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We have recently calculated exact nonequilibrium quantum transport properties through a point con-
tact in a Luttinger liquid. Using a particular quasiparticle basis of the Hilbert space dictated by integra-
bility, we here compute explicitly the exact I( V) characteristic and conductance out of equilibrium as a
function of driving voltage V and temperature T. These are described by universal scaling functions of
two variables, the scaled point-contact interaction strength, and V/T. The difFerential-conductance
curve as a function of the interaction strength broadens significantly as V/Tis increased, and develops a
pronounced maximum at a (universal} critical value (eV/k& T)=7.188 68. . . . In addition, we derive an
exact duality between strong and weak backscattering. The theory presented here has recently been real-
ized experimentally in resonant tunneling-transport experiments between edge states in fractional quan-
tum Hall effect devices. In this context the exact duality is between electron tunneling and Laughlin-
quasiparticle tunneling.

I. INTRODUCTION

Nonequilibrium quantum transport in fully interacting
systems is a barely explored territory of theoretical phys-
ics. Equilibrium statistical mechanics of interacting sys-
tems, on the other hand, can sometimes be studied reli-
ably by using powerful field-theoretical techniques (in-
cluding conformal field theory and the Bethe ansatz).
Bethe-ansatz integrability is useful in equilibrium even in
the absence of scale invariance, permitting one to study
the exact crossover behavior between critical points.
However, integrability has for the most part been useful
for calculating only thermodynamic quantities, excluding
correlation functions and transport at nonzero tempera-
ture. However, by using the "quasiparticle approach" to
integrability, we have recently shown that, quite unex-
pectedly, one can compute exact transport properties
through a point contact, even out of equilibrium. ' Here
we discuss nonequilibrium transport through point con-
tacts in a Luttinger liquid. This model is realized in reso-
nant tunneling experiments through point contacts in
quantum Hall effect devices.

The key observation in Ref. l was that (i) tunneling is
integrable and (ii) integrability defines a quasiparticle
basis of the Hilbert space of the leads, which is particu-
larly suited to computing transport. In this basis, scatter-
ing processes at the point contact proceed without parti-
cle production. These quasiparticles are not free. How-
ever, their interactions can be incorporated exactly into
non Fermi distributio-n functions, which govern the filling
of single-particle levels (orbitals) with quasiparticles in

the thermodynamic limit. Even though these distribution
functions are not that of Fermi-Dirac, in an integrable
model they can be computed exactly using thermodynam-
ic Bethe-ansatz (TBA) technology. Once this quasiparti-
cle basis arising from integrability has been identified,
nonequilibrium transport properties such as the exact
I( V) curve and the conductance through the point con-
tact can be computed exactly using a kinetic (Boltzmann)
equation for these quasiparticles. This is possible even
though the point-contact interaction is non-Gaussian, be-
cause the constraints of integrability give the exact S ma-
trix of transmission and reAection amplitudes for these
quasiparticles scattering off the point contact. This elas-
tic single-quasiparticle S matrix is momentum dependent,
and, since there is no quasiparticle production in this
basis, it is unitary. The S matrix for scattering of a mul-
tiparticle state off the contact factorizes into a product of
single-particle S matrices. This means that reAection and
transmission processes of single quasiparticles by the
point contact occur successively ("one-by-one"), and are
the only scattering events. Therefore, these single-
quasiparticle processes describe the effect of the point-
contact interaction fully and exactly.

The purpose of this paper is threefold: (i) We give the
details of our exact nonequilibrium transport calculations
through point contacts, using Bethe-ansatz integrability.
We have recently reported briefly on some of our results
in Ref. l. (ii) We give universal explicit curves for the
I( V) characteristic and the conductance of those point-
contact devices, for all temperatures, for comparison
with future experiments. (iii) We prove the existence of
an exact duality symmetry in this interacting system be-

0163-1829/95/52(12}/8934(17}/$06.00 52 8934 1995 The American Physical Society



52 EXACT NONEQUILIBRIUM TRANSPORT THROUGH POINT. . . 8935

tween weak and strong backscattering. In the context of
the quantum Hall effect, this corresponds to a duality be-
tween electron tunneling and Laughlin-quasiparticle tun-
neling.

The Luttinger model is one of the simplest non-Fermi-
liquid metals. It consists of left- and right-moving gap-
less excitations at the two Fermi points in an interacting
one-dimensional electron gas. In the past, this model had
been dificult to realize experimentally. This is simply be-
cause in a one-dimensional conductor (such as a quasi-
one-dimensional quantum wire so thin that the transverse
modes are frozen out at low temperature), random impur-
ities occur in the fabrication process. These impurities
lead to localization due to backscattering processes be-
tween the excitations at the two Fermi points. In other
words, the random impurities generate a mass gap for the
fermions. However, the edge excitations at the boundary
of samples prepared in a fractional quantum Hall state
should be extremely clean realizations of the Luttinger
non-Fermi liquids. These are stable because for 1/v an
odd integer, the excitations only move in one direction on
a given edge. Since the right and left edges are far apart
from each other, backscattering processes due to random
impurities in the bulk cannot localize those extended
edge states. Moreover, the Luttinger interaction parame-
ter is universally related to the filling fraction v of the
quantum Hall state in the bulk sample by a topological
argument based on the underlying Chem-Simons theory,
and does therefore not renormalize. The edge states
should therefore provide an extremely clean experimental
realization of the Luttinger model.

We study the tunneling conductance through a local
backscattering potential in the Luttinger model, which
gives a fingerprint of the non-Fermi-liquid state in the
Luttinger metal. This situation is realized in resonant
tunneling experiments through a point contact in v= 1/3
quantum Hall devices. The point contact causes
backscattering between right- and left-moving edge exci-
tations, but since the coupling is only at a point, it can be
controlled experimentally (and theoretically). The tun-
neling conductance can thus be viewed as a spectroscopy
of the Luttinger non-Fermi-liquid state in the quantum
Hall edges. Indeed, the experimentally measured linear-
response conductance agrees remarkably well with our
exact predictions based on the Luttinger model. ' This
appears to provide very convincing evidence that the
Luttinger model describes the edge state in fractional
quantum Hall devices.

In this paper we study nonequilibrium transport
through such an impurity in detail. Studying transport
properties is crucial for making contact with experiment;
thermodynamic properties such as the specific heat aris-
ing from a point contact are clearly not accessible experi-
mentally. In the quantum Hall experiments, one uses a
four-terminal geometry of the quantum Hall bar, which is
long in the x direction and short in the y direction. The
left-moving (upper) edge of the Hall bar is connected to
the battery on the right such that the charge carriers are
injected into the left-moving lead of the Hall bar with an
equilibrium thermal distribution at chemical potential
pL. Similarly, the right-moving carriers (propagating in

the lower edge) are injected from the left, with a thermal
distribution at chemical potential p~. The difference of
chemical potentials of the injected charge carriers is the
driving voltage V=pl —pz. If V&0, there are more
carriers injected from the right than from the left, and a
"source-drain" current flows from the right to the left,
along the x direction of the Hall bar. In the absence of
the point contact, the driving voltage places the right and
left edges at different potentials (in the y direction, per-
pendicular to the current flow), implying that the ratio of
source-drain current to the driving voltage V is the Hall
conductance.

In the absence of any point-contact interaction, the
source-drain current Io( V) may be computed in a variety
of ways (see, e.g. , Refs. 7 and 5). The resulting conduc-
tance is ve /h (in linear response and at finite driving
voltage V). When we include a point-contact interaction
at finite driving voltage, more of the left-moving carriers
injected from the right are backscattered than those in-
jected from the left, resulting in a loss of charge carriers
from the source-drain current. In this case, we write the
total source-drain current as I( V) =Io( V)+I'( V), where
Iz(V) is the (negative) backscattering current, quantify-
ing the loss of current due to backscattering at the point
contact. It is this backscattering current that we com-
pute exactly here, for finite driving voltage V and all tern-
peratures T. This computation is possible since back-
scattering does not deplete the (infinite) right and left
reservoirs (the battery), so that we can use the individual
thermal distribution functions for the left and right reser-
voirs.

The I( V) characteristic as well as the conductance are
described by three parameters, V, T, and Tz, where T~
(analogous to the Kondo temperature in the Kondo
efFect) is a measure of the point-contact interaction
strength. However, due to the underlying quantum criti-
cal point, these observables are described by universal
scaling functions of two ratios, the scaled interaction
strength Tz /T and V /T. We display the exact
differential conductance G(Tii/V, V/T) —=BI( V)/BV in
Fig. 1. As apparent from Fig. 1, an interesting prediction
of our exact solution is that the differential conductance
exhibits a pronounced maximum as a function of the
point-contact interaction strength, whenever the ratio
V/T exceeds a critical value (which depends on the filling
v, i.e., on the Luttinger interaction constant). This is a
pure nonequilibrium effect, since the maximum occurs
only at finite driving VWO. Of course, the total current
still decreases as the point-contact interaction strength is
increased. This feature is consistent with the first-order
perturbative results for the I( V) curves at zero tempera-
ture, in the strong and weak backscattering limits.

When there is a single relevant operator corresponding
to the impurity, the model is integrable, so we compute
the current and conductance exactly. There is only one
relevant operator when v= 1/3, so integrability is generi-
cally observed without any fine tuning. Any other
sample-specific details appear only in the irrelevant
operators. Integrability allows the definition of a basis of
massless charge-carrying "quasiparticle" excitations. '

These quasiparticles are scattered one-by-one off the im-
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thermal distribution functions, using the fact that the in-
teracting theory is integrable. In Sec. V, we derive an ex-
act (Boltzmann) equation for the current in terms of the S
matrix and the distribution functions. This gives us equa-
tions for the exact conductance. These can easily be
solved numerically, and we present curves for a variety of
values. At zero temperature, the equations simplify and
we present more explicit analytic results in Sec. VI ~ This
enables us to derive an exact duality between strong and
weak backscattering limits, out of equilibrium.
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FIG. 1. The nonequilibrium differential conductance as a
function of ln(T&/V), for various values of V/T. Notice that
the curve develops a peak when V/T&7. 18868, and that the
T~O limit is smooth.

purity with a momentum-dependent one-particle scatter-
ing matrix S of transmission and reAection amplitudes.
These amplitudes can be determined exactly by imposing
the constraints of integrability, including the boundary
Yang-Baxter equation and the boundary-crossing rela-
tion. Furthermore, the quasiparticles are characterized
by a thermal distribution function, which can be calculat-
ed exactly using the thermodynamic Bethe ansatz. ' '"
This special behavior is a consequence of integrability,
and it allows us to derive an exact rate (Boltzmann) equa-
tion for the conductance in this interacting theory.

We should note that many of these results have been
checked by using a completely different method of com-
putation. Instead of the nonperturbative methods to be
described below, one can study the model perturbatively
in the interaction strength Tz. Closed-form results for all
the perturbative coefIicients of the free energy have been
found; a simple technical assumption then also leads to
closed-form expressions for all the perturbative
coefficients of the conductance, even at finite V. ' There
is complete qualitative and quantitative agreement be-
tween the two approaches.

The outline of this paper is as follows: In Sec. II, we
discuss how this system is realized in experiments on res-
onant tunneling through point contacts in fractional
quantum Hall devices. In Sec. III, we map the problem
into two decoupled theories, one of which is affected by
the backscattering interaction, and another one which is
not. In Sec. IV, we find the exact quasiparticle spectrum,
exact S matrices for quasiparticles scattering among
themselves and off of the boundary, and the exact

A. Experimental setting for resonant tunneling

Experiments on resonant tunneling between two
v= 1/3 edges have recently been performed by Milliken,
Umbach, and Webb. We briefly review the experimental
setup schematically. (For details see Refs. 2 and 6.) A
fractional quantum Hall state with filling fraction v= 1/3
is prepared in the bulk of a quantum Hall bar (discussed
in Sec. I). This means that the bulk quantum Hall state is
prepared in a Hall insulator state (longitudinal conduc-
tivity cr =0), and that the (bulk) Hall resistivity is on
the v= 1/3 plateau, where cr =(1/3)e /h. This is
achieved by adjusting the applied magnetic field, perpen-
dicular to the plane of the bar. Since the plateau is
broad, the applied magnetic field can be varied over a
significant range without e5'ecting the filling of v= 1/3.
Next, a gate voltage V is applied perpendicular to the
long side of the bar, i.e., in the y direction (see Sec. I) at
x =0. This has the effect of bringing the right- and left-
moving edges close to each other near x =0, forming a
point contact. Away from the contact there is no back-
scattering (i.e., no tunneling of charge carriers) because
the edges are widely separated, but now charge carriers
can hop from one edge to the other at the point contact.

The linear-response source-drain conductance as a
function of temperature and gate voltage V has been
measured experimentally. As the gate voltage is swept
through, the conductance signal shows a number of reso-
nance peaks, which sharpen as the temperature is
lowered. These resonance peaks occur for particular
values V = V* of the gate voltage, due to tunneling
through localized states in the vicinity of the point con-
tact. Ideally, on resonance, the source-drain conductance
is equal to the Hall conductance without point contact,
i.e., G„„„,„„=(1/3)e /h. This value is independent of
temperature, on resonance. Now, measuring the linear-
response conductance as a function of the gate voltage
near the resonance, i.e, . as a function of 5 V —= V~

—Vg', at
a number of different temperatures T, one gets resonance
curves, one for each temperature. These peak at 5Vg =0.
Scaling arguments imply that those experimental con-
ductance curves should collapse onto a single universal
curve when plotted as a function of 5V /T . Indeed

2
g

they do collapse quite well. Moreover, the resulting
universal curve should be a unique signature and finger-
print of the v=1/3 edge state in the leads connected to
the point contact.



52 EXACT NONEQUILIBRIUM TRANSPORT THROUGH POINT. . . 8937

B. Comparison of the linear-response resonance line shape
with our exact Luttinger model predictions

To make contact with the Luttinger model, we state (as
will be explained below in more detail) that the experi-
mental parameter 5 V~ should be related to the Luttinger
backscattering interaction by 5V ~ Tz . In particular,
at the resonance value Tz =0, there is no backscattering
at all.

We have compared' our exact predictions for the
linear-response conductance scaling curve with the exper-
imental data as well as Monte Carlo calculations in Ref.
6. The agreement between the Monte Carlo simulation
and our exact scaling curve is excellent. The exact value
of the universal parameter K [defined so that
G(X)=KX for X large and G(X)=(1—X )/3 for X
small] is K=3.3546 [where X=0.74313(Tii/T) ~ ].
(The value K=2.6 quoted in Ref. 6 seems to have been
slightly underestimated there. )

The comparison with the existing experiments by Mil-
liken et aI. is not completely straightforward, since the
conductance at the resonance peak in the experimental
data decreases with temperature and is well below its res-
onance value e /3h. This diSculty arises since in order
to achieve the resonance condition in the Luttinger mod-
el, two parameters need to be tuned, since the point con-
tact will, in general, not possess reAection-parity symme-
try about the point x=O. ' In the experiments per-
formed so far, only one parameter, namely, V, has been
tuned. For that reason, the conductance peaks do not
have their maximum height G„„„,„„=(1/3)e /h, but
are smaller; furthermore, the peak height does decrease
with temperature, rejecting the fact that the experimen-
tal peak is not a perfect resonance. This problem can be
remedied in a future experiment, by varying two parame-
ters, namely, V and the magnetic field on the plateau, in-
stead of only one parameter, to achieve resonance. Nev-
ertheless, even when only the gate voltage is tuned to res-
onance, the experimental data for the conductance signal
as a function of the gate voltage and temperature collapse
well onto single scaling curve. Thus, it makes sense to
compare this experimental curve with our exact conduc-
tance curve, computed from the Luttinger model. The
agreement is quite good, given the large scatter of the
data in the tail of the resonance curve. In particular, the
data clearly show the predicted G ~ T /( Vg

—V )

behavior in the tail.
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one could attempt to measure the conductance at finite
driving voltage V. Note that our exact results predict the
shape of the universal scaling function

G(T~/T, V/T), TIi =C(5V )3i2,

as a function of two ratios. The nonuniversal parameter
C is determined by fitting the experimental data to the
universal curve; this is the only unknown quantity. The
linear-response conductance is the limit of this function
as V~O, where it becomes a function only of one ratio
Tz!T. Note that the conductance at finite driving volt-
age V also describes a resonance line shape. A particular-
ly interesting feature of the conductance at finite driving
voltage V is seen in Fig. 1. The conductance as a func-
tion of Tz ~(5V ) ~ develops a pronounced peak when
the ratio of driving voltage to temperature eV/k&T
exceeds a critical value 7. 188. . . . For a typical low tem-
perature T=50 mK used in the data of Ref. 2, this would
correspond (10k&K = 1 meV or 5 pV / 50 mK = 1) to a
driving voltage of V*=35 pV. The current data were
taken at an "excitation voltage" of 1 pV, which corre-
sponds to a ratio eV/kz T=0.2. We have plotted the ex-
act results for the aforementioned scaling functions in
Figs. 1 and 2. One sees clearly from these plots that
eV/AT =0.2 corresponds to the linear-response regime.
Perhaps the most significant feature displayed in Fig. 2 is
a very dramatic nonequilibrium broadening of the reso-
nance curve for values of the ratio V/T even well below
the occurrence of the maximum. In terms of numbers,
the curve broadens by a dramatic amount already at
eV/kz T=2 or 3, well before the onset of the maximum
(at eV/k& T=7. 188). This broadening should be easily
visible experimentally, since it would correspond to an

0.1 5

C. Predictions for future nonequilibrium
transport measurements

0.1

In principle, there is no reason why the above men-
tioned measurements could not be extended to finite driv-
ing voltage V. (One should not confuse the driving volt-
age V, which is the difference between the chemical po-
tentials between the injected left- and right-moving
charge carriers, with the gate voltage Vg, which gives rise
to the coupling constant T~ in the Luttinger liquid
theory. ) So far, only the linear-response conductance
G =limz OI( V)/V has been measured. More generally,

0.05
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TB/T
FIG. 2. The nonequilibrium differential conductance as a

function of T~zT for various values of V/T. The curve
broadens substantially as V/T is increased, even before develop-
ing a peak.
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excitation voltage V= 15 pV, just a factor of 15 higher
than the ones used by Milliken et al. , at T= 50 mK.

Clearly, at larger voltages one will have to worry about
larger currents Aowing in the sample, which might lead
to possible complications. These complications would,
for example, include nonuniversal effects arising from
sample heating, which are clearly not included in the
Luttinger theory and which could mask the underlying
universal Luttinger non-Fermi-liquid physics. However,
one should notice that for most part of the conductance
curve, the conductance is very small, implying Bow of
very small currents, so that sample heating should not
appear to be a problem.

Furthermore, it is important to notice that the scaling
function depends only on the ratio V/T. This means the
same critical ratio ( V/T)* =7.188 could also be achieved
by working at lower temperatures. It might be reason-
able experimentally to perform measurements at lower
temperatures. This would reduce even more the values of
the driving voltage where the onset of the universal non-
equilibrium features (the most dramatic one being the
broadening) become clearly visible.

are sometimes referred to as "Luttinger hyperfermion"
operators when 1/v is an odd integer. ' There are two
U(1) symmetries of this model corresponding to the left
and right (hyper) fermion number: We introduce the cor-
responding conserved charges Ql =f ' idxjt and Qii
= I' idxjs. The corresponding "hyperfermions" have

charge e as do the original electrons, as can be seen by
computing their commutators with the charge operators.

We now include an impurity, which we assume is local-
ized at the origin x =0. It couples left- and right-moving
fermions with the interaction %t (0)(I'i((0)+'Pz (0)%'I (0).
Such a coupling destroys the separate conservation of the
two charges Qt and Qi, : Only the total charge Qt +Qi(
remains conserved, corresponding to simultaneous phase
translations of yL and yR. In a renormalized effective
theory, all terms that are not forbidden by total charge
conservation symmetry can appear in the Hamiltonian.
These may be represented in terms of the bosons yL, yR
by a backscattering contribution to the Hamiltonian: '

in'& (x =0). —
in'& (x =0}

H =—~A, (~e
~ e

n

III. BOSONIZING AND MAPPING
TO AN INTKGRABLK MODEL

—indi (x =0) inq&& (x =0)+e ' e (3.4)

The Luttinger model is the most general model of a
single massless fermion in one dimension. The fermion
interaction is governed by a single parameter gz„«, so
that when g««&0, the interaction is repulsive, and
g««&0, it is attractive. In the absence of the impurity,
the Hamiltonian is

1
H =m dx(JI +Ji, +gi„«Jt J~ ),—1

(3.1)

n —1 a+1
O'R+ O'L ~2 2

(3.2)

one can decouple the interaction in the bosonized Hamil-
tonian, which reads then

H()= —f dx[jt +j~]= f II +(B,y) (3.3)

where II is canonical momentum conjugate to P. The
coefficient v is related to the old Luttinger coupling via
g„„«=—2(a —1)/(a +1), 1/v=2a /(1+a ). The
currents jL = —1/2~8 yL and jR =1/2~8 yR are then
normalized so that (jt (x, )jt (x 2 ) ) =v/( 2m ) (x, —x z ),
which makes the meaning of v as a chiral U(1) anomaly

(i lv)y~explicit. The operators i'~ =:e ":and Pt =..

where the left movers are coupled to the right movers.
We use the well-known map of this model to free mass-
less left- and right-moving bosons WL and @R.' To do
so, one bosonizes the currents Jt = —I/2mB„@t and Ji(
=1/2vrB C&)i. The fermion operators take also the form

i+&
%z =..e:and qit =:e:.By introducing new fields'
using the transformation (canonical up to a global factor
V'a}

a+1 u —1
@R 'PR+ V L2 2

When we describe the Luttinger theory in terms of the
bosons qvL and yR, i.e., after the Luttinger bulk interac-
tion g««has been disentangled, this term describes hop-
ping of quasiparticles of charge ve (the Laughlin quasi-
particles in the fractional quantum Hall effect) between
the left- and right-moving edges. Only the terms with
n & 1/v are relevant. For v& 1, all terms are irrelevant;
this case is more appropriately described by a "dual" pic-
ture. At v=1, there is a single exactly marginal opera-
tor. This preserves the conformal invariance of the fixed
point, so conformal techniques are applicable, making
possible the calculation of the complete partition func-
tion. ' We now focus on the case v & 1. For the model to
be integrable, it seems that only one relevant perturbation
is allowed. Thus, when 1&v &1/4, the backscattering
interaction is automatically integrable without any fine
tuning. The experimentally measured value of v= 1/3
falls into this range of parameters. For v & 1/4, the mod-
el has to be fine tuned in order to be integrable. In partic-
ular, for 1/9 & v& 1/4, a single parameter (X2) needs to
be tuned to zero in order to achieve integrability. In gen-
eral, we will be treating the model with A,„=Ofor n ~ 2.

In order to transport net charge through the impurity,
we place the injected left movers and the right movers at
different chemical potentials. This amounts to adding a
term e(Qt —

QR )V/2 to the Hamiltonian describing the
thermal weighting of the injected charge carriers. Notice
that even though this problem is out of equilibrium for
nonzero V, the charge carriers injected into the leads are
thermally weighted with an equilibrium distribution func-
tion corresponding to pL or pR. Thus, we are studying
the coupling between two equilibrium distributions.

It is convenient to introduce the "backscattering tem-
perature" Tz, which is the scale generated by the
relevant point-contact coupling constant at one point:
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where C& is some nonuniversal constant. When there is
no backscattering, T~ =0. The exponent follows from a
simple perturbative analysis. For v(1/2 and T)0,
there are actually no divergences in the coefficients of the
perturbative expansion; we exploit this fact in Sec. VI to
derive C& exactly. The conductance G and current I are
universal scaling functions of two dimensionless ratios,
for example Tz/T and V/T. Since Tz is a scale intro-
duced by the (local) impurity, a bulk quantity like the
leading part of the thermal distribution functions is in-
dependent of the point-contact interaction and can be
computed without the point contact. In other words, the
corrections vanish with the size of the system.

We now map the model including the impurity to an
integrable model. By taking (nonlocal) linear combina-
tions of the bosons, we can first map the left- and right-
moving bosons to a purely left-moving system. Calling
these left movers eUen and Odd, we have

P'( x + t ):— —[yi (x, t ) +qr~ ( x, t )], —1

P'(x+r)= [g~(x, t) g~( x,—t)], —1
L ~ R

(3.5)

where these particles are defined on —l &x & 1. One re-
places jL,jz with j',j' in the Hamiltonian (3.3), where
j'~'(x+t)=(1/v'2)[ji (x, t)+jz( —x, t)] are the charge
densities of even and odd bosons. For purposes of com-
puting the backscattering current, the nonlocality of this
transformation does not matter (it clearly would if we
were to compute spatially dependent Greens functions).
Two major simplifications arise from this change of basis.
First, the interaction involves only the combination
yL (x =0)—

pic (x =0) so only the odd boson P' interacts,
while the even boson P' remains free. ' (This was the
crucial step in solving the x-ray edge problem in a Lut-
tinger liquid. '

) Second, the backscattering current IJi
can be entirely expressed in terms of the odd-boson
theory. This is easy to see: The even and odd charges are
related to the charges of the original left- and right-
moving edges by bQ=QL —

Qz =v'2Q' and QL+QR
=v'2Q'. Thus, Q' measures the total charge on both
edges and is conserved even in the presence of the in-
teraction. Therefore, the even boson decouples from the
quantities we study (although it does enter into the deter-
mination of the spectrum at the fixed points' ) and will

play no role in the following. Moreover, the backscatter-
ing current is the rate at which the charge difference be-
tween right and left edges decreases (see below). It is thus
directly related to the odd charge by B,EQ.

The constraint of integrability is a very powerful one.
As we will see, it enables the calculation of exact thermal
distribution functions in an interacting theory. Not
surprisingly, only certain models are integrable. The im-
purity is also significant; only particular types of impurity
couplings preserve the integrability. The Luttinger mod-
el without the impurity is well known to be integrable,
but it is easily shown that before the nonlocal map (3.5),
the impurity destroys the integrability. However, it is in-

a, = ' f 'dx[(a„y')2+(rr')'+Acosv 2y']
s~v o

+A, ,cos P'(0) .1

2
(3.6)

(II is the canonical momentum conjugate to the odd-
boson field P'.) This model is integrable for any value of
the bulk mass A and the Luttinger parameter v. Howev-
er, the factor of 2 ratio in the argument of the bulk and
boundary cosines seems to be necessary for the integrabil-
ity. In the standard sine-Gordon conventions where the
first term has a 1/2 in front, our normalization corre-
sponds to Pso=gmv. A lattice regularization of this field
theory, the XXZ spin chain with a o perturbation on the
boundary, was long ago shown to be integrable. '

Notice that we can "fermionize" to get back a Lut-
tinger model (for AAO we get the massive Thirring mod-
el) on the half line for the odd-boson degree of freedom.
However, because of the nonlinear change of basis in
(3.5), the properties of the odd-boson Luttinger model are
not the same as the original model. In particular, the
original Luttinger model is a free fermion when v=1,
while the odd-Luttinger fermion is free when v=1/2.
This shift arises because of the v'2 in (3.5), which is
necessary to keep the same normalization of the kinetic
term. Thus, an interacting fermion on the full line can be
mapped to a noninteracting one on the half line. This
provides a simple way of understanding the results of
Ref. 22, where the v=1/2 model is mapped onto two Is-
ing models, one of which has a boundary magnetic field.
Two Ising models are well known to be equivalent to a
free Dirac fermion (up to boundary conditions), and it is
easily seen that Hz corresponds to a boundary magnetic
field on one of them.

To recover our massless model, we simply have to take
the A —+0 limit. So we see that, after the few mappings
described above, our impurity problem is integrable as

tegrable in the odd-boson basis. The integrability of the
impurity interaction in the Luttinger model was first es-
tabhshed by Ref. 8 in the context of the boundary sine-
Gordon model. In order to make contact with this work,
we map our theory involving the massless left-moving
odd boson P' on the line, with the point-contact interac-
tion at the origin x=0, into a boundary sine-Gordon
problem. This is done using a standard "folding" pro-
cedure. From the left-moving odd boson P'(x +t ) on the
full line, we define right- and left-moving odd bosons on
the half line x & 0 by

PL(x, t):—P'(x+1), x)0,
pz(x, r)=p'( —x+1), x &0 .

This model is no longer chiral, but lives on the half line.
There are many fields theories on the half line that are

integrable, the Kondo model being a celebrated exam-
ple. Recently, much effort has gone into understanding
their properties. In the following, we exploit the results
of Ref. 8. The odd-boson model with interaction be-
comes the massless limit A~O of the massive sine-
Gordon model on the half line
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long as only one of the impurity coupling constants A,„ in
(3.4) is nonzero. As noted before, this is natural for
1)v) 1/4, where power counting shows that only the
first coupling constant k& is relevant.

IV. QUASIPARTICLES, THEIR S MATRIX,
AND THEIR DISTRIBUTION FUNCTIONS

A. Quasiparticle spectrum

We find the appropriate quasiparticle basis by studying
the model (3.6) at arbitrary A. As discussed carefully in
Ref. 9, the quasiparticle spectrum remains the same in
the massless limit A~0 of the massive sine-Gordon mod-
el on the half line (3.6). Introducing the parameter A and
then setting it to zero is not necessary for solving the
problem, but it gives an easy way of finding the basis
where the quasiparticles scatter off the boundary without
particle production.

Integrability means that there is an infinite number of
conserved quantities, which commute with each other
and with the Hamiltonian, even in the presence of the im-

purity (3.4). From this we see already that in an integra-
ble system a particular basis of Hilbert space, in which all
the infinite conserved quantities as well as the Hamiltoni-
an are diagonal, plays a special and simplifying role. It is
this basis on which we will focus. This basis has a "quasi-
particle" structure similar to the "particle" Fock space of
a noninteracting theory. In particular, the eigenvalues of
the infinite conserved quantities in this basis have the
form g;p;", where p; are momenta of individual quasipar-
ticles, and where n runs over an infinite subset of the pos-
itive integers (each n labels one conservation law). In the
Luttinger model these run over n odd. The identification
of p; as momenta of "quasiparticles" arises from the form
of the eigenvalue of the Hamiltonian in this basis, which
is H=v~g;p;. This means that the energies of the
"quasiparticles" are additive, justifying the association of
the particle concept with those eigenstates.

These conservation laws have important consequences
for scattering. The quasiparticles of this basis must
scatter off the impurity without particle production, i.e.,
one-by-one. This means that the scattering matrix off the
point contact is a product of one-body S matrices, one for
each quasiparticle. Away from the impurity (in the
"bulk" ), the quasiparticles scatter off of each other with a
completely elastic and factorizable two-body scattering
matrix S "'". This follows from an old kinematic argu-
ment, ' which applies when there is any conservation
law with n ) 1. Factorizability means in the bulk that the
N-body bulk S matrix is a product of two-body S ma-
trices S "'". Completely elastic means that individual
momenta are conserved in a collision: All that can hap-
pen is that the momenta of the particles get permuted.
This does not mean that bulk scattering is trivial; internal
quantum numbers can change, and even if scattering is
diagonal (i.e., internal quantum numbers do not change),
the particles can have a phase delay, i.e., the S matrix
may be a momentum-dependent phase.

There are many bases for the Hilbert space of the
massless odd-boson theory, which are related by not

necessarily local mappings. For example, plane waves
obviously are eigenstates of Ho, but they are not eigen-
states of HO+K~. The basis of particles of (3.6), which
are eigenstates, has been known for some time. [Indeed,
in a massive theory there is only one particle basis; it is
only for A=O in (3.6) that there is a choice. ] At any
value of v, the spectrum contains a kink (+) and an an-
tikink (

—). These carry (odd) charges Q'=I/~2 and—I /&2, respectively. Moreover, for n —1 ( I /v & n,
there are n —2 "breather" states, which have no charge.
These breathers exist in the regime where the fermion in-
teraction in the odd-Luttinger model is attractive; in this
language they correspond to fermion-antifermion bound
states. These particles span the Hilbert space of the left-
moving odd boson; we label them by indices j,k, . . . ,
running over the kink (+), antikink ( —), and breathers
(b). One can in fact check explicitly that these particles
are the solutions of the classical limit of (3.6) for any
value of A.

Henceforth, we set A=O in (3.6) so that the particles
are massless. We also ignore the even boson, since it does
not affect the current or conductance. We will find it
more convenient to use the unfolded language, so we will
continue to discuss a purely left-moving theory on the
full line with an impurity.

Since the particles are massless, a left mover has
dispersion relation E='—p. Instead of momentum, we
use rapidity 0, which for a particle of type j is defined as

E= —p=p e

where pk =M sin[km v/2(1 —v)] for the kth breather and
@+=M/2. The overall scale M is arbitrary and cancels
out of all physical results.

Notice that the momenta of the quasiparticles all have
one sign (the rapidity 8 is real). Since this might be un-
familiar, we now express the charged fermions occurring
for v= 1/2 in terms of kink and antikink quasiparticles;
for v= 1/2 there is no breather. Recall that for v= 1/2,
we can refermionize the odd-boson theory. Thus, we ob-
tain a single noninteracting, spinless charge fermion
P (p), g(p), where the momentum p runs over all real
values (positive and negative). This fermion satisfies
canonical anticommutation relations, since it is nonin-
teracting. The kinks and antikinks for this simple theory
can be defined using a canonical particle-hole transforma-
tion:

P+(p) =g(p) (kink),

(p):f( —p ) (antiki—nk),

for p) 0. The left-hand side defines kink and antikink
annihilation operators. Similarly, the kink and antikink
creation operators are the Hermitian conjugates

ft+(p) =gt(p) (kink),

(p) =g( —p ) (antikink),

for p )0. Thus, for v=1/2, kinks and antikinks are just
particle-hole transforms of ordinary fermions, and have
only one sign of momentum. Unfortunately, for v%1/2,
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the mapping is not as straightforward.
While there are no statistics in 1+1 dimensions (there

is no way to bring a particle around another without in-
teracting), a crucial issue is how many particles are al-
lowed to occupy each level. The answer is well estab-
lished in the massive sine-Gordon model: only one quasi-
particle is allowed per level (they are like fermions). This
is basically because the Bethe-ansatz wave function used
to solve the model or its regularized lattice versions van-
ishes when two or more excitations have the same rapidi-
ty. It is possible to study similarly a regularized lattice
version of the massless limit of the sine-Gordon mod-
el ' and to see that the same exclusion principle holds
in that limit. This does not contradict other ways of
describing the excitations, where the particles are free but
obey "exclusion statistics". These particles seem to be
related to the quasiparticles of the Calogero-Sutherland
model, or the Haldane-Shastry spin chain. In the realiza-
tion of the Luttinger liquid in the fractional Quantum
Hall effect discussed in Sec. II, these particles are the
Laughlin quasiparticles restricted to the edge. These par-
ticles are clearly not the same as ours; for example, they
are the quasiparticles of the original Luttinger impurity
problem, while ours are those of the odd-boson theory,
which is found from the original by a nonlocal map. This
means that there are (at least) two sets of bases of quasi-
particles for the Luttinger liquid, one where the particles
are free but fill levels in a peculiar manner, and another,
where the particles fill levels like fermions but interact.
In the first approach, however, it is not known yet how to
include an iInpurity. If this problem is solved, it would
be very interesting to compare the two methods of calcu-
lation.

B. Bulk and impurity S matrices

These massless kinks and breathers interact with each
other and with the impurity. Even though the model
away from the impurity is a free boson, an effect of using
this quasiparticle basis is that the particles interact even
in the bulk. We describe these interactions with bulk and
impurity scattering matrices. First, we have an S matrix
for a particle scattering off of the impurity. Since the in-
tegrability requires that the particles scatter one-by-one,
this can be described by one-particle S matrix elements.
Kinematically, all that happens is the particle goes
through the impurity with a phase delay. Because the
impurity interaction violates odd-charge conjugation, it is
possible for the positively charged kink to scatter into a
negatively charged antikink when going through the im-
purity.

Dimensional analysis tells us that the S matrix ele-
ments must depend only on the ratio p/T~. If we define
the "backscattering rapidity" by the relation

this means that all impurity S matrix elements depend on
the rapidity difference 0—0~. Thus, the impurity-kink S
matrix consists of the elements S++(8—8~)=S (8
—8~) for kink~kink, and antikink~antikink, as

well as S+ (8—8~ ) =S + (8—8~ ) for kink~anti-
kink, and vice versa. These S matrix elements are given
by taking the massless limit of the results of:

S++ (8)= . exp[ia, (8)],exp(A, O)

1+iexp A, O

S+ (8)= exp[ia, (8)] .1

1+rexp A, O

(4.1)

Here exp[ia ] is the phase of the expression given in Eq.
(3.5) of Ref. [9]. For convenience, we have defined

The boundary S matrix is unitary: ~S++ ~
+ ~S+ ~

= l.
The S matrix is such that for a particle with very large
energy (UV limit), the scattering is diagonal. Diagonal
scattering in the unfolded theory is totally off-diagonal
scattering in the folded one, so matrix elements here are
interchanged as compared to Ref. 9.

Because we are no longer working in the plane-wave
basis, it is also necessary to find the nontrivial S matrix
for particles interacting in the bulk. Since all particles
are massless, they must all have the same velocity v~
(which is set to one in this paper). Thus, it is not immedi-
ately obvious how to define an S matrix for two left
movers. It is best interpreted as a matching condition on
the Bethe wave function, as we will explain in the next
subsection. Alternatively, one can think of acting on
multiparticle states with creation and annihilation opera-
tors: the nontrivial S matrix means that these operators
satisfy nontrivial commutation relations, the so-called
Zamolodchikov-Faddeev algebra. Since there is no
mass scale in the bulk (only Trr at the impurity), a two-
particle bulk S matrix element can only depend on the ra-
tio of the two momenta p& /p2. In terms of rapidity, this
is a function of 0&

—Oz. Thus, we can now think of the
impurity as a particle with rapidity 0~ and a different S
matrix than the bulk one.

For general v, the left-left two-particle S matrix is
given by the same formula as in the massive case. This S
matrix is not diagonal: the initial state ~K(Ot)A(82))
can scatter to

~
A (8&)X(82)) because the kink IC and an-

tikink A have the same mass. For the kink/antikink
scattering, one has three amplitudes

a (8)= sin[A, (~+ iO) ]Z(8),

b(8) = —sin(iA, O)Z (8),

c (8)=sin( A rr )Z( 8),

(4.2)

where the S matrix element a(8& —82) describes the
process ~K(8, )&(82) )~ ~& (8, )K (82) ), as well as

~
A(8&)A(82))~~ A(8, )A(82)), b describes KA FKA, c

describes the nondiagonal process EA ~AE, and there
is a symmetry under interchange of kink to antikink (cor-
responding to P'~ —P'). The function Z(8) is a normal-
ization factor, which can be written as
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Z(8) = 1

sin[A(rr+ iO)]

dy . 2Ny sinh[(A, —l)y]Xexp i sin
2y m sinhycosh[Ay ]

The breather-link and breather-breather S matrices are
well known; we do not write them down here.

When 1/v is an integer, the bulk scattering is diagonal
(c vanishes) and a =+b. Therefore, the only allowed pro-
cesses are of the form (j(Oi))(k(Oz))~(k(Oq))
S(j(Oi)). Such a process is described by the S matrix
element S".

I,
"'"(8,—'Oz). However, the impurity scattering

is not diagonal, so charge transport is still possible. The
bulk diagonal scattering makes the thermodynamic
Bethe-ansatz computation discussed in the next subsec-
tion much simpler at these values of v.

C. Non-Fermi distribution functions

As with the S matrix, it is convenient to use rapidity
instead of momentum or energy to de6ne the densities of
states and distribution functions. The number of allowed
kink or antikink states per unit length with rapidity be-
tween 8 and 8+dO is given by n+(8, V)dO, while the
number of states actually occupied by kinks or antikinks
in this rapidity range is n+(8, V)f+(8, V)dO and
n (8, V)f (8, V)dO, respectively. Thus,

(bQ) =2If dO[n (8, V)f (8, V)

(or a particle and the impurity) are interchanged. Thus,
we know the phase the wave function picks up when a
particle is brought "around the world" through all the
others. We denote generically the kink, antikink, and
breathers by the index j, so the two-particle S matrix ele-
ments ar labeled by S.I, (Oi —82). In the following calcula-
tion of the densities n and f, we can ignore the phase
shift due to scattering on the impurity because it affects
densities only to order 1/I, where I is the system size.
This does not affect the densities in the thermodynamic
limit I —+ ~, and will therefore not show up in the com-
putation of the conductance. (On the other hand, howev-
er, in the absence of the voltage these 1/I effects on the
densities can be computed and are responsible for the im-
purity free energy. ) The requirement of a periodic
boundary condition under this operation quantizes the
momenta:

—im„exp(0, . )I /A

S„„(8;—8 )=1,
j= l,j&i

(4.4)

where E=—P=m exp(8) for a particle of type j. The
periodicity condition (4.4) includes the interaction of any
particle with all the others. By taking a derivative with
respect to the rapidity of the logarithm of (4.4), one finds

n (8)= +g f dO'@&I, (8 8')ni,—(8')f„(8'),
k

(4.5)

n(O, V—)f (O, V)] . (4.3) where @~i,(8)= i(d/—dO)lnS I,"'"(8)/2'. ' For example,
when v= 1/3, there is one breather (b) and

Since at most one kink is allowed per level, we have
0~ f+ ~1. The functions n, and f are defined for the
breathers in the same manner.

These thermodynamic functions nj(8) and f+(8, V)
are different from the free-fermion functions when the
odd-boson kink theory is an interacting Luttinger liquid
(v%1/2), but we can derive them exactly. The idea is
simple, and has become known as the thermodynamic
Bethe ansatz. " It is basically the same as what is used in
exact solutions of other impurity problems like the Kon-
do problem. The main difference between the approach
used here and the traditional approach is that in the
latter, the Bethe ansatz appears as a tool to diagonalize a
bare Hamiltonian, while here we work directly in the re-
normalized theory where factorized scattering is as-
sumed, and the Bethe-ansatz equations (here relations be-
tween n and f) follow simply from a matching condition
on the Bethe wave function. This matching condition
gives one set of equations relating the functions n and

f~ . Following the standar. d thermal approach to Bethe
ansatz, ' one writes the free energy as a functional of n
and f and minimizes it. Together with the first equation
from the matching condition, this second set of equations
from the minimization requirement yields n and f.

The simplest situation occurs when the scattering is
completely diagonal, which occurs when 1/v is an in-
teger. Here we can easily impose periodicity of the Bethe
wave function since we know the S matrix, which en-
codes the change of the wave function when two particles

C&ib(8) =2@++(8)=24&+ (8)=— 1

~coshO '

@i,+(8)=@+b(8)=-
~cosh 20

(4.6)

where the p are the chemical potentials: p+= —p
=eV/2; pb=0. By demanding that the free energy at
temperature T (expressible in terms of f, and nj) be mini-.
mized, we find an equation for e. in terms of the (known)
bulk S matrix elements:

ej (8, V/T ) = —g f d 8@JI,(8 8')—
k

p~ /T —e~(e, v/T)

(4.7)

Solving this system of coupled integral equations for e.
gives the functions f . Except in special cases, this solu-

while the others follow from the symmetry +~—.Ex-
plicit expressions for Nji, (8) in the more general case
where 1/v is a positive integer are given in Eq. (4.9) of
Ref. 9, and in Ref; 28.

One defines an auxiliary pseudoenergy variable ej to
parametrize f1 via

1

1+e ' e '
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tion cannot be obtained in closed form, but it is easy to
solve these equations numerically. We will not need the
explicit @Jk, because the Eqs. (4.7) can be simplified by
using a trigonometric identity described in Refs. 29 and
30, for example. Denoting convolution by o

fog(8)—:J d8'f(8 8'—)g(8'),

one finds

+,k(8) —g NkiK&& [@p(8)+5,5(0)),
I

(4.&)

where the kernel K(0)=A./(2ncoshA, 0), and N z is the
incidence matrix of the following diagram:

i.e., X &
=1 if the nodes j and k are connected, and 0 oth-

erwise (in particular N =0). Thi"s identity follows simply
by Fourier transforming the 4 k and using trigonometric
identities. We show this explicitly for v= 1/3(A, =2) in
Appendix B. Thus, the simplified form of (4.7) is then

(4 9)

The dependences on the mass ratios seems to have disap-
peared from (4.9), but they appear as an asymptotic con-
dition: the original Eq. (4.7) indicates that the solution
must satisfy

e~ e as'~~ .J 6)

T
We emphasize for later use that comparing the rela-

tions (4.7) and (4.5) gives

n (8, V)= deej(0, V)—.=T

One effect of these equations is that the symmetry implies
that

n (8, V)=n+(8, V)—=n(8, V)

and e (8, V) =e+(8, V).
The analysis at general values of 1/v is more compli-

cated. Since the bulk S matrix is not diagonal, the phase
picked up when bringing a particle around the world can
be expressed only as an eigenvalue of a monodromy ma-
trix, which itself must be diagonalized. This can be done
at the price of introducing a further Bethe ansatz. (See
Refs. 31 and 32, for example. ); the results are quite simple
for v/(1 —v) integer. The general result is quite compli-
cated, but the appropriate diagonalization has been done
for all v. We caution that only for 1/v and odd integer
does this one-component Luttinger liquid apply to the
Hall effect; when v is a more complicated fraction, the

edge states of the quantum Hall effect may be described
by models with more than one boson.

V. CURRENT AND CONDUCTANCE

We have shown that the bosonic field theory with
Hamiltonian (3.6) can be studied in terms of a particular
set of quasiparticles and their scattering. We now com-
pute an exact equation for the conductance using this
basis.

Without the backscattering, the left and right charges
(or equivalently, the even and odd charges) are conserved
individually. The backscattering allows processes where
a charge carrier of the left-moving edge hops to the
right-moving edge or vice versa. In the original basis, the
current Iz is the rate at which the charge of the left-
moving edge is depleted. By symmetry, B,QL

= —B,Qz
in each such hopping event, so I~ =8,(e/2b, Q) =B,(e/
&2Q'), and we see that in the even/odd basis, the tunnel-
ing corresponds to the violation of odd-charge conserva-
tion at the contact. In the S matrix language this hap-
pens when S+ %0, so that a particle of positive odd
charge (the kink) can scatter into one of negative charge
(the antikink) at the contact. Neutral quasiparticles can-
not transport charge and thus do not directly contribute
to B,EQ. We emphasize that neither the bulk nor the
boundary S matrix elements depend on the voltage; the
voltage only affects the thermodynamic properties.

To calculate the conductance, we start with a gas of
quasiparticles with a chemical potential different for
kinks and antikinks corresponding to the voltage V. A
positive voltage means that there are more kinks. When
there are more kinks than antikinks, the backscattering
will turn more kinks to antikinks than it turns antikinks
to kinks. When a kink of momentum p is scattered into
an antikink (the conservation laws require that it have
the same momentum p), this changes b, Q by —2. Since
kink and antikink quasiparticles scatter off the point con-
tact one-by-one, we may describe the rate at which this
charge transport occurs in terms of two quantities: the
probabilities of finding a kink or antikink of momentum p
at the contact, and the transition probability
~S+ (0—8&)~ . We therefore study the density of states
n (8, V):n+ (8, V)—=n (8, V) and the distribution func-
tions f+(0, V) in the thermodynamic limit (i~ Do ) and
in the presence of an applied voltage V. We can now
compute the backscattering current from a rate
(Boltzmann) equation. The number density of kinks of
rapidity 0, which scatter into antikinks per unit time, is
given by ~S+ ~

n(8, V)p+, where p+ is the probabili-
ty that the initial kink state of rapidity 0 is filled and the
final antikink state is empty. In a Fermi liquid, we would
have simply p+ =f+[1 f ]. However, —in our in-

teracting theory, correlations between the particles mean
that this does not necessarily factorize in this manner.
We can, however, write p+ =f+ f+, where f+ is-
the (unknown) probability that the kink and antikink
state are both occupied. The rate at which antikinks
scatter to kinks is likewise proportional to
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p +=f+ f—+ . Thus, the charge QL
—Qz changes at

a rate proportional to p+ —p + =f+ f—, indepen-
dent of the unknown factor. Using (4.3) with
Iz =eB,Q'/v'2 gives

I~(Tii, V, T)= —e f d8n(8)IS+ (8—8~)I

X[f (8, V) f —(8, V}] .

(5.1)

= IS++ I
. Using the definition of f and the result

n (8)= T/h d()e+(8) allows us to simplify the resulting ex-
pression. Notice that

nf+ = ——T ~~+ ln(1+e*' e +—}
h ()8 Be~

Without the backscattering, the
Io( V) =e ( EQ ) /21, and it follows from
given by the same expression without
Thus, the full current is proportional

current is
(4.3) that Io is

to 1 —IS

Defining

e(8, V)=e+(—8 ln(M—/2T), V)=e (8—ln(M/2T), V),
and plugging into (5.1) gives our main result

8T 1 ev/2T& —e(0+ in(M/2T), V)

I(T~, V, T)= „ f d8
( )

B()ln / (, ( ) )—(x)
1 + B 1+e ' e

(5.2)
eTA, 1

ln
cosh [ A, [8—ln( T~ /T ) ] j

1+8 ev/2 T~
—e(0, V)

1+~
—ev/2T~ —~(e, v)

where to get to the second line we integrated by parts and
redefined 0 by a shift. Even though the breathers do not
appear in (5.2), they interact with the kink and antikink
and affect the calculation of e.

The difFerential conductance is defined as G ( T~ /
T, V/T)=B),I(Te, V, T). In the V~O limit, the result
can be written in a simple form. Using (4.7) and (4.5), it
is easy to see that de/dV

I ) O=O, so'

G(T~/T, O) = f d8

[1—f 1(p)=(p)
( y) /2)/7 p 0 =

2
.1

( —pk V/2)/T '

Now all momenta have one sign. Note that
f+(p =0, V=O)=1/2. These fermions (alias kinks) do
scatter nontrivially off of the point contact, with S matrix
given by (4.1). The resulting expression for G(T+,0) ob-
tained from (5.3) is identical to the result in Sec. VIII of
Ref. 5. Actually one can reexpress the integral in terms
of dilogarithm functions after some lengthy but straight-
forward manipulations to find

1
X

cosh ( A, [8—1n( Te /T ) ] ]
(5.3)

e2 V 2TB 1 T~I( T~, V, v =—,
'

) = 1 — Img —+
2h eV 2 ~T

To check our result, we consider v=1/2, where the
conductance was previously derived exactly. As noted
above, the odd-boson kinks are simply free fer-
mions, ' ' so they have the Fermi distribution function
f~(8, V) =1/(1+exp[(Me +eV)/2T]) implying that
the function e(8) is simply e(8)=e . This of course fol-
lows from (4.7), because v= 1/2 the bulk scattering is
trivial and N k=0. Note again, as mentioned in Sec.
III A above, that we have used the kink/antikink descrip-
tion of the free-fermion theory here, where all momenta
have only one sign. Using the particle-hole transforma-
tion of Sec. III A, one finds immediately that the occupa-
tion number of kinks and antikinks are

f~(p ) =6(p)
( ~/2)/, p )Ov= —,',1

1+ (P+v/2)/T'

whereas the occupation number of unoccupied
kink/antikink states are

(5.4)

where the digamma function g(x )=I"(x)/I (x). At zero
voltage in particular one finds

Ta~, 1+ aT
HATT 2 mT

2

G( Tii, O, v= ') = 1—— (5.5)

and at zero temperature

e V ~To eVI( V, v= —,') = — arctan
2h h 2 Tg

(5.6)

These v= 1/2 formulas also apply for v near 1/2 in the
leading-logarithm approximation, after a renormalization
of parameters. "

Only at T=O can these equations be solved in closed
form for all Tz', we discuss this limit in the next subsec-
tion. However, we can study the solutions in certain lim-
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its. As Tz/T~O, we can evaluate the conductance ex-
plicitly. The linear-response conductance (5.3) becomes

G(0,0)=[f~(—oo, 0)—f~(oo, O)]e /h

in this limit. One finds f+( oo, V) =0 obviously from (4.7)
in this limit. More generally, one has

I(T&=O, V, T)= — In[1 —(1—e ' ~ )f+( —oo, V)] .

(5.7)

To find f(0, V), we use a well-known trick given, for ex-
ample, in Ref. 11. The kernels in (4.7) or (4.9) are appre-
ciably different from zero only when 0' is near 8. Thus,
when we are interested in values of 0 near —~, we can
replace the value of e(8', V) in the integral with
e( —oo, V}. We then can do the integral over the kernel
explicitly. This then gives us the coupled difference equa-
tions

k

Solving these explicitly gives f( —oo, 0)=v and we indeed
recover GD =ve /h. For the nonequilibrium conduc-
tance, it is not even obvious that GD will not depend on
V. However, one can check that

e V( 1 —v) sinhve V/2T
+ —oo, V =exp

2T sinhe V/2T

and plugging this into (5.7) gives 60 =ve /h for all V.
These nonperturbative equations also give the pertur-

bative exponents. As TIi/T~ oo, the linear-response
conductance 6 oo(T/T~) " ' '. Thus, it goes to zero
with the correct exponent, as in Ref. 5. For Tii /T small,
it can be argued that e[8+im/(I —v)]=e(8.). Using
this to write a power series of e and plugging into (5.2)
gives 6 —GD o- (T~/T) " '. Both are in agreement with
Ref. 5. In fact, when v&1/2, all of the coeflicients
g„(V/T) in the series 6=+„ag2„(T&/T) "" ' can be
computed using Jack polynomial technology. ' More-
over, there is a nonperturbative functional relation' re-
lating the linear-response conductance to the free energy
for all v&1.

We also note that there has been some confusion about
the power of the exponent for T/Tii near zero. As dis-
cussed in Ref. 9, the leading (irrelevant) perturbation is
the energy-momentum tensor, which is of scaling dimen-
sion two. This in fact means that the leading correction
to the free energy is of order T . (This power was also
derived by scaling arguments in Ref. 35.) However, this
operator does not give any contribution to the dc conduc-
tance. Intuitively, this is because the energy-momentum
tensor has no charge and should not affect charge trans-
port. More precisely, one can check that when inserted
into the Kubo formula, powers of the frequency co ap-
pear. When we take the dc co~0 limit, this contribution
vanishes. Thus, the naive scaling arguments of Ref. 35
do not apply to the dc linear-response conductance.
However, outside of linear response at V)0, one finds

indeed that

I(T~, V, T)=I(T~, V, O)+ T I2(T~, V)+

in agreement with Refs. 34 and 35.
We can easily solve for the conductance numerically.

To plot the complete function, one fixes a value of V/T
and solves (4.7) numerically for e to double-precision ac-
curacy and inserts the result in (5.2). Evaluating the in-
tegral numerically for various values of T/T~ then gives
I(Tz/T, V/T)/V as a function of T~ for fixed Vand T.
To find the conductance, it is easiest to just vary the volt-
age slightly in order to take the derivative numerically.
A more precise way would be to use the fact that once
one knows e numerically, the integral equations for
de/dV are linear and can be solved by inverting large
matrices (of size the number of lattice sites used in the
discretization of the integral) numerically.

Several graphs of 6 for v=1/3 are given in the figures.
For V/T& 8, the plot is qualitatively the same as for
V=O: a Hat region at G =e /3h for T large, a transition
region where the power-series corrections cause it to fall
off until it reaches its asymptotic form proportional to
( T/Tz ) . However, at V /T = 8 a qualitatively new
feature appears: G has a peak! It is not very sharp; the
highest it gets for v= 1/3 is 6 =0.35e /h. A variety of
values of V/T are plotted in Figs. 1 and 2. In the first,
we plot it versus Tz /V in order to make the approach to
the T=O limit to be discussed in Sec. VI clear. In the
second, we plot it versus Tz /T; we see that there is a sub-
stantial broadening of the curve as the voltage is in-
creased. This should provide a prominent signal in the
experiments.

This peak and the values of V/T for which it occurs
can be understood theoretically. A peak occurs for volt-
ages large enough so that g2(V/T) changes sign. This
must happen because at zero temperature the current can
be expanded for large voltage in the form

- 2(i —~]
TB

I(V) o- V v+C + 0 ~ ~

V

Because the backscattering must make the current de-
crease, we have C &0. Taking the derivative with respect
to V, we see that for v&1/2 the conductance must in-
crease for small enough V/Tz. We can even find the
value V*, where g2( V*/T) =0 analytically, because g2
can be calculated in closed form. ' This is done by first
calculating the coefticient Z2 of the partition function in
the case where the interaction (in Euclidean time) is
cos[v'2$(0, r}+2n p ~T ], which is'

sinmvt (1—2v)
sinn-(v+p )I (1—v —p )I (1—v+p )

The finite voltage case is obtained by analytically con-
tinuing 2' to i ve V /T. Then we use the relation
g2( V/T) oo ReB&Z2(p) (which can be shown by using ex-
plicit perturbation theory in the impurity interaction) to
give
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iveV
g2( V /T ) oc Re Zz

iveV
277T

+ iveV
277T

(5.8)

8&( —oo, A ], g(8)=0 otherwise. By taking Fourier
transforms, and since p vanishes outside (

—oo, A], we
have

f dcoe ' [p(co)[1—4(co)]—g(co)] =0,
0E( —oo, A ], (6.3)

Solving for g2(V'/T)=0 gives eV*/T=7. 188685643
749 98. . . for v= 1/3 and e V*/T=6 653. 022 289 582
846. . . for v= 1/4.

The perturbative results of Ref. 12 give a completely
independent check on the TBA results. One can fit the
TBA results to a power series numerically to determine
the perturbative coe%cients to compare; one indeed finds,
for example, that gz(V*/T)=0 in the TBA results. One
can also check that the relation T~ =CA, '

,
' is indepen-

dent of V, showing that the boundary S matrix is indeed
independent of voltage.

where we defined Fourier transforms by

h(co)= f h(0)e'" d0, h(8)= f h(co)e 2'
For any function h we also introduce

h (co)—:h (co)e

This subscript should not be confused with the antikink
index used in other sections of this paper.

The integral equation (6.2} for p can now be written in
the form

VI. EXPLICIT SOLUTION AT T=0 p(1 —4)—g =e'""X+(co), (6.4)

Some remarkable simplifications take place in the T=0
limit. Although the densities of states are still nontrivial,
the distribution functions f become step functions. As a
result, the TBA equations become linear and can be
solved using the Wiener-Hopf technique. We find expli-
cit series expressions for I(V/Ts ) and G(V/Ts) in this
limit. Moreover, this leads to an exact duality between
large V/Ts and small V/Ts. In the Hall devices, this
corresponds to a duality between Laughlin-quasiparticle
tunneling and electron tunneling.

At T=O and V=O, the ground state of the theory is
just the vacuum with neither kinks nor breathers; these
particles are in fact defined as excitations above this vac-
uum. When V is turned on, this ground state becomes
unstable. For V)0, kinks of charge e start filling the
vacuum, since they are energetically favorable for small
enough momentum (large negative rapidity). The new
ground state is made of kinks occupying the range
8&( —oo, A ]; in other words, f+(0, V) =1 for 8& A and
f+(8, V)=0 for 0) A. The surface of the sea is approxi-
mately A =ln(eV/M ), but computing A exactly requires
some technology because the kink interaction aftects the
filling the sea. There are no antikinks nor breathers
in the sea at T=O, so their densities do not appear in
this analysis. For ease of notation, we define p(8)

n+(0, V—)f+(8, V)~z. o. When T=O, the periodicity
relation (4.5) reduces to the following coupling between
kink rapidities:

2mn+(8)= ee+2vr f @(8—8')p(8')d8', (6.1)
2A' oo

= [g —G+ I— (6.7)

where

[h ] (co)=—,. dco' .1 h (co')

21' —oo CO cO+ l 0

where X+ (co) is analytic in the upper half plane. Since p
vanishes in [A, oo ), we see that p is analytic in the
lower half plane, and similarly for g . To implement the
Wiener-Hopf technique (see the Appendix in Ref. 36 for a
very clear exposition), we need to factorize 1 —4 into the
form

sinh[(A, +1)+co/2A, ] 1

2cosh[mco/2]sinh[vrco/2A, ] G+ G

where G+(G ) is analytic in the upper (respectively,
lower) half plane and G+(G } vanishes only in the lower
(respectively, upper) half plane. One finds

I ( i (1+A, )co/2—A, )
I ( ico/2A—, )I (1/2 i co/2)—

(6.6)

G (co)=G+( —co),

b, —:—ink. — ln(1+A, ) .1 1+A,
2 2A,

The phase ensures analyticity of G+ at i ~. Having set
up the equation in this form, we can write down the solu-
tion for p:

where p=O in [A, oo ), and C&=c}g++(0)/2m follows
from the kink-kink bulk S matrix (4.2).

We consider now the general equation

p(8) —f C&(8—8')p(8')d8'=g(8), 8&( —oo, A ],

In our case

so we find

(i co+ 1)A

2h
' +1

(6.2)

where in the above example g(8) =(M/2h )e for

( )G ()
P( ~ )

— e ( iso+ 1 ) A

2lA CO l
(6 8)
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This relation was obtained also in Ref. 37.
We have not yet determined the dependence of the

cuto6' A on the physical potential V. This can be done in
two ways. The first way consists in minimizing the ener-

gy of the system. Following Ref. 38, we introduce a func-
tion e(8), which satisfies

eV M ge =e(8)—f @(8 8')—e(8')d8',A

2 2 oo
(6.9)

and the cutoff follows now from the condition e( A ) =0,
which reads in terms of Fourier transforms

lim toe (ice) =0 .

We can easily solve for e. This is the same equation as
the one for p except for the substitution

The second method of determining A is to study the
energy in the absence of backscattering, which is

E= d 8p(8) e — = P( i—)
— p(0)

M ~ eV M . eV
OO 2 2 2 2

M 6+(i)G ( i—)e "— G (0)G+(i)Ve" .

We can recover this energy directly from the Hamiltoni-
an. In the previous computation, we have used the mass-
less description, which is obtained by considering the free
field as the A~O limit of the sine-Gordon model (3.6).
Coupling to a potential amounts to considering the Ham-
iltonian (in the original left-right basis)

eV M g
(I~+i)a

g(8) = — e, g(co) =~eV5(co)
2 2 2

ldll+

1

We find therefore

H= f d [(aq )+(a„+
eV f dan[a, &, +a.q, ] . (6.12)

(~)G+(i) ~ eV G (~)G+(0)
e (co)= — e ~+

2E CO l 2l N

It follows that

ev G+(o)
M G+(i)

(6.10)

(6.11)

Redefining the fields (()L and P~ by a shift removes the
linear term, and gives the energy per unit length associat-
ed with the potential V. Equating the two energies gives
A in agreement with formula (6.11).

Since we know the density explicitly from (6.8) and
(6.11), an explicit form for the current follows from (5.1),
which at T=O reads

I( V, Ts ) =e f p(8) ~S++ (8—8e )
~

d8

2V 0
d 8F(8)

2h —~ 1+exp [ 2K [8+in(eV—/Ts ) —b. ] J

(6.13)

where

G (co)G+ (0)
F(a))=

1+lcd

~ G+(i)
Te = Tg2e =Ts

G+ 0

and the boundary temperature is redefined:

2V n (I,+ 1)I ( —'+ I /2A, )

I ( I /2A, )

eV~
2h

eV
2&i

ge

2' A,

(6.15)

where

2V p
2' A,

I(V, Ts)= f F(8)d8 g ( —)"+', e

We can therefore extract the following results from
(6.13). At very large potential, the S matrix element goes
to one and Ip =op V, with

1)n+1 G (~)G (0)I2„= dco
2m —~ (1+ice)(2niico), —

Go = f F(8)d 8=
2h h

(6.14)

, G [ 2inA, ]G+(0—)
1+2nA,

For small voltage, we can expand the S matrix element in
powers of V/T~ to get

This expansion is valid only for eVe /T~ & 1. By using
(6.6), we find our final result for the low-voltage expan-
sion
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ooI= V g ( —1)"+'

X
~~r(n/v)

2I'(n )I [3/2+ n (1/v —1)]
' 2n(1/v —1}

eV eVe

TB TB
(6.16)

Up to a constant and a shift, this is the same expression
as in the IR, with the replacement v~ 1/v. We therefore
have the result

2

I(Tt't, V, v)= —v I Tg, V, —
V

(6.18)

(In this equation, Tz is treated as a constant —it is the
same on both sides, although we have seen it depends on
v.} This proves that for T=O at least, the weak barrier
(small T~) and strong barrier (large Tz) are completely
dual to each other. In the Hall device, this duality is a
concrete proof of long-suspected relation between elec-
trons and Laughlin quasiparticles. This arises from the
fact that for weak backscattering, the operator for the
tunneling of Laughlin quasiparticles is relevant while the
electron tunneling operator is always irrelevant. '

Laughlin quasiparticles are allowed to tunnel because
they are tunneling through the bulk of the sample. How-
ever, in the strong backscattering limit, only electrons
can tunnel because they are not tunneling through the
Hall Quid. Thus, the least irrelevant operator arises from
electron tunneling. As seen in Ref. 5, the associated ex-
ponents are indeed related by duality; we find here that
the entire expansions around these two limits are related.

This duality was somehow known in the literature,
but its status is not totally clear to us. It is usually con-
sidered as only approximate since it relies on an instanton
approximation in the large barrier limit. However, one
can prove an exact duality (in the context of dissipative
quantum mechanics, which is equivalent) between the
cosine problem in the UV and the "tight-binding" prob-
lem in the zero-temperature limit, and then in Ref. [41]
the tight-binding problem is mapped back onto the cosine
problem, providing a sort of proof. The main source of
difficulty is that the zero-temperature action must be han-
dled with great care. Perturbation theory around the
zero-temperature fixed point is ill behaved and depends
on an infinite number of counterterms (see the discussion
at the end of Ref. 31 in the case of the Aow from tricriti-
cal Ising to Ising model), so identifying the leading term
in the approach to this fixed point is not sufficient. This
is equivalent to saying that what one calls the strong-
barrier problem must actually be defined with great care.

We prove in the appendix that this IR expansion can
be transformed into the following UV expansion

e Vv " „+) vVnr(n. v)
h „, 21 (n)l [3/2+n(v —1)]

2n(v —1}

X & 1 . (6.17)
TB TB

The strong-barrier problem which is at the end of our
renormalization-group trajectory follows formally from
dimensional continuation of the integrals for the weak-
barrier problem. It is not in any case a generic strong-
barrier problem. For instance regularizing the integrals
by putting a UV cutoff would give very different results,
with a nonrnonotonic conductance. Also, note that the
duality does not apply to the impurity free energy, for ex-
ample, as explained in Ref. 9 for small T the leading con-
tribution is proportional to T for all v.

Interestingly (6.17}can be compared with the perturba-
tive expansion in Ref. 5

I(V)= 1 —
( V ) ' "(2A, ')

h I (2v)
(6.19)

thus providing the relation between the parameter A, 1 in
the action and the TBA parameter TB:

r(v)(vT, }'-.,--= 2
(6.20)

in agreement with the T~0 limit of Eq. (5.4).
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APPENDIX A: DUALITY

In this appendix, we provide details of the derivation of
duality between strong- and weak-tunneling regimes.
Defining

2(1/v —1 }
TBe

we see that there are two different regions to consider in
the computation of the integral

where x is the nonuniversal (dimensionful) cutoff; which
appears in the boson two-point function, as defined in
Ref. 12.

Finally, setting v= —,
' (i.e., A, = 1) in these formulas gives

6+ (in )=1 so I„=(—1)"+'/(2n+1) and T~ =4T~.
Hence

e V + ( —1)"+' eV
2h „1 2n+ 1 TB

e V eTB eVarcta
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f 0 l COO

1 +b
—2(1/v —1)0

depending on whether be " " is greater or smaller

than one. In each region, one can expand the integrand
appropriately, and integrate term by term. For V/Tz
small, this piece is always smaller than one, and the ex-
pansion (6.15) follows immediately. For V/Tz large, one
divides the integral in (6.13) into two pieces to get

dpi 6 (co)G+(0)I( V) = PP ( 1)iv+ i
2h —~ 2' I +i co & 0 i co+2(1/v —1)N

N
+b —iso/[2( llv —1)j ( 1 ) + ( 1 )

o iso+2(1/v —1)N iso+—2(1/v —1)(N+ 1) (Al)

The poles of the rational functions except the one for M=o are all canceled out because 6 [2N(1/v —1)l ]=0 for
N & 0. For the first sum we close the contour in the lower half plane. Since G is regular in this regime, the only pole
is at ~=0 For the second sum we close the contour in the upper half plane, where there are poles of G (m) at

co=2in(v 1),—n &0,

( —1) (
—1)+

N nv (N—+1)+nv,

as well as those of the rational function at co =0. Collecting all terms gives

e V

' 2n(1 —v)
1 Ta

X
2(1/v —1) eV (A2)

Using the identify

+( —1) ( —1)
N —nv N+1+nv sinmn v

together with standard y function identities gives (6.17).

APPENDIX B: INCIDENCE MATRIX

In this appendix we give some details involving the ma-
nipulations of the "incidence matrix" of Sec. IV, for the
case v= 1/3. We start by writing

4+b
@(8)—= @i,+ @bb 4b (8) .

We find

1

2cosh(k m /2)

@+i,(k) = d8e'" 4+b(8)=-
cosh(k m /2)

4++(k ) =f d8e'" @++(8)=—

N 4(k)=4+b(k)N +24++(k)N .

If we define the multiplicative factor

K(k )=4++ (k )/@+ i, (k )=
2cosh km 4

Making use of the relation N =2&, we find in Fourier
space

Using the explicit expressions given in (4.6), one finds
that this may be written in the form

@(8)=@++(8)N+N~b(8)N,
where

0 1 0
1 0 1

0 1 0

It is convenient to Fourier transform the rapidity depen-
dence, in order to turn convolutions into multiplications.

KN 4=4+(2K@++—4+b)N .

The expression in parenthesis equals (2K@++—4+b)
=I/[2cosh(kn /4) ]=K(k). In conclusion we have
found

EN 4=4+%% .
Fourier transforming back to rapidity space, we find the
relation (4.8) of Sec. IV. Note that for v= 1/3,

K(8)=f e ' K'(k)=

as indicated below (4.8).
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