strain the hyperatom shapes.

r„(R)=R+r, —r„, (2.26) D. Outer bounds on hyperatom shapes

if and only if the inner space domains of these two hy-
peratoms have a nonzero inner space volume overlap
U„„(R)defined in Eq. (A10). Therefore, if an interatomic
distance r„,(R) is not allowed in the structure model of
the quasiperiodic crystal, then the inner space overlap
volume U„(R)of the corresponding hyperatoms must
vanish. This imposes conditions on the modeling of the
shapes of the hyperatom domains which we shall imple-
ment in the following fashion.

Let us denote by r„(;n)the shortest physical distance
allowed between the chemical species of the pth and vth
hyperatom. Then we must make sure that the domain
shapes U„and U are such that the overlap v„(R)van-
ishes for all hyperlattice vectors R for which the separa-
tion r„(R)is smaller than r„,(;„).Formally, this condi-
tion is

0

Ajrc, A&rc 2.532 A, (2.28)

In order to apply constraint Eq. (2.27) to i
(Al() 57QCup (Q8Lip 3g2) quasicrystal, it is first necessary to
determine the shortest allowed interatomic distancesr„(;„).For example, to determine r„(;n}we could use
the appropriate atomic radii of the constituent elements.
However, in the case of i-(Alp 57pCup )p()Lip 322) we also
have the crystalline R-(Alp 564Cup»6Lip 3zp), which has
similar local atomic arrangements. The shortest inter-
atomic distances between the atoms were reported in Ref.
34 for each of the seven orbits listed in Table IV. After
identifying Al and Cu, since they are not distinguished in
our model of the i phase, we find that the shortest dis-
tances among Al/Cu and Li atoms are

ri; L;=2.942 A, (2.29)

for all pvR
such that ~R+r —r„~(r„,( (2.27)

Therefore, given p and v, we select a hyperatom position
r„within the unit cell v of the hypercrystal. Next, we
form a cylinder (tube) parallel to the inner space that in-
tersects physical space on a sphere of diameter r„(
centered at r„.The locations of the hyperatoms of type v
inside the cylinder project onto inner space and give a
discrete set of isolated points [R +r„Jthat surround the
projection r„ofthe original site. This is a consequence of
the general fact that an upper bound on the separation in
physical space implies a lower bound on the separations
in inner space. Then the hyperatom domains v„and v

must be chosen so that there is no overlap between the
domain v „placed at r„and v placed at any of the pro-
jected locations R +r . Typically, the closer the loca-
tion R +r to a given r„,the more restrictive the nono-
verlap constraint will be. Therefore we shall first classify
the "neighbors" R +r of r„into "shells" according to
their distance to r„.Alternatively, Voronoi polyhedra
around the central site may be used to define the shells.

0

rAl/cu, Li =2.854 A . (2.30)

These values are consistent with the atomic (metallic) ra-
dii of Al (1.432 A), Cu (1.278 A), and Li (1.562 A) and
their interatomic separations found in simple alloys.

Since we assumed that the V and E hyperatoms are oc-
cupied by Al/Cu, while the B hyperatom is occupied by
Li, we immediately obtain

P'P(min) EE(min) r PE(min) 2.532 A,
0

rBB(min} 2.942 A,
0

rBV(min) rBE(min)

(2.31)

(2.32)

(2.33)

These values, which are in agreement with several experi-
mental results for E'-(Alp 57pCUQ )psLip 322),
represent approximate bounds. For example, the embed-
ding into the hypercrystal of the idealized R-
(Aip 564Cup &&6Lip3pp) leads to r&E=2. 528 A, which is
smaller than r),z(;„)given in Eq. (2.31), but will be ac-
cepted in our model.

The minimal distances in physical space given in the
above equations and the locations of the hyperatoms
given in Eqs. (2.1)—(2.3) can be now used in the con-
straints expressed by Eq. (2.27). As described above, for
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TABLE V. First two shells of pairs of hyperatoms which
would generate unphysically short interatomic distances in

physical space if their hyperatom domains were to overlap. The
first column indicates the hyperatom types in the pair. Columns
2—5 give, for each shell, number m„ofv hyperatoms in the
shell around a p hyperatom (and vice versa), the six-dimensional
separation r„between the two representative hyperatoms, and
its physical and inner space projections. The hypercrystal lat-

0
tice constant is a =7.15 A.

8-V

V-V

V-F.

12-12
20-20
12-2

60-10
12-12
30-30
12-12
30-30
60-10
60-10
10-10
20-20

r„,(a)

-'(131111)
-'(331113)
2(121111)
2(121113)
(121111)
(121002)
(121111)
(121002)

—'(210022)
-'(340202)
-'(210012)
—'(0122 12)

r~„(A)
1.931
1.785
0.597
2.399
1.194
2.031
1.194
2.031
1.748
2.262
1.015
1.193

r„',(A)

13.236
19.502
10.708
14.544
21.417
22.519
21.417
22.519
12.770
20.410
11.259
13.236

each p we first construct the inner space shells of hypera-
toms of each type v whose domains are not allowed to
overlap with the central p domain. We found that it is
sufhcient to consider only the first two shells for each pair
of hyperatom types, listed in Table V, since further shells
do not efFect any additional constraints. As an illustra-
tion, the first shell of V hyperatoms around a 8 hypera-
tom consists of 12 equivalent hyperatoms (m&i, =12) at
the distance rz&=13.236 A along the 12 fivefold axes of
the icosahedral symmetry of the body center site. A
representative V hyperatom is located at (a/2)(131111)
relative to the 8 hyperatom. The corresponding physical
space distance between them, r&&=1.931 A, is smaller
than the minimal allowed distance rzz~;„~=2.854 A
given in Eq. (2.33).

Since V and 8 hyperatoms have the identical Y& sym-
metries and as seen in Table V the first two V-V shells are
identical to the first two 8-8 shells, the outer bounds for
the two types of hyperatoms are also identical. The re-
sulting outer bound is shown in Fig. 2(a). It is easiest to
construct it by starting from the second shell. The
second shell consists of 30 hyperatoms at the distance of
2g~ a =22.519 A along the 30 twofold symmetry axes,
where a =a /&2=5. 056 A is a projection onto the inner
space of the hyperlattice constant a, r=-(1+&5)/2 and
rI= I/P2+r. If we consider a second shell hyperatom
along one of these 30 axes, we see that the resulting
bounding surface should have D2& symmetry centered at
the point halfway along, and aligned with, this axis. For
a simply connected domain, this forces the bounding sur-
face to be the Dzh mirror plane perpendicular to the two-
fold axis. The 30 such planes, perpendicular to the 30
twofold directions of Yz, close an outer bound, as can be
seen in Fig. 2(c). It is a rhombic triacontahedron of edge

ra and diameters of 2r a =26.474 A, 2&3gda =24. 106
A., and 2gz a =22.518 A, along fivefold, threefold, and
twofold axes, respectively.

The first V-V or 8-8 shell consists of 12 hyperatoms at
the distance of ~ a =21.417 A along the 12 fivefold sym-
metry axes, as shown in Fig. 2(b). The bounding surface
between the hyperatoms at the center and along one of
these 12 axes must have D5d symmetry aligned with this
axis and centered halfway along it. Therefore, besides go-
ing through the center of D~d, this bounding surface
must also pass through the 5 twofold axes of D&d and
through the line along which the two triacontahedra in-
tersect (puckered decagons in the figure). However, these
conditions are insufhcient to completely fix this surface.
The simplest surface would consist of triangular elements
connecting a puckered decagon to its center, as shown in
the figure.

An E hyperatom and its outer bound have D &d symme-

try. The outer bound on the E hyperatom shown in Fig.
2(d) is completely closed by the first E Eshell. -As a
consequence of the P53m space group symmetry, a first
shell E hyperatom is a mirror image of the central E hy-
peratom, as shown in Fig. 2(e). Therefore, if the E hy-
perato;n is simply connected, the corresponding bound-
ing surface must coincide with the mirror plane. Ten of
these planes completely close the outer bound of the E
hyperatom. The second E-E shell produces only overlaps
along lines as shown in Fig. 2(Q.

Further restrictions on the hyperatom shapes will
come from the B-V, B-E, and V-E shells, that is, the case
pAv in Eq. (2.27). For all pAv cases up to the second
shell, we show in Fig. 3 relative positions and orienta-
tions of the outer bounds determined by the IM=v con-
siderations. The first 8-V shell hyperatoms are
r a = 13.237 A apart along fivefold axes, while the second
8-Vshell hyperatoms are +3gr a =19.501 A apart along
threefold axes, as shown in Figs. 3(a) and 3(b). Both
shells cause overlaps of the outer boundaries determined
so far for 8 and V domains and will have to be considered
in the modeling of V and 8 hyperatoms.

The first 8 Eshell hyperato-ms are r a/2=10. 708 A
apart along the common fivefold axis, as shown in Fig.
3(c). Since the fivefold tip of the E outer bound coincides
with the center of the 8 outer bound, it is clear that any
8 hyperatom will impose a truncation of the E outer
boundary. The second 8-E shell hyperatoms share a mir-
ror plane. One fivefold vertex of the E outer bound coin-
cides with a threefold vertex of the 8 outer boundary,
while the other fivefold vertex of the E outer bound is
2g~ a =22.518 A away from the center of the 8 outer
bound along a twofold axis, as shown in Fig. 3(d).
Therefore there are nonzero overlaps between outer
bounds in both 8-E shells that must be considered in
modeling 8 and E hyperatoms.

The first V-E shell hyperatoms also share a mirror
plane. One fivefold vertex of the E outer bound is r a
from the center of the V outer bound along a fivefold
axis, while the other fivefold vertex is &3gr a from the
center along a threefold axis, as shown in Fig. 3(e). This
first V-E shell causes an overlap between the outer boun-
daries of V and E domains. The second V-E shell hypera-
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toms again share a mirror plane. A fivefold vertex of the
E outer bound is located exactly at the same point as in
the first V-E shell, r a from the center of the V outer
bound along a fivefold axis. However, as shown in Fig.
3(f), the E outer bound is oriented here like it is in the
second B Es-hell [Fig. 3(d)]. Since there is no overlap be-
tween the second shell V-E outer bounds, only the first
shell overlaps need to be considered in modeling V and E
hyperatoms.

III. PARAMKTRIZATION AND FI'j. I'ING

In this section we shall describe a parametrization of
hyperatom shapes and show that the hyperatom volume
constraints [Eqs. (2.23) and (2.24)] and the nonoverlap
steric constraints [Eq. (2.27)] completely fix the parame-
ters yielding the shapes shown in Fig. 1. Then we shall
show that the Al concentration in the vertex hyperatom
is the only parameter needed to specify the composition
of the hyperatoms. Finally, we shall formulate our op-
timization procedure for fitting experimental diffraction
data, present results of the optimization listed in Tables
I—III, and quantify the goodness of the fit.

be parametrized with the radii along the twofold, three-
fold, and fivefold rotation axes, denoted r z, r 3, and r 5, re-
spectively. We shall vary these three radii to generate
different shapes of the body center hyperatom. This pa-
rametrization includes an Ammann tiling model of i-
(Alo 57pCuo iosLlo 3pp) further discussed in Appendix C.
For more complicated domain shapes, which may be
necessary in the refinement process, one can introduce
more parameters associated with a finer triangulation.

It is not difBcult to find a range of allowed variation of
the radii r z, r 3, and r 5 and a constraint that they must
satisfy. Earlier consideration of the outer bound of the B
hyperatom shown in Fig. 2(a) is sufficient to deter-
mine the upper bounds r ~

& r a /2= 10.708 A,
r3 &3rlr a =12.053 A, and r~ ~ re a =11.259 A. No
additional inequalities are needed to satisfy the B-S nono-
verlap constraints. However, since the volume of the
body center hyperatom is fixed by Eq. (2.23) to
us=2. 60(5)X10 A, it establishes an additional con-
straint which can be used to provide lower bounds on the
radii and to eliminate one of them in favor of the other
two. It is a matter of simple geometry to evaluate

A. Hyperatom shape parametrization v~ =120 — — r5r3ri .i 1 i i i
3

(3.1)

There are several ways of parametrizing hyperatom
shapes, depending on the assumptions that restrict the
class of possible shapes. For example, as in the study of
quasicrystal stability, it can be assumed that the bound-
ary of a hyperatom is described by a function r =g„(r ).
This function would then be expanded in properly sym-
metrized spherical harmonics (Fz harmonics for p= V
and B or D5d harmonics for p=E~), the sum truncated,
and the expansion coefficients used as fitting parameters.
However, an implementation of the constraints [Eq.
(2.27)] would be highly nontrivial in this case. Moreover,
if the domain v „happens to be polyhedral, as in the tiling
models, it may be necessary to keep a large number of
terms in the expansion. On the other hand, by using a
sufBciently fine triangulation, any domain shape can be
approximated with a polyhedron, reducing the con-
straints [Eq. (2.27)] to a system of linear inequalities.
Therefore we shall assume here that we can model each
v„bya polyhedron and we shall consider only the coar-
sest triangulation consistent with the constraints.

Since the inner space volume of the body center hy-
peratom, Eq. (2.23), is completely fixed by our earlier as-
sumptions, Eq. (2.17), we found that it is easiest to first
concentrate on the modeling of this hyperatom. Since
the body center domain has the full icosahedral symme-
try, it is sufficient to model only its generic element (fun-
damental region). The icosahedral symmetry operations
will generate 120 replicas of this element to form the
complete body center domain. This generic element is a
cone bounded by three mirror planes which intersect
along three neighboring twofold, threefold, and fivefold
rotation axes of the icosahedral symmetry. We shall as-
sume that v~ is a solid object with only an external
boundary. The coarsest triangulation of this boundary
results from a single triangle per generic element. It can

v& =2574 A (3.2)

agrees with experimental value 2.60(5)X10 A within
the error bars. In summary, we shall restrict the radii r z,
r 3 and r 5 by the volume constraint

r r3rz =&3rl r a =686 A (3.3)

and limit them to the range

5.056 A=a r', & a =10.708 A, (3.4)

5.690 A=2&3rjr a + r3 + ~3gr a =12.053 A

5.316 A=2ga & r + gw a =11.259 A

(3.5)

(3.6)

For given values of rz, r3, and r5 which satisfy the
above conditions, the outer bounds of V and E hypera-
toms shown in Figs. 2(a) and 2(b) are further restricted by
the 8-V and 8-E constraints, respectively. However, we
find that the total volume of the resulting V and E outer
bounds remains too small for the condition
ui, +6vz =5.48(7) X 10 A given by Eq. (2.24) to be
satisfied for any values of rz, r3, and r& that satisfy Eqs.
(3.4)—(3.6). The maximal value

Thus, by setting the right-hand side equal to
2. 60(5)X 10 A, we obtain r~r3rz=0. 69(l)X10 A, al-

lowing us to set a lower bound on each of the radii by
taking the other two at their maximum values. This
leads to r5 ~ 5. 1(1) A=a =5.056 A, r3 ~ 5. 8(1)
A=2&'3qr 'a =5.690 A, and rz ~ 5.4(1) A=2ga
=5.316 A. Since the approximate values are within the
experimental error bars, but considerably simplify further
analysis, we shall use them below. The resulting value of
r 5r 3r~ is &3rl r a =686 A, and the volume of the body
center hyperatom,
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vv+6vE =5317 A (3.7) B. Parametrixing hyperatom compositions

only 3.0% short of the experimental value 5.48(7) X 10
A, is obtained for

0r' =—a=6.618 A85 (3.8)

r~3=&3gr a =12.053 A

r&2 =2g~a =8.602 A

(3.9)

(3.10)

Therefore, for our best approximation, we should use
these values for the B hyperatom, resulting in the shape
shown in Fig. 1(c), while the V and E hyperatoms should
fill what remains of their respective outer bounds.

The resulting V and E hyperatom shapes are shown in
Figs. 1(a) and 1(b). The E hyperatom can be described
by its edge lengths: The rhombus edge length of 5.056 A
(with the short rhombus diagonal of 5.316 A) and the
other two triangle edges of lengths 7.893 and 4.576 A. It
has D5d symmetry and its volume is VE=694.3 A .
Similarly to the B hyperatorn, the V hyperatom has Y&

symmetry and can be described with three radii along the
three symmetry axes

rv = — a =6.618 AV5 (3.11)

r v3
=v'3qra =7.449 A

rv2=2g ~ a=6.224 A .

(3.12)

(3.13)
0 3Its volume is vv, =1151 A . However, we shall modify

this vertex domain to account for a depression in the
scatterer density at the center of the V hyperatom that
can be observed in reconstructed Patterson and den-
sity ' functions. It has been shown recently that the
centers of (approximately) icosahedral clusters found in
the 8-(Alo s64Cuo»6Lio 32o) crystal are emPty. " Similar
clusters are also exPected in i-(Alo s7oCuo, osLio 32/).
Moreover, positron annihilation experiments and
theoretical total energy calculations ' also arrived at
the conclusion that the centers of these icosahedral clus-
ters should be empty. Therefore we shall remove the por-
tion of the V hyperatom that corresponds to the atoms at
the centers of such icosahedral clusters in physical space.
When embedded in the hypercrystal, V atoms that are at
the centers of the icosahedra formed by 12 E atoms in
physical space map into the portion of the V hyperatom
that is the intersection of the inner space projections of
the 12 E hyperatoms located halfway along the 12 edges
(fivefold axes) emanating from the center of the V hypera-
tom. The resulting region is exactly a ~ scaled replica
of the entire Vhyperatom located at its center. Therefore
we shall assume that this region, with the volume
vv; =7 vv = 15 A, is empty. The inclusion of this hole
in the model also improves the fit of the difFraction data.
Therefore the final volume of the V hyperatom is
vv=vv, —

vv, =1136 A and the total Al and Cu inner
space volume v~ =vv+6vE =5302 A is only 3.2% short
of its experimental value of 5.48(7) X 10 A . The addi-
tional 0.2% comes from the removal of the hole in the V
hyper atom.

Now that we have completely fixed volumes and shapes
of the hyperatoms, we have to determine their chemical
compositions p„;.By considering Eqs. (2.14)—(2.17), we
see that only one free parameter remains to be deter-
mined by the fit. For example, we can use Eqs. (2.15) and
(2.16) to eliminate p„c„in favor ofp~ ~„

p„,c.=1—p„,Ai (3.14)

Then we can eliminate pE A& in favor ofp«&, by using Eq.
(2.14) either for i =Al,

n vP v, At+ 6n EPE,AI n Aj

or for i =Cu,

nv(1 Pv, Ai)+6nz(1 Pz, Ai)
—nc„.

(3.15)

(3.16)

n vP v, Ai+ «EPE, A&

+v(1 PV, A1)+6+E(1 PE,AI)

to obtain

nA&

~Cu

0.570
0. 108

(3.17)

nA) 7l v+6nE
PE,Al

Al +n Cu 6'E

= 1.070—0.273p v, A&

Pl v
P V, A1

nE

(3.18)

C. Fitting and results

Our model of the ideal i-(Alo. s7oCuo. iosL'o. 323) quas'
periodic structure is completely described by ten parame-
ters: the Al concentration in the Vhyperatorn, pv «, and
nine thermal parameters BEI, B„,and B„,with p= V, Et,
El, and B. The model structure factor F„deduced from
Eqs. (A8) and (A9) using Eqs. (2.10) and (2.25), is

+,(Q)=g ri„f„(Q)f„'(Q)e "e ", (3.19)

where the p = V, 8, EJ (j= 1, . . . , 6), and B„aregiven in
Eqs. (2.5)—(2.9), f„(Q)can be calculated using Eq. (2.11),
and f„(Q) is the inner space form factor,

fl(Ql) I eig .r d3rl
p p

(3.20)

This inner space Fourier transform is easy to obtain in a
closed analytical form for polyhedral hyperatorns. '

Clearly, for E hyperatoms, only a Fourier transform of a
"standard" E hyperatom needs to be calculated. If g.
transforms a "standard" E hyperatom to the one along

These two equations would have been equivalent if the
volume v~ (or, equivalently, the density n„)were exact.
However, as noted in the previous section, this volume is
off by 3.2%. Therefore, if we use Eq. (3.15) to eliminate
pE A&, we shall obtain an exact density for Al and shift the
entire 3.2% error to Cu. Conversely, we shall shift the
entire error to Al if we use Eq. (3.16). We choose to
preserve the Al/Cu stoichiometry and distribute the er-
ror in the density accordingly. Thus we eliminate pE A&

from
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the jth edge, then

fE (Q')=fE(g, 'Q') . (3.21)
I

K

8
Since the experimental diffraction intensities I,(e) are

not usually measured in absolute units, the model struc-
ture factors need to be scaled by a factor s before a com-
parison between the experimental and the model
diffraction intensities can be made. We shall determine
the scale s and the ten parameters described above using
the least squares to fit the experimentally measured densi-
ty I, by the model intensity I, =

~
(1/s )F, ~,

g =—mm
S~P, B

Q

[I,(Q) —I,(e)]'
2

OQ
(3.22)

where o.e is the experimentally observed standard devia-
tion for I, (Q).

Although some larger data sets were available to us, we
used the data of Ref. 25 because we had information on
both the stoichiornetry and mass density only for its sarn-
ple. The data contained 56 x-ray and 40 neutron
symmetry-independent diffraction intensities. While each
of these two data sets is relatively small, they comple-
rnent each other. For example, while the x-ray data set
might be insufhcient to resolve a contribution from such
a weak x-ray scatterer as Li, the neutron set can help iso-
late Li, since Li, unlike Al and Cu, has a negative
neutron-scattering length. We fitted the two data sets in-
dependently in order to gain some additional insight
about the model from the difFerences in the obtained
values of the parameters. Our fitting results for the x-
ray- and neutron-difFraction data sets are summarized in
Tables I—III. For the x-ray atomic form factors f;(Q)
(i =Al, Cu, Li) at nonzero Q, we used a quadratic inter-
polation of the values given in Ref. 45 for a fixed set of
Q's. These values included the anomalous dispersion. Of
course, the exact values at Q =0 are f~&(0)= 13,
fc„(())=29,and f„,.(0)=3 electrons. Such interpolation
was not needed for the neutron-scattering lengths which

are constant and, for the given isotope content of the
sample, f„,=0.3449X10 A, fc„=0.7718X10 A,
and fL;

= —0. 190X 10 A.
In addition to the y measure of the goodness of the fit,

we also calculated and listed in Table III the residual fac-
tors which are more commonly used in crystallography,

(3.23)

F2 gI, (Q)
(3.24)

g [I,(Q) —I,(Q)] /o. q

QI, (e) /erg
e

(3.25)

The quality of the fit we obtained can be also assessed

0

It' [ar b. units]
FIG. 5. The scatter graphs of square root of the experimen-

tally measured intensities I, vs the square root of the model in-
tensities I, for x-ray- (dots) and neutron- (circles) scattering
data.

TABLE VI. Distances and frequencies for icosahedral atomic clusters in physical space centered at a
V hyperatom. The first column gives the source of the model while the second column gives frequency
of the cluster per atom of the structure. Next, for each of the four shells surrounding the central site,
we list the number of atoms in the shell and their hyperatom label, followed by the radius of the shell.
For completeness, we also list in the first row data for R-(Alp 564CU0 ]]6Li0 320) with the labeling from
Table IV (Ref. 34).

Ref.

34

This paper/Appendix C/Appendix D

n (%)

1.25

0.2/1. 1/1.0
(1.6/0. 3/0. 8)'

12 (No. 1)

( 8 (No. 2)
I 12 (No. 3)

12 (No. 4)
l48 (No. 5)
12 (No. 6)

12E
208
12V
60E

r (A)

2.516
4.514
4.539
5.046
6.603
7.081
2.528
4.604
5.056
6.587

'Additional frequency of this shell when the central V atom is present and the other shells are incom-
plete, losing the full icosahedral symmetry.
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visually by constructing the scatter graphs QI, versus
QI„shown in Fig. 5.

The determined hypercrystal structure model
represents a concise record of the real quasicrystal struc-
ture, and in principle, one can calculate locations of every
atom in physical space by cutting through the hypercrys-
tal. However, it is also useful to address some of the
average aspects of the quasicrystal structure relevant to
the physical properties. For example, using the formula-
tion given in Appendix A, one can determine the radial
distribution function for the shortest interatomic separa-
tions found in the model. These occur in the high-
symmetry clusters shown in Fig. 6. The frequencies of
these clusters can be also calculated as explained in Ap-
pendix A, and a comparison with the frequencies of simi-
lar clusters in R-(Ala ~&4Cuo $]6L10 32o) can be made as
shown in Table VI.

IV. DISCUSSION

In this section we shall demonstrate that physical im-
plications of the values obtained for the parameters in
our model are reasonable. They are also found to be con-
sistent with the solutions of the phase problem. ' A de-
tailed comparison with other models shows that although
a large percentage of atoms has identical positions in all
models, there are important di8'erences. For example,
while some of the models give better R factors than our
model, they all have either larger errors in density or
stoichiometry, or unphysically short interatomic dis-
tances. Finally, we partially address the question of in-
terpretation of the structure in the physical space by re-
lating it to a simple tiling model.

FICx. 6. High-symmetry atomic clusters found for our model in the physical space centered at a (a) vertex, (b) midedge, or (c) a
body center of the hypercrystal. All three clusters are shown on the same scale. Atoms originating from V hyperatoms are shown
with the smallest spheres, while these from B hyperatoms are shown with the biggest spheres. For clarity, atoms in the same shell are
connected.
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A. Evaluation of the results

(Bi )1/2

n 2v'
P P

(4.1)

giving an acceptable range of values for x rays (2% for V,
1% for E, and 0% for B) and neutrons (1% for V, 0% for
E, and 4% for B). While it could be argued, like for ordi-

Our fit produced R~=0.068 for the neutron- and
R+=0. 123 for the x-ray-diffraction data. According to
the usual standards of crystal structure determination,
these values indicate that the resulting model can be used
as a good starting point for a more detailed modeling and
refinement. Although both data sets should be simultane-
ously fitted in the final refinement, by comparing the R
factors of the two independent fits, we can conclude from
the considerably worse fit of the x-ray data that major
corrections to the model should be made in the final
refinement for Al. Namely, Li is a very weak x-ray
scatterer and could not affect the x-ray fit, while Cu as
the dominant scatterer for both x-rays and neutrons
would affect both fits similarly. Therefore the only
remaining candidate is Al, which makes a relatively
larger contribution to x-ray scattering, where Li is negli-
gible, than to neutron scattering, where Li makes a com-
parable contribution.

This conclusion is consistent with the embedding of
R-(A10~64Cuo ))6Lio 3/0) into the hypercrystal that gives
pure Al near body centers, which we neglected as ex-
plained in Sec. II. Furthermore, as evidenced in Table I,
the Al content of the V and E hyperatorns, obtained from
x-ray- [pz~&=0. 64(1), pE ~&=0.896(3)] and neutron-
diffraction fits [p~ ~&=0.77(6), pE ~& =0.86(2)], is qualita-
tively consistent with the embedding. Indeed, the E hy-
peratom is in both cases richer in Al than the V hypera-
tom, like the embedding would suggest [pz ~&=0.54(1),
pE ~&=0.886(6)]. The overall increase in the concentra-
tion of Al on the V and, to a lesser extent, on the E hy-
peratoms can be again ascribed to our neglecting Al near
the B hyperatom and, thus, transferring it mostly into the
V and, significantly less, into the E hyperatoms.

The values for the physical space thermal Auctuations
listed in Table II for x-ray data, B„between 0.0117(4)
and 0.015(2) A, correspond to the rms atomic displace-
ments between 0.257(l} and 0.355(3) A and are in the
upper range of values cornrnonly observed in crystals.
For example, the eigenvalues of the thermal motion ten-
sors in the related R-(Al() [64CUO ]$6L103pp) crystal range
between 0.007 and 0.013 A . The values of B„between
0.0110(8) and 0.020(2) A, listed in Table II for neutron
data, are in the similar range as for the x-ray data. Note
that like in ordinary crystals, the values of thermal Auc-
tuations obtained with x-ray- and neutron-diffraction ex-
periments are generally different.

The inner space thermal tensors B„listed in Table II
span a much larger range, between 0.00(5}and 0.41(7) A,
for x-rays and between 0.0(1) and 3(1) A for neutrons.
The inner space fluctuations B„canbe translated into
rms percentages of the atoms which are rearranged in
physical space,

nary Auctuations, that there should be generally a
difference between the x-ray and neutron values of B,
their large uncertainties should also contribute to the ob-
served disparities. These large uncertainties are caused
by the very narrow range of Q 's for which measurable
diffraction peaks are observed, causing a limited sensitivi-
ty of the fit and a shallow minimum with respect to B„.

For both x-ray and neutron data fits, we find nonzero
values of the cross term in the longitudinal components
of the E thermal tensors, Bg.I =0.012(3) A and
BE&= —0.004(3) A, respectively. This means that a
rearrangement of atoms in physical space associated with
the inner space fluctuations of an E hyperatom is general-
ly accompanied by a displacement of the rearranged
atom.

B. Comparison with phase problem solutions

Our modeling results can be also compared with our
earlier independent solutions of the phase problem.
Two different methods were used to solve the problem
and reconstruct structure factors. The rational approxi-
mant method was used for both x-ray- and neutron-
diffraction data, while the inner space method was ap-
plied only to the neutron data. Both methods yield the
unknown phases 8(Q) of the structure factors and the
scale factor s. The first method also provides values of
the overall physical and inner space Debye-Wailer (DW)
parameters B and B, while the values of the cross term
BzI and of B„for each hyperatorn can be determined
with the second method.

For the purpose of a comparison, we construct in Fig.
7 scatter graphs showing structure factors I', calculated
for our model versus the structure factor E„reconstruct-
ed by the two methods for solving the phase problem.
For the method of Ref. 29, we used
F„(Q)=s&I(Q)e'~o', while, for the method of Ref. 30,
F„wascalculated using the parametrization given there.
The overall slope is approximately unity in all cases, indi-
cating consistency of the calculated scale factors s.
Indeed, the values found for the neutron data are
7.2(2) X10 A in our model, 7.4(l) X 10 A in the
rational approximant method, and 7. 1(5)X 10 8 A in
the inner space method. Similarly, for x-ray data, the
scale found here is l.69(1)X 10 e/A, while it is
1.77(3)X 10 e/A in Ref. 29. It can be also seen from
the scatter graphs, Fig. 7, that only two of the smallest
x-ray and neutron structure factors are found to have in-
consistent phases with the ones determined by the solu-
tions of the phase problem. Specifically, the inconsisten-
cies are found with the rational approximant method for
the x-ray (22211 1) and (333001) Bragg spots whose mea-
sured intensities are only about 0.3% of the strongest in-
tensity. The intensities of the neutron (222111) and
(333002) Bragg spots that have inconsistent phases with
the inner space method are, respectively, about 5%%uo and
3% of the strongest measured intensity.

As can be seen from Table II, the values obtained for
B„andB"in our model are typically within two standard
deviations of the values obtained with the solutions of the
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FIG. 7. Scatter graphs of the (a) x-ray and (b) neutron model
structure factor E, vs the structure factors F„calculated using
the rational approximant (dots) (Ref. 29) and the inner space
(circles) (Ref. 30) solutions of the phase problem.

phase problem. The agreement between B values, for
which there are large uncertainties discussed earlier, is
not as good, especially for x rays. Although the two
methods for solving the phase problem do not yield
chemical compositions of i-(Alp 570Cup 1Q8L1Q 322) hypera-
toms, the inner space method leads us to the conclusion
that the B hyperatom could not be pure Li. This con-
clusion is also consistent with the one that we drew from
the modeling results, namely, that some Al must be
present near the B hyperatom. Therefore we find that
our structure model of i-(Alp 57QCllQ 1Q8LiQ 322) and its im-
plications are, on the whole, consistent with
our earlier solutions of the phase problem of i-

29, 30(A 0 570 up. 108L10.322)'

C. Qther models

The results of our modeling can be compared with
structural models proposed for i-(Alp 570C11p 108L1Q 322) by
other researchers. As mentioned in the Introduction, the
main difFiculty in the comparison is presented by the fact
that different models are often fitted to different, some-
times poorly characterized samples. Different samples
have difFerent hyperlattice constants, densities, and
stoichiometries. Also, difFerent parametrizations are
sometimes used for different models. Four different x-ray
data sets, for four samples, and a neutron data set, for
one of the samples, were used by several groups of

researchers to produce nine different structural models.
The majority of these models are based on the Ammann
tiling decorated directly in physical space ' ' or on its
lifting and "decoration" in hyperspace, ' as we did in
Appendix C. However, several models are formulated
directly in hyperspace unprejudiced by any tiling picture
in the physical space. In addition to our model presented
in the main text, these are the model of Ref. 25 and the
model we constructed in Appendix D.

Tiling models of the icosahedral Al-Cu-Li phase are
based on the Ammann tiling and adaptations of the basic
tiling motifs originally suggested for the icosahedral
(A1Zn)49Mg32 quasicrystal. Over 20 independent x-ray-
powder-diffraction intensities, indexed using hyperlattice
constant a =7. 132 A ("quasilat tice" constant
a =a /V'2=5. 043 A), were observed in Ref. 20 for a sam-
ple with stoichiometry 1'-(Alp 561Cu0, 02LiQ 337) and an un-

reported mass density. These data were compared with
the Amman tiling model that ignores Li and places an
"average" A1056,Cuo, o2 atom at all vertices and edge
centers of the tiling. The resulting RF =0.11 was calcu-
lated in Ref. 23 considering 20 (presumably strongest)
diffraction peaks. The model was further refined by op-
timizing the overall scale and DW parameters of Al and
Cu, resulting in R+=0. 10. However, neither the result-
ing scale nor the DW parameters were reported in Ref.
23.

This model was further extended in Ref. 23 by adding
two atomic sites that divide the long diagonal of the pro-
late Ammann rhombohedron in the ratio w:1:~. The
model was optimized to fit 37 independent x-ray-

0
difFraction intensities indexed using a =7. 126 A
(a =5.039 A) for a sample with unknown stoichiometry
and density. Optimization of the overall scale, DW pa-
rameters of Al, Cu, and Li, and of chemical compositions
on each of the three types of sites (vertex, edge center,
and body diagonal) resulted in R~ =0.07. For the sake of
modeling, stoichiometry was arbitrarily fixed to i-
(Alp 6C11p 1Lip 3), resulting in an overall mass density of
2.633 g/cm . A more accurate calculation of the struc-
ture factors for this model was performed by lifting it
into hyperspace and using a different sample with 97 ob-
served diffraction peaks. The same stoichiometry i-
(Alp 6Cup 1LiQ 3) was assumed again, and the density
remained unknown (a was not listed and is presumed
here to be the same as in Ref. 23). One parameter was
added to allow for a possible displacement of the atoms
on the body diagonal of the prolate rhombohedron away
from the "ideal" ratio ~:1:~, but this did not yield any
significant improvement of the R factor when considering
the same 37 peaks. While all optimization parameters,
except the overall scale, were listed for this model, their
uncertainties were not given and we were unable to deci-
pher consistent units for the DW parameters.
Significantly, it is stated that no satisfactory fit was pos-
sible when considering all 97 of the observed independent
peaks.

The main difticulty with this model is that it allows for
chemical disordering among all three species Al, Cu, and
Li, which does not occur in the related crystal of R-
(Aip 564Cup»6Lip 320) and seems unlikely in view of the
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large differences in the atomic sizes. In order to remedy
this deficiency and obtain all optimized parameters and
their uncertainties, we adapted this model by restricting
the body diagonal sites to pure Li while excluding Li
from the vertex and edge center sites. Furthermore, we
wanted to compare this model, described more fully in
Appendix C, with the model we presented in the text.
Therefore we optimized the parameters by fitting the
same 56 independent x-ray and 40 independent neutron
13eaks measured in Ref. 25 (with a =7.1S A and a =S.OS6
A) for the same sample we study here [that is, i
(AlQ. 57QCuQ. iQsLiQ. 32') and p=2. 46 g/cm (Ref. 32)]. The
optimization for both x-ray and neutron data results in a
rather poor overall fits with RF=0. 137 and 0.089, re-
spectively.

The most sophisticated derivative of the simple Arn-
mann tiling model, more closely related to the tiling
motifs of Ref. 43, was constructed in Ref. 22, and its pa-
rameters were fitted simultaneously to the same x-ray and
neutron data we used here, yielding R~=0.076 and
0.085, respectively. The main difference between the
model of Ref. 22 and the simple tiling model is that in
Ref. 22 some Al/Cu atoms are removed from certain ver-
tices and edges of the Ammann tiling, while some addi-
tional Li and Al atoms are added at other special posi-
tions. When viewed as a hypercrystal, this model, like
the one in Appendix C, has Al/Cu hyperatoms at vertices
and half edges and a Li hyperatom at body centers of the
hypercubic unit cell. However, it also has an additional
30 Al hyperatoms surrounding the Li hyperatorn along
the 30 twofold axes. The description of this model in
Ref. 22 is quite complete, allowing for its detailed
analysis and a comparison with our model.

The most complex of the tiling models of i-
(AlQ 57QCuQ )QsLiQ 32/) is described in Ref. 21. Unfor-
tunately, there is not yet a simple hypercrystal descrip-
tion of this model that might help elucidate its relation-
ship with the other tiling models. Moreover, in contrast
to the other models, all of which have the same primitive
space group symmetry P53m, this model has a different,
face-centered, symmetry. An analysis of this model is
further hampered by the absence of a detailed informa-
tion about the values of its fitting parameters. However,
for all its complexity, this model provides a rather poor
fit to both x-ray and neutron data (RF =0.16 and 0.13,
respectively).

A hypercrystal model of i (AlQ 57QC-uQ ]QsLiQ 333) given
in Ref. 25 has a spherical Al/Cu hyperatom at the ver-
tices and another ellipsoidal Al/Cu hyperatom at the
edge centers of the hypercubic lattice. In addition, there
is a Li hyperatom at the body centers. Its shape is deter-
mined by starting from a large sphere, adding smaller
spheres along the threefold axes, and then removing in-
tersections with some surrounding Al/Cu ellipsoids along
the fivefold axes. Although resulting in a relatively low
R factors (RF=0.08, for either x-ray or neutron data),
this model suffers from the usual dif5culty encountered
with such simple hyperatom shapes: In order to avoid
most unphysically short interatomic distances, the Al,
Cu, and Li model densities had to be reduced below their
experimentally observed values. This limitation can be

alleviated by considering more complex hyper atom
shapes, like in the models presented here, in Appendix D,
or in Ref. 22.

D. Comparison between models

Our comparison of different models is summarized in
Table III where we list the R factors, densities of unphys-
ically short interatomic separations, and differences be-
tween the calculated and experimentally determined
number densities. When comparing the values of R fac-
tors, one should first consider the number of data points
that are being fitted. Thus the physical and hyper-
space model that results in an R factor of Rz =0.07 ob-
tained for the fit of 37 data points is probably better than
the rough model that produces RF=0. 10 (cf. Ref. 24)
for a fit of only 20 data points. However, it is not neces-
sarily better than the model of Ref. 22 that yields
R~ =0.076 for the fit of 56 data points. In fact, it is pos-
sibly worse than most models presented in Table III since
it "cannot explain" the enlarged set of 97 data points
(resulting, presumably, in RF & 0.2).

It is important to emphasize that structural models
with violations of stoichiornetric or steric constraints are
unacceptable, even though they may give better R fac-
tors. By corn.paring different models to our model in
Table III, we see that some give a better density of Al,
others of Cu, and yet others of Li. Therefore, in addition
to evaluating hn; =n /n — 1, th—e departure of the model
density n from the experimental density n for each
chemical component i, we must also evaluate an overall
measure An =[+;(b,n;) ]' . Models with the worst R
factors (Ref. 21 and Appendix C) have also the largest
overall errors hn, 20.9% and 31.8%, respectively. Al-
though smaller, the overall errors of 10.6%, 9.5%, and
8.6%%uo resulting from the models with the best R factors,
Refs. 23, 24, 25, and 22, respectively, are also unaccept-
able. On the other hand, the error of 4.9%%uo obtained for
our model is comparable with the experimental uncer-
tainty of 4.8% and it should be considered acceptable.
The error of 6.2%%uo for the model discussed in Appendix
0 that results in R factors that are slightly better for x
rays and slightly worse for neutrons was considered mar-
ginally unacceptable here.

By applying our method of systematic examination of
steric constraints in the hypercrystal, we discovered un-
physically short interatomic separations in two earlier
models of the i-(A1Q57QCUQ ]QsLiQ 322) structure that had
the most promising R factors. In the model of Ref. 25,
we found a 1.931-A Al/Cu-Li interatomic separation,
which is too short. On the average, approximately 0.2%%uo

of all atoms in this model have a neighbor at that unac-
ceptably short distance. These separations were ap-
parently missed in a heuristic search through a finite,
presumably too small, atomic cluster constructed from
the model. We also found an unacceptably short
2.031-A Al-Al separation in the model of Ref. 22. A fair-
ly large fraction of atoms, around 4%, has an unphysical-
ly close neighbor in this model. The presence of these
short interatomic separations, together with the large er-
rors in the atomic densities, seriously limit applicability
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of the models of Refs. 25 and 22 to i-
(Alp. 570Cup 108L10.322)'

Despite failures of the earlier models to satisfy
stoichiometric or steric constraints imposed by i-
(Alp 570Cllp ip8LiQ 322), we find that their distribution of
chemical species, absolute scales, and Debye-Wailer pa-
rameters, whenever determined, show the same trends
seen in our model. This can be also said of the two mod-
els described in Appendixes C and D. The hyperatom
compositions in different models are summarized in Table
I, while the Debye-Wailer parameters and the absolute
scales (with which they are strongly correlated) are sum-
marized in Table II. For example, except for the neutron
fit of the models discussed in Appendixes C and D, all
models show a higher concentration of Al at the E than
at the V hyperatoms. Similarly, all models have negligi-
ble concentration of Li at the V and E hyperatoms.

We could not compare the Debye-Wailer parameters
8„resulting from the fits in several models. The DW pa-
rameters of the models in Refs. 20 (determined in Ref. 24)
and 21 are not published, while those of the models in
Refs. 21, 23, 24 are associated with chemical species, not
hyperatoms. Moreover, their units are not indicated in
Refs. 23 and 24. With the exception of 8z obtained from
x-ray diffraction, all other models generate mutually con-
sistent 8„'sand 8E&. This exception can be easily under-
stood since the 8 hyperatom is dominated by Li, a weak
x-ray scatterer. Consequently, parameters associated
with the 8 hyperatom are at a shallow minimum for x
rays and have a large variance.

For a similar reason, a large variation among the
values of8„is found in the models which allow for their
determination. In particular, it is difFicult to assess the
significance of the zero values obtained for several 8„in
our models and in models in which they were set to zero
based on prelim. inary fits. ' However, the zero values
can be expected in cases where a hyperatom domain U„in
inner space is not touching a hyperatom domain U that
is of the same chemical type and at a relatively short dis-
tance r in physical space. Conversely, directions r in the
inner space which correspond to touching domains of the
same chemical type that are at particularly short dis-
tances r in physical space should be the softest directions
for the inner space ("phason") fiuctuations. The separa-
tions r in physical space could, indeed, be extremely
short, since they do not correspond to a separation be-
tween two simultaneously present atoms, but rather to
two alternate positions of a single atom.

We can also see from Table II a consistency between
the scale factors s determined in different models. As ex-
pected, a small variation in the values of the scale s be-
tween different models is strongly correlated with a varia-
tion in the values of the DW parameters: A decrease of
the scale factor is generally associated with an overall in-
crease in the DW param. eters.

Although this paper focuses on quasiperiodic structure
models, we are compelled to briefly address a recent
periodic, simple cubic crystal model of i-
(A10.570Cu0. 108Li0.322) that claims excellent R factors" and
appears successful in reproducing other experimental ob-
servations. Indeed, this model results in excellent den-

sities, with the values corresponding to our Table III,
An~1 = —0.5%, b,n&„=2.8%, and b, nL; = —4.2%,
which lead to bn =5.1%, only slightly worse than the
value we obtained in our model. These densities are cal-

0

culated using the cubic lattice constant a =95.4 A,
which is exactly the same as it should be for the n =6 ra-
tional approximant of any quasiperiodic structure model
with the hyperlattice constant a =7. 15 A (see Appendix
8 and the next subsection). However, the value of b n in-
creases to 6.1/o if one uses the value of the Amman tile

0
edge length a& =5.012 A, given elsewhere in the paper,
which is inconsistent with the above value of a and thus
with the original peak indexing (a consistent value
would be a„=a=5.056 A).

In fact, the indexing problem puts a severe limitation
on the validity of this model. While the experimental
diffraction data of i-(Alp $70Cup 108LlQ 322) are indexed to a

0

precision of 10 A, the above cubic approximant in-
dexing of the data can be only accurate to within
=7r/a„=16X10 A . Thus this cubic structure mod-
el could be meaningfully evaluated only as a model of the
n =6 rational approximant of a real quasiperiodic struc-
ture, rather than as a model of the quasiperiodic struc-
ture itself. Therefore it is necessary to calculate R factors
for the approximant rather than for the quasicrystal.
However, in addition to the quasicrystal diffraction inten-
sities I,(Q), phase information 6)(Q) would be also need-
ed in order to reconstruct the "experimental" intensities
I, of the approximant,

(4.2)

as shown by Eq. (83) in Appendix 8. A simplifying as-
sumption that each orbit of diffraction peaks of the ap-
proximant arises from a single orbit of the quasicrystal
was apparently made in Ref. 11, although it was not ex-
plicitly justified. !t is an appropriate assumption whenev-
er the quasicrystal intensities for orbits beyond the lead-
ing one in the infinite sum in Eq. (4.2) are too weak to be
experimentally detected so that I~, (Q')=I, (Q). Howev-
er, since each quasicrystal orbit I Q~ j will generally con-
tribute to several orbits t Q,

'
j of the approximant

( IQ j ~ U, IQ,
'

j ), it is first necessary to verify that the
intensities I~, (Q,') and the phases 8(Q,') calculated in the
model crystal structure are nearly constant for different
orbits IQ,

'
j that map onto the single orbit IQ~ j. Such a

verification was not made in Ref. 11.
In order to compensate for the lack of the phase infor-

mation, Ref. 11 uses an ad hoc, uncontrolled approxima-
tion procedure to relate the approximant and the quasi-
crystal diffraction data,

(4.3)

where mq and m, are the sizes of the quasicrystal and
corresponding crystal orbits, respectively (m~=g, m, ).
Therefore the excellent R factors R 2

=0.061
( WR =0.104), for x rays, and R 2=0.066 ( WR =0.104),
for neutrons, obtained in Ref. 11 after fitting the quasi-
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ggm, I, (Q )

q c

instead of the R factor

(4.4)

gm ~I, (Qq) —(1/m )gm, I, (Q,')~
C

gm [I (Q )/

q

which was calculated for the quasicrystal fit." Indeed,
after some elementary manipulations, it is easy to see that
the only difference between the two expressions is that
the sum over c is taken under the magnitude sign in Eq.
(4.5), making it strictly smaller than the expression Eq.
(4.4).

E. Structure an physical space

Although a hypercrystal structure model of i-
(Alo 570Cuo iosLio 3/2) affords the most economical
description, it is the quasiperiodic structure of i-
(Alo 57oCuo ipsLio 322) in physical space that is required for
most physical applications. While this physical space
structure can be easily obtained from the hypercrystal
structure, in order to really "understand" it, one would
like to have a more intuitive, chemical description based,
for example, on packing considerations. Most models
that we reviewed here and the model presented in
Appendix C are essentially packing models.

The most rudimentary packing (tiling) picture for any
structure model with a finite number of local environ-
ments, like in our model, can be obtained by ascribing
(generalized) Voronoi polyhedra to the atoms, with the
linkages between the atoms being specified by the facets
of the polyhedra. Already a statistics of the obtained po-
lyhedra provides useful physical information about the
structure. However, since the purpose of our model is to
serve only as a basis for a future refinement which is to
produce the definitive structure model, we have not at-
tempted a packing interpretation. Instead, we only inves-

tigated several simple structural aspects of the model.
For example, we have determined typical local envi-

ronments shown in Fig. 6 that are found at some of the
highest-symmetry sites in our structure. The frequencies
of the V cluster, calculated using the methodology
developed in Appendix A, are listed in Table VI. The
four icosahedrally symmetric shells around the empty
vertex site shown in Fig. 6(a) are essentially identical to
the four nearly icosahedral shells found in R-
(Alo 564Cuo»6Lio 3&0).

" Except for the small shifts of the
atoms, the main difference is that the six pairs of the
Al/Cu atoms in the fourth shell near the three mutually
perpendicular twofold axes are replaced in
(Alo 564Cuo»6Lio 32O) by Al. While the frequency of the

crystal to the model using Eq. (4.3) are indeed "mysteri-
ous" as concluded by the model's authors. However, it
should be noted that bigger numbers would be obtained
by calculating the appropriate R factors for the approxi-
mant fit,

&&m, II, (Q, )—I,(Q', ) I

icosahedral cluster is considerably smaller than in R-
(Alp g64Cuo ii6Lio 32o), it should be noted that this is com-
pensated by similar clusters that have a V atom at their
centers, the identical fully icosahedral second shell, but
slightly incomplete other shells. Also, the frequency, of
the icosahedral cluster is smaller than it is in R-
(Alo 564Cuo»6Lio 32O) because many other clusters occur
in i-(Alo 570Cuo iosLio 322). For example, the D5d and Yz
shells shown in Figs. 6(b) and 6(c), centered at the atoms
associated with the centers of the E and 8 hyperatoms,
have no counterparts in R-(Alo ~64Cuo i i 6Lio 32p) Al-
though some shells in Fig. 6(c) occur with zero frequency
as shown, they occur with a finite frequency when slight-
ly incomplete.

It is clear that all models that we reviewed here will
give identical locations for a large fraction of atoms.
Namely, the fraction of atoms associated with a hyper-
atom in one model that is located at identical positions
with the atoms of the corresponding hyperatom in anoth-
er model is equal to the fraction of the volume that is
common to the two hyperatoms. In particular, we can
view our model in terms of its departures from the simple
Ammann tiling model (Appendix C). Keeping in mind
the coarsest parametrization we used in the modeling of
the 8 hyperatom, we can argue that our model shows a
similar relationship to the Ammann tiling model as does
the more detailed model of Ref. 22. Namely, the 8 hy-
peratoms of both models can be constructed from the
Ammann tiling of Appendix C by taking parts mainly
from the long diagonals of the rhombic facets of the V
and E hyperatoms (see Fig. 8), and then adding them to
the rhombic facets of the 8 hyperatom. Since we ignore
Al at the body center, there is no transfer from the equa-
torial rhombic facets of E hyperatoms to the 8 hypera-
tom along twofold axes in our model as there is in the
model of Ref. 22.

Finally, a physical interpretation of quasiperiodic
structure models can be obtained by constructing their
periodic approximations, the so-called rational approxi-
mants, as described in Appendix B. Rational approxi-
mants are also useful in various numerical calculations of
physical properties, such as calculations of electronic
states, ' which often require periodic boundary condi-
tions. Because of the large overlap between the hypera-
toms of different hypercrystal models of i-
(A10570Cuo io8Llo 322), the two lowest-order rational ap-
proximants of the models should mostly coincide with
the ones obtained in Ref. 22. Except for some displace-
ments of the atoms, the lowest-order rational approxi-
mant of the model of Ref. 22 coincides with R-
(A10564Cuo ii6Lio 320). Similarly, the lowest rational ap-
proximant of our model also reproduces R-
(Alo 564,Cuo „6Lio3$o), except for the absence of pure Al in
our model, as we already explained above in the discus-
sion of Fig. 6(a). Significant differences between compet-
ing models would start appearing only for higher-order
approximants.

V. CONCI USIQNS

We presented a quasiperiodic atomic structure model
of i-(Alo ~70Cuo, osLiQ 322) that we constructed directly in
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hyperspace, unprejudiced by any tiling assumptions in
physical space. After evaluating other quasiperiodic
crystal models by focusing on stoichiometric and steric
constraints, we concluded that the model presented in
this paper has atomic densities closest to the experimen-
tally determined ones, and it has no unphysically short
interatomic distances. Although our model is qualitative-
ly close to the modified Ammann tiling model of Ref. 22,
we discovered that unlike our model, this model and the
model of Ref. 25 both contain unphysically short intera-
tomic distances. Moreover, our model has the best R fac-
tor for the fit of the neutron-scattering data. Consequent-
ly, we conclude that our model is an excellent candidate
for the final refinement and determination of the
definitive structure model of i-(Alo. s70Cuo. iosLi0. 322). The
refinement should incorporate positive aspects of our
model, as well as these of the model of Ref. 22, which
may lead to a convincing tiling justification of our model.
Our analysis suggests that a somewhat worse R factor ob-
tained for fitting the x-ray data with our model could be
best improved, without afFecting significantly the neutron
data fit, by shifting some Al to the body center position in
the hypercrystal. Following the arguments in Ref. 22,
the refinement should focus on removing parts from the
equatorial region of the E hyperatoms, converting them
to pure Al and adding them to the twofold axes of 8 hy-
peratoms. However, in order to avoid unphysically short
Al-Al distances encountered in Ref. 22, these new Al
parts of 8 hyperatoms should not be "Aat" in our
refinement, i.e., s~,XO. An indication that we may need
to consider nonflat hyperatoms more generally in the
refinement is in the values of the physical space DW pa-
rameters obtained in all quasiperiodic models reviewed
here. They are somewhat larger than what is seen in the
related R-(Alo 56qCuo ii6Lio 32p) crystal, possibly mimick-
ing the nonAatness of the hyperatoms. As we explain in
Appendix A, the nonAatness and inhomogeneities of hy-
peratoms are both caused by differing physical space lo-
cal environments associated with different portions of a
hyperatom. Therefore relaxing the assumptions of fat-
ness and homogeneity of our hyperatoms should be a
priori equally important in the ultimate refinement of the
model presented here. In an extreme case, an initially
single hyperatom (e.g. , the 8 hyperatom) might have to
be broken into multiple hyperatoms of different chemical
composition (e.g. , Al and Li).
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APPENDIX A: FROM QUASICRYSTAI.
TQ HYPERCRYSTAI. AND BACK

As it is well known, a three-dimensional quasiperiodic
crystal can be viewed as a cut through a higher, D-

dimensional (D )3) periodic crystal (hypercrystal). '

The quasiperiodicity dictates that the cut is not parallel
to any of the crystallographic planes of the hypercrystal.
The structure of the hypercrystal can be constructed by
embedding the atoms of the quasicrystal into the hyper-
crystal and imposing the periodicity of the hypercrystal.
Clearly, such a representation is the most meaningful if
the embedding of the locations of the physical atoms re-
sults in an extended, piecewise continuous surface with
only a finite (small) number of pieces per unit cell of the
hypercrystal. Each continuous piece of the surface,
which we call a "hyperatom, " represents a concise record
of infinitely many distinct atomic positions in the real
quasicrystal. If the cut through the hypercrystal is to
produce pointlike atoms in three-dimensional physical
space, the hyperatoms must be extended objects of codi-
mension 3 transverse to physical space. Therefore a hy-
peratom must be characterized not only by its position
and chemical character, but also by its geometrical
"shape. "

A pth hyperatom can be specified by its position r„
within the unit hypercell and by its geometrical shape,

(A 1)

where r is measured relative to r„asthe origin. (Hereaf-
ter, all quantities with an overbar are distinguished as hy-
perspace quantities, while quantities with a l superscript
are associated with the "inner space, " the orthogonal
complement to physical space. ) This requires specifying
the vector function s„(r ) as well as the shape of the
(D —3)-dimensional domain U . The volume of thisP
domain, which we shall also denote by U„,determines the
number density n„ofthe corresponding atoms in physi-
cal space,

where U is the volume of the unit hypercell. Obviously,
these number densities are constrained by the overall
number density n of the quasicrystal by

(A3)

The average number density n defines characteristic
length scales both in physical space, I—=n ', and in
inner space, l =(nu )' '

Since each point (s„(r),r ) of a hyperatom corre-
sponds to a different point atom in the real physical
structure, different regions within a hyperatom will gen-
erally correspond to different local environments in phys-
ical space. The larger the environments considered, the
finer the division within the hyperatom. Therefore the
chemical character of a hyperatom, its atomic form fac-
tor, and its thermal Debye-Wailer factor may all vary
along s(r ). We can assume that this variation is con-
tinuous, any discontinuities being already used to define
boundaries of distinct hyperatoms. Let us denote by
p„;(r ) the number fraction of the atomic species i at r
within the hyperatom p. In chemically disordered corn-
pounds, p„;(r ) is not restricted to 0 or 1 for the atomic
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species which are chemically mixed in the compound, but
its values can range between these two extrema,

O~p„;(r )~1,
subject to the constraint

gpz, .(r )=1 .

(A4)

(A5)

However, these fractions must also obey the constraint
imposed by the quasicrystal's stoichiometry,

g —f,p„;(r )du =n;,1

v
(A6)

where n,. is the number density of species i in the com-
pound. Clearly, by summing Eq. (A6) over i and using
Eqs. (A5) and (A2), Eq. (A3) is recovered. Therefore the
atomic form factor f„(Q,r ) of a real atom associated
with the point r of the pth hyperatom is given in terms
of the usual atomic form factors f;(Q) of the constituent
species by

f„(Q,r )=gp„,(r )f,.(Q) . (A7)

E(Q)=+(Q)=g f„(Q)e
P

(AS)

where the sum is over all hyperatoms within the unit hy-
percell, r is location of the pth hyperatom in the unit
cell, and f„(Q)its contribution.

The hyperatom form factor f„(Q)has contributions

A real quasiperiodic crystal will generally be imperfect
due to annealed (thermal) or quenched disorder. We
shall assume that such disordering can be described by
Gaussian Auctuations of hyperatoms in the hypercrystal
characterized by a generalized thermal motion tensor (el-
lipsoid) B„,whose physical (B„)and inner space (Bz) di-
agonal blocks, as well as the off-diagonal block (B„"),will
be nonzero in general. This result was first derived for
rigidly fluctuating hyperatoms, but, as we described ear-
lier, since different portions of a hyperatom correspond to
real atoms with different local environments in physical
space, B„willbe generally a continuous function of r .
However, if one is concerned only with equilibrated
thermal disorder, then the other components of the
thermal tensor should be assumed to be independent of
r . Otherwise, a transfer of occupancy would occur be-
tween atomic site which are arbitrarily distant in physical
space. A particular form and number of independent
components of the tensors B„,B„,and B„depend on the
symmetry of the hyperatom site r„.

There is a one-to-one correspondence between the re-
ciprocal lattice vectors of the hypercrystal, Q = (Q, Q ),
and the reciprocal lattice vectors of the quasicrystal, Q.
By definition, the hypercrystal structure factor I'& is

equal, up to an overall phase factor, to the quasicrystal
structure factor I&. On the other hand, since the hyper-
crystal is periodic, its structure factor is given by a
straightforward generalization of the usual formula for
periodic crystals. Therefore

from the hyperatom shape s„(r ), its chemical composi-
tion p„;(r ), and its thermal tensor B&(r ). Putting all
these factors together, we find

fu(Q)= ~ f,f),(Q, r )
Vp Vp

i[Q r +Qs {r )] —QB (r )Q
(A9)

where f„(Q,r ) is given in Eq. (A7).
Since we will be imposing steric constraints in the

modeling of a hypercrystal, it is important that we also
review here the formalism for relating the interatomic
separations in a quasicrystal to the structure and hypera-
tom shapes of the related hypercrystal. Formally, the
Patterson function of a quasicrystal can be calculated by
making the inverse Fourier transform of the absolute
square of the structure factors Eq. (AS). However, it is
more relevant to the modeling to determine the pair dis-
tribution function of a perfect quasicrystal directly in hy-
perspace.

Consider two hyperatoms, one at r„and another one at
R+r, where R is a hyperlattice translation. Let us fur-
ther assume that the inner space domains of these two
hyperatoms have a nonzero inner space volume overlap,
that is,

(A10)

0„„(R)n„,(R)=
V

(A12)

More generally, the quasicrystal pair distribution func-
tion G(r) can be evaluated by adding contributions from
allp, v, and R,

G(r)=g g —f, 5(r—r „(R,r ))du
pv R v pv

(A13)

where the sum excludes the p =v, R=0 case. In the spe-
cial case of interest in this paper when hyperatoms are

where v
( J) denotes domain v„translated to r . Then

p(r )

there exists a hyperlattice translation R' and an inner
space vector r Ku„„(R),which depends on R', such that
the two hyperatoms translated by R' are both cut by the
physical space at r +r . This generates two atoms inP lphysical space, one at the point R'+r„+s„(R) and
another one at R'+R+r„+s.(r|+rpl —R i—ri). Clear-
ly, the separation between these two atoms,

r„(R,r )=R+r„+s,(r +r~ R~—r—~)

—r„—s„(r), (A 1 1)

depends on the overall translation R' only implicitly,
through its dependence on r . In fact, there is an infinite
number of hyperlattice translations R' and an associated,
essentially continuous variation of r within u„(R)that
correspond to a continuous distribution of atomic separa-
tions r„(R,r ). The density of all such pairs n„,(R) is
simply related to the inner space overlap volume upi. (R)
by
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"tlat, " that is s (r ) —=0, then r (R, r )=R+r,—r„is in-
dependent of r and the pair distribution function
reduces to a discrete sum,

G(r)=g g n (R)5(r —r„,(R)) .
p~ R +~(Q') = g+(Q)e (83)

and the reciprocal lattice IQ'] breaks down: There are
infinitely many different Q' with the same projection Q',
each having a different Q' . Therefore the structure fac-
tor of the resulting periodic crystal,

APPENDIX 8: FROM QUASICRYSTAI.
T(0 CRVSTAI. AND BACK

L 0
Ex (8 I)

in the coordinate system in which the hyperspace coordi-
nates are given by r —= (rr ). As arbitrarily small (ration-
al) shears are taken, E"~0 and L~ I, the original hyper-
crystal and quasicrystal are recovered.

The reciprocal hyperlattice transforms under this dis-
tortion as

Q O'=L 'Q (82)

and reciprocal hyperlattice (D —3)-planes become paral-
lel to the inner space. Consequently, the one-to-one
correspondence between the reciprocal hyperlattice IQ'I

A periodic crystal structure with the pair distribution
function si.milar to the one of the quasiperiodic quasicrys-
tal structure can be often obtained in physical space by a
"rational" linear distortion of the hypercrystal structure
in hyperspace. Such periodic crystal structures, so-
called rational approximants, are useful from both
theoretical and experimental points of view. On the
theoretical side, rational approximants can be used
effectively in computer calculations of quasicrystal's
physical properties that often require application of
periodic boundary conditions. On the experimental side,
a rational approximant can be often identified with a real
periodic crystal that is closely related to the quasicrystal.

As a hypercrystal is deformed with a shear E parallel
to inner space, also the structure of the associated quasi-
crystal in physical space changes. However, since hy-
peratoms that are flat remain flat under such a shear, the
interatomic separations remain the same in the distorted
quasicrystal; only their frequencies change. For
suf6ciently small shears E «l /k, only small changes of
order 0(E ) will be made. Since purely inner space dis-
tortions are inconsequential to the structure in physical
space, a similar change in the quasicrystal structure could
be accomplished by a rotation of the hypercrystal. How-
ever, hyperatoms would not remain flat after such a rota-
tion and a/I interatomic separations in the distorted
quasicrystal would change.

If the shear E" is rational —that is, it brings a three-
dimensional hypercrystal plane (a three-plane) into a
parallel orientation with physical space —then, by con-
struction, the resulting structure in the physical space
will become periodic with the periodicity of that hyper-
crystal three-plane. Of course, the periodicity would not
be destroyed if the "rational" hypercrystal shear were fol-
lowed by any linear transformation L in physical space.
The resulting transformation L can be represented by

involves an infinite sum that extends over all
quasicrystal's (Q, Q ) that satisfy L Q' =Q —E "

Q .
Here we also introduced ro, an inner space translation of
the hypercrystal. Such a translation is inconsequential
for the quasicrystal, but for rational approximants,
difFerent ro will generally result in a difFerent structure.

%'hile an atom with the same chemical character as the
pth hyperatom is located at a particular R+r„in the
quasicrystal if and only if ro —R —r„EU„,it is located at
that point in the distorted quasicrystal if and only if
ro —R —r —E (R+r )Hv . However, just as atomic
clusters within a unit cell of a linearly distorted ordinary
crystal would adjust to the distortion according to their
local environments, small distortions of the hyperatoms
v„—+U

L may have to accompany the linear distortion L

if the resulting rational approximant is to be considered a
viable structure for a real periodic crystal. Namely, al-
though the rational approximant has a pair distribution
function similar to that of the quasicrystal, if the hypera-
toms are not distorted, unphysically short interatomic
distances or large voids will generally occur associated
with the boundaries of the hyperatom domains U„.The
fraction of atoms of type p that will contribute to either
close pairs or voids is on the order of ~E"~l„(U„)
where l„is a distance given by Eq. (2.26) characteristic of
the nearest forbidden shells defined in Eq. (2.27). Thus
the atomic positions in the rational approximant will be
given by

IR+r„~ro—R —r„—E (R+r„)EvLI, (84)

where all hyperlattice vectors R and all hyperatom loca-
tions r„need to be considered.

Although it may be sometimes possible to remove some
of the short bonds or voids by a careful choice of ro, dis-
tortions of hyperatom shapes will be generally required.
However, without invoking a detailed physical calcula-
tion of the total energy, it is not obvious whether, or how,
the individual hyperatoms must be distorted as the hy-
perlattice is being distorted. A possible exception may be
the case when the hyperatom domain shapes v„can be
directly related to the elements of the unit cell of the hy-
percrystal. One of the simplest examples is the Ammann
tiling whose vertices result from the domain which is the
inner space projection of the unit cell of the hypercubic
lattice, u =P U. Then vL is simply the projection of the
unit cell of the distorted hypercrystal, v L

=P LU. In gen-
eral, however, this lack of knowledge about vL must be
compensated by a judicial elimination or insertion of
atoms where unphysical arrangements are discovered in
the approximant obtained by the simple assumption
U —=U

L

So far, we discussed how to construct a periodic crystal
starting from a quasicrystal. However, by inverting the
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linear transformation L, a given periodic crystal structure
can be lifted into the hypercrystal unit cell to give a
discrete set of pointlike atoms. An atom of the periodic
crystal located at rk in physical space is lifted into a
pointlike atom at rk in hyperspace by

rk L '-rk
—E L r

Since these pointlike atoms should be located within the
(D —3 )-dimensional hyperatoms, their location and
chemical composition may provide useful information
about locations, shapes, and compositions of the hypera-
toms.

Specifically, we shall consider R-(Alo 564Cuo»6Lio 3po)

as a rational approximant of i-(Alo ~7oCuo iosLio 32z). Us-
ing the coordinate system given in Ref. 35, the orienta-
tion of physical space relative to the hypercubic lattice
can be described by the rotation matrix M,

e& ez e3 e4 e~ e6
M=

v 2 e, e2 e3 e~ e5 e6

1 0 10

1

+2(r +1)

0
1

1

0

0
—1 0

1

0

1 —1

0
0 0 (86)

0

which transforms components of a vector in the Carte-
sian coordinate system aligned with the hyperlattice to its
components in the physical —inner-space coordinate sys-
tem. By substituting r with its continued fraction (ra-
tional) approximants r„=F„/F„„whereF„is a Fi-
bonacci number (F„+2=F„+i+F„,Fi =Fo= 1), one ob-
tains a sequence of rotations M„that describe hypercrys-
tal orientations with a three-plane parallel to physical
space. This corresponds to the rational shears

+nE"=[(M M ')'] '(M M-')"= i= (,n n n Pn+1
n

(87)
which, combined with an isotropic physical-space distor-
tion L=L, I, result in periodic cubic crystals with the lat-
tice constant a~ =a [r"+'/+2(r+2)]L For n =.1

(mod 3), they are bcc crystals; otherwise, they are sc crys-
tals. By comparing their reciprocal lattices, it follows
that the n = 1 rational approximant of i-
(Alo g7oCuo io8Lio 3pQ), with a small isotropic compression
J =0.999 in physical space, can be associated with R-
(Alo. s64Cuo. i i6Lio. 3zo)

All pointlike atoms embedded in the unit cell of the hy-
perlattice can be constructed by first applying Eq. (B5) to
a representative atom of each of the seven orbits of atoms
in the unit cell of R-(Alo 5«Cuo»6Lio 32o). Then addition-
al embedded atoms can be obtained by applying the as-
sumed P35m hypercrystal symmetry in hyperspace. All
seven orbits of the R-(Alo ~«Cuo»6Llo 3po) atoms can be
grouped into three sets in the hypercrystal, associated
with the vertex, the six edge centers, and the body center

of the hypercubic unit cell. This grouping, shown in
Table IV, is accomplished with the separation

rk p(k) +~rk

where, k = 1, . . . , 7 labels the seven orbits while p(k )
= V, E~, or B. Obviously, such separation is not unique,
and our choice of Ark represents a compromise so that

~ hr&
~

is as small as possible while
~
Arz ~

~ —,
' l = 10 A.

APPENDIX C: THE AMMANN TILING MODEL

In this appendix, we shall briefly discuss a simple Am-
mann tiling model of i-(Alo 57QCllo iosLlo 322) quasicrystal
structure and its optimization. Although several variants
of the Ammann tiling model have been discussed and uti-
lized for i-(Alo 57oCilo iosLio 322) they were not fitted
to the same data as here or the results of the 6tting were
not given in sufhcient detail. Furthermore, the simple
Ammann tiling model discussed here overs a relevant
reference point for the model we presented in the main
text.

Generally, a tiling model can be described by a
prescribed geometric network in physical space and its
decoration with atoms. In our case, the network is the
Ammann tiling and the atoms will decorate its two rhom-
bohedral building blocks in a similar way that they would
decorate the unit cell of a periodic crystal. Although a
tiling model of a quasicrystal structure is a very special
kind of a model, one that need not describe a real quasi-
crystal such as i-(Alo ~7oCuo iosLio 322) in all of its details,
we think that studying tiling models may be very helpful.
An advantage of the tiling approach is that the global
picture of the atomic structure in physical space is built
locally and, thus, simplified. Moreover, while a hyper-
crystal description of the network alone may su%ce for a
quasiperiodic tiling model, the full hypercrystal descrip-
tion of the tiling as a whole may shed a light on other hy-
percrystal structure models and their connection to
geometrical and topological relationships between the
atoms in physical space.

The simplest Ammann tiling model can be constructed
by decorating the two Ammann rhombohedra, the pro-
late and the oblate one. Using our solution of the phase

29, 30problem for i-(Alo 57QCUo io8Llo 32$), we have recon-
structed its scatterer density (both for x rays and neu-
trons). When we superimpose an Ammann tiling over
this density and average the density over all prolate or
oblate rhombohedra, we find particularly simple distribu-
tions using the tile edge length a =a/&2=5. 056 A. It
indicates that the Al/Cu atoms are most likely to occupy
vertices and edge centers of the tiling, while the Li atoms
are to be found at two sites dividing the long body diago-
nal of the prolate rhombohedron in the ration ~:1:~.
These locations of Al/Cu and Li atoms were also suggest-
ed earlier by other authors. ' They were found to arise
from V, E, and 8 hyperatoms whose shapes are a rhom-
bic triacontahedron, a rhombic icosahedron, and rhom-
bic hexecontahedron (a stellated polyhedron), respective-
ly. ' ' Their rhombic facets are the same as these of
the Ammann rhombohedra in physical space, with an
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FIG. 8. (a) V, (b) E, and (c) B hyperatoms for the Ammann
tiling model of i-(A1Q 57QCup &QSL1Q 322) discussed in Appendix C.
The small volume in {a) shows the shape of the hole located at
the center of the V hyperatom.

FIG. 9. (a) V, {b) E, and (c) B hyperatoms for the model of i-
(A1Q 57QCup ]Q8LiQ 322) discussed in Appendix D. The small
volume in (a) shows the shape of the hole located at the center
of the Vhyperatom.

edge length a =a =5.056 A.
Taking these hyperatorn shapes, shown in Fig. 8, and

making the same assumptions as in the model presented
in the main text, we obtain the results listed in Tables
I—III and discussed in Sec. IV. The hyperatoms satisfy
the nonoverlap constraints of Figs. 2 and 3, simply be-
cause the steric constraints are satisfied by the tiling con-
struction in physical space. However, as shown below,
this simple model cannot be consistent with the density
observed in the sample, independently of the chemical
composition assumed for individual hyperatorns.

Since the volumes of prolate and oblate rhombohedra
in inner space (the same as in physical space) are
vi=2m g a =98.34 A and v, =u /r, respectively, we
can calculate volumes of the rhombic triacontahedron
(ui,, =v „;,= 10u + 10u, = 1591 A ), rhombic icosahedron
(uz=v;„,=Su&+Su, =795.5 A ), and rhombic hexiacon-
tahedron (uz =vh, „;,=20' =1967 A ). Similarly to the
arguments given for our model in the main text, we must
remove from the center of the Vhyperatom its ~ scaled
replica u~. ~ u~, =88 A . Thus u~ =—u~+6u~
A, and the total volume uz =u z +uz =8154 A . This
uz is only 0.8'7g larger than the experimental value of
u~~+ u c„+uL;

= 8.08(9)X 10 A . On the other hand, uz~

is 24.5% smaller than the experimental value for Li,
ui;=2. 60(5)X10 A . As described in the main text,
this is a serious problem since all Li and even some Al are
expected at the body center. Correspondingly, the u~
volume is 13.0% larger than the experimental value of
v~, +vc„=5.48(7) X10 A . This discrepancy is exacer-
bated if some of Al is assumed to reside at the B hypera-
tom. Therefore any improvement of this simple tiling
model should involve removing some volume from the V
and E hyperatoms and adding it back to the B hypera-
tom. Part of it must be converted to Li and another part
may be converted to pure Al. Our model and the model
of Ref. 22 can both be viewed in this way and are com-
pared in Sec. IV.

APPENDIX B: THE SEC&NB MABEL

In this appendix we discuss a model with hyperatom
shapes shown in Fig. 9. In contrast to the Ammann til-
ing model where each hyperatom facet is perpendicular
to an icosahedral twofold axis, here each facet is perpen-
dicular to a threefold axis. This model results from our

r~3 =&3gr a = 12.OS 3 A

r&2=g~ a =11.259 A

(D2)

(D3)

By construction, the volume of this hyperatom, u~ =2574
0

A, is the same as for our model described in the main
text and, thus, it agrees with the experimental Li volume.

The E and V hyperatoms are bounded by the first two
B hyperatom shells, as described in the text, and the re-
sulting hyperatom shapes are shown in Figs. 9(a) and
9(b). The E hyperatom has D5d symmetry and its volume
is uE=657 A . Its facets surrounding the two fivefold
vertices are truncated equilateral triangles whose two
edges that meet at the fivefold vertex are of length
g(3r —2)a =7.586 A& the two short ones are
&2g(2 —r)a = 1.436 A, and the remaining one is
2qa =5.316 A. The equatorial facets are also truncated
equilateral triangles whose edges crossing the equatorial
plane are of length g(r —1)a =1.643 A, while the other
edges are shared with the facets already described.

The V hyperatom is a regular icosahedron of edge
2gwa =8.602 A, also described by the three radial dis-
tances

(D4)

J giri,3
= —a =6.501 A

ri,~=gr a =6.959 A (D6)
0

Its volume is u&, =1388 A. If we again want to remove
from the physical space all V atoms which have the per-

parametrization of the B hyperatom shape and the steric
constraints of Figs. 2 and 3 described in the main text.
By using the same fitting parameters as in the model de-
scribed in the text, we obtain the results listed in Tables
I—III and discussed in Sec. IV. The model produces
rather good x-ray and neutron R factors, but, as shown
below, is slightly inconsistent with the experimentally
measured atomic number densities.

In the same way as we did in the main text, we model
the body center hyperatom first. In Eqs. (3.4) —(3.6), we
take the longest allowed radii along the twofold and
threefold axes, forcing the minimal radius along the five-
fold axis; thus, we obtain

;~,=.=5.056 A,
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feet 12-fold icosahedral coordination, as described for our
model in the main text, we must remove from the center
of the V hyperatom its r scaled replica,
v&,. =z v&, =77 A . Then the final volume of the Vhy-
peratom is vz=vz, —vz; =1311 A and the total Al and

O

Cu inner space volume v~ =vz+6vE =5254 A is only
4. 1%%uo short of the experimental value of 5.48(7) X 10 A .
For a comparison, volume of the hole in the V hyperatom
is only 1.4% of the experimental value for the Al/Cu
volume.
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