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The electron transport through a quantum dot, defined by the electrostatic potential of four Schottky
gates on top of a GaAs-Cxa„Al& As heterostructure, was studied experimentally. The dot was connect-
ed to the surrounding two-dimensional electron gas by two variable quantum point contacts. The con-
ductance, measured either as a function of gate voltage or magnetic field, showed characteristic varia-
tions: conductance maxima recurrently appear when the gate voltage is varied and conductance maxima
are observed to shift approxixnately linearly in position when the magnetic field is varied. The measure-
ment is compared with a transport model, where the eigenenergy spectrum is calculated for an isolated
perfectly circular disk, with qualitative agreement regarding the characteristic variations of conductance
and in Fourier power spectra of magnetoconductance. The conductance variations are related to the
density of states at the Fermi energy. They cannot be attributed to single levels because the number of
electrons in the dot was too large (approximately 1700 electrons), but originate from a shell structure
with coincident energy levels.

I. INTRODUCTION

The low electron density and extreme purity of materi-
als grown by molecular-beam epitaxy make it possible to
study quantum coherence effects in structures smaller
than elastic scattering lengths and characteristic phase
coherence lengths. A very small conducting island, a
quantum dot, can be defined in a two-dimensional elec-
tron gas (2DEG) by limiting its extensions with an elec-
trostatic field. It is often compared with an artificial
atom, having a fixed number of electrons and a discrete
eigenenergy spectrum. ' The spectra of quantum dots
have been investigated by transport measurements with
high resistance of the point contacts in the tunneling re-
gime, with only a few Landau levels in the dot and by
capacitance measurements of a dot containing only a few
electrons. ' In both cases a general agreement between
the measured spectra and the spectrum of a two-
dimensional harmonic oscillator is found. The spectrum
is very complex with frequent crossings of single-particle
levels, when the number of electrons in the dots is large
and when the magnetic field is weak. The quantum dots
studied in this work were large, with approximately 1700
electrons. We will in this paper compare measured con-
ductance variations with a quantum-mechanical model of
perfect model geometry, namely, a circular disk, and ana-
lyze the regularities of these conductance variations at
low magnetic fields.

The electron transport behavior of ballistic microstruc-
tures has been analyzed using "billiard ball" models,
where the electrons move as classical particles and
bounce against the confining walls but carry phase infor-
mation allowing for quantum interference. When the
electron moves in a closed trajectory in a magnetic field,
the phase change along the loop is determined by the en-
closed flux, and the conductance is periodic in the mag-
netic fiux quantum h /e. This causes the conductance of
a quantum dot to vary nonmonotonically when the mag-
netic field or the gate voltages change. The variations
resemble universal conductance fluctuations that appear
in disordered conductors. In ballistic quantum dots,
however, the variations are due to the geometry of the
confinement potential and not to randomly distributed
scatterers.

The occurrence of chaos in quantum systems has re-
cently been frequently discussed. ' Classical electron
scattering is chaotic for the case of asymmetric or distort-
ed geometries, in the sense that an electron orbit is ex-
tremely sensitive to initial conditions. The variations of
conductance will in that case be aperiodic. The statistical
properties of chaotic fluctuations have been predicted
from scattering dynamics. The difference between a
chaotic and a nonchaotic (circular) geometry was investi-
gated experimentally by Marcus et QI. ' They found a
difference in the Fourier power spectrum of magnetocon-
ductance for the different geometries. The amplitude of
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low-frequency components was the same, but for higher
frequencies the difference appears as higher amplitudes
for the circular geometry compared to the stadium-
shaped (chaotic) structure.

Stone and Bruus' have found that minor distortions of
the boundary may dramatically change calculated energy
levels of a quantum dot. The question is then raised of
whether a comparison between calculated energies and
eigenstates for a perfectly shaped geometry is relevant to
explain an experimental reality. The boundary of the
electrostatic confinement is always slightly distorted, the
regions around the contacts are definitely not a regular
geometry, and elastic scattering events change the direc-
tion of electron paths.

Single-electron effects are important in semiconductor
quantum dots. The incremental charging of a dot that is
weakly coupled to its environment (the tunneling regime)
results in periodic conductance peaks, referred to as
Coulomb blockade oscillations. Irregular variations of
the amplitude of Coulomb blockade oscillations at weak
magnetic field have been reported by Staring et al. '

They are explained in terms of chaotic fluctuations of
tunnel rates by Jalabert, Stone, and Alhassid. This work
consists of an experimental study of the conductance of
circularly-shaped quantum dots, confined in a 2DEG by
the electrostatic potential of four individually adjustable
gates. The two-terminal conductance was measured as a
function of gate voltage, magnetic field, and temperature.
We observe characteristic variations that can be ex-
plained by a transport model, where the electrons tunnel
from one reservoir, through the discrete states of an iso-
lated perfectly circular disk, to another reservoir. The
peak values of the Fourier power spectra of magnetocon-
ductance are high for low-frequency components and
decrease stepwise for frequencies higher than 1/b, B
=ma e/h, corresponding to additions of magnetic flux
quanta to the dot of radius a.

We show that a perfectly shaped model geometry is in
reasonable agreement with experimental results, that is,
the observed regular variations can be described with a
nonchaotic model. The observed variations are related to
variations in the density of states at the Fermi energy,
which, in turn, is related to the zeros of Bessel functions.

II. SAMPLE PREPARATION AND
EXPERIMENTAL DETAILS

The samples were fabricated using GaAs-Ga„A1, As
heterostructures grown by molecular-beam epitaxy. A
high mobility 2DEG forms at the GaAs-Ga„A1& „Asin-
terface. The sheet electron density was n, =3.7X10'
m and the mobility of the sample p was 63 m /V s at 9
K, determined from measurements of the low-field Hall
efFect and the longitudinal resistance. The elastic mean
free path l =ph /e A,~ =6 pm, where A,~ is the Fermi
wavelength. The heterostructure with the gate structure
on top is schematically shown in Fig. 1.

A mesa was etched on the 2DECx to isolate an active
region. The mesa, the AuoeNi Ohmic contacts, the
aligning marks, and the contact pads were patterned with
photolithographic processes. The Schottky gates (150 A

Schottky gates

GaAs

n-type Ga].-xA xA

~ undoped Gaj XA1XAs

Undoped GaAs

ing 2DEG

FIG. 1. Schematic layer configuration of the heterostructure.
A high mobility 2DEG forms in the undoped GaAs at the inter-
face to the Ga„A1, „Aslayer. The 2DEG is separated from the
randomly distributed donors in the Ga, A1, As by an undoped
spacer layer. A negative voltage Vg on the gates depletes the
2DEG beneath the gates.

Ti/150 A Au) were made with electron-beam lithography
and lift-off.

We used a double-layer electron-beam resist. The bot-
tom layer was copolymer p[MAA-MMA] (poly[metha-
crylic acid-rnethylmethacrylate]) and the top layer was
PMMA (polymethylmethacrylate). They were spun on
the substrate and baked on a hot plate in two steps. The
bottom layer thickness was =120 nm and the top layer
was =70 nm. The double layer was, after exposure,
developed in a PMMA developer (toluene: isopropanol,
1:3) and a copolymer developer (2-ethoxiethyl-
acetate: ethanol, 1:5) successively. A linewidth of 40 nm
has been achieved with this resist configuration.

The geometry of the gate structure is seen in the scan-
ning electron microscope (SEM) imagine in Fig. 2. Only
two gate pairs were used at a time in the experiments,
while the third pair was unconnected or grounded and
did not affect the measurement. The gate voltages on the
electrodes were varied in pairs. The voltage on the mid-
dle gate pair V 2 was swept, while the voltage on the oth-
er pair was constant. The gate voltage affects not only
the width of the channel, and thereby the conductance of
the quantum point contact, but also the area of the dot
that is confined between the gate pairs. Taking into ac-
count that the depletion region in the 2DEG is slightly
larger than the extent of the gate, the diameter of the
quantum dot is approximately 0.8 pm.

The current and the voltage over the sample were mea-
sured with ac lock-in amplifiers and the two-terminal
conductance was calculated from these values.
DifFerential preamplifiers were mounted on top of the
cryostat. The sample was biased symmetrically by an ac
voltage over two 100-kQ resistors in series with the sam-
ple. The voltage over the sample was less than 10 pV,
but changed as the sample resistance changed. The gate
voltages were applied relative to 0-V bias voltage, thus
the bias sweep had a minimal influence on the depletion
of the 2DEG. The sample was bonded and mounted on a
Si carrier chip, which was contacted by metallic spring-
loaded pins in the sample holder. The sample was loaded
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FIG. 2. (a) Scanning electron microscope (SEM) image of the
device with gates and Ohmic contacts shown. (b) SEM image of
the gate structure. Two gate pairs were used during the mea-
surements, the third was grounded or disconnected. The gate
voltages V~I, Vgz, and Vg3 referred to in the text are the voltages
applied to the two right gates, to the middle gates, and to the
left gates, respectively. The gates can form three individually
adjustable quantum point contacts and two circularly shaped
quantum dots.

into a dilution refrigerator that had a base temperature of
= 15 mK. Magnetic fields up to B= 5 T could be applied
perpendicular to the substrate. The conductance was
measured as a function of V 2 (changing the dot size), or
as a function of magnetic field, at different settings of the
other gate pairs and at different temperatures.

III. EXPERIMENTAL RESULTS

The conductance of a one-dimensional channel (or
point contact) depends upon the number of conducting
subbands, each with a conductivity of 2e /h, that are al-
lowed. ' The development of the conductance of the dot
and its contacts as one of the point contacts is opened up
is most clearly seen in the two upper traces of Fig. 3(a).
(The other point contact is already open and its size is
kept unchanged. ) The channel is pinched off and there is
no conductance when a large negative voltage is applied
to gate pair 2 ( V 2 (—l.6 V). The first channel opens up
and the conductance increases towards 2e /h as the mag-
nitude of V2 decreases. At a somewhat larger V 2, a

FIG. 3. Conductance oscillations at B=1 T. The long
period oscillations are due to additions of single Aux quanta to
the dot. Single electron charging results in the short period
(Coulomb blockade) oscillations, that are superposed on the
long period oscillations in the low conductance limit. The con-
ductance is measured at four different temperatures, from top
T=2.0, 0.8, 0.3, and 0.045 K, for (a) VgI= —1.20 V and (b)

V~I = —1.28 V. (c) An expansion of the 45-mK trace from (b),
where Coulomb blockade oscillations are resolved.

second channel opens up and the conductance increases
another step in the conductance staircase. (Note that the
observed conductance is the one of the two point contacts
in series. This may explain the magnitude of the steps. )

Charging effects are important when the conductances
of both point contacts are less than the conductance
quantum value 2e /h. We will disregard charging eFects
after treating them briefly in Sec. III A. Instead, we will
concentrate on the magnetoconductance behavior as the
size of the dot is varied, when at least one point contact is
above 2e /h in conductance.

At large magnetic fields, when the classical cyclotron
radius (r, =C&o/AFB), where C&o=h/e, A~ is the Fermi
wavelength, and B is the magnetic flux density) is smaller
than the dot radius, skipping orbits or edge states will
dominate the conductance behavior. At sufficiently large
field, there is no scattering between edge states as argued
by Glazman and Jonson, ' and the dot behaves essentially
as a ring giving rise to Aharonov-Bohm oscillations
with well-defined period in magnetic Aux. The high-
magnetic-field case is the one that has been most
thoroughly studied. In the opposite regime, at small
fields, the electrons are described as waves bouncing



8924 M. PERSSON et al.

against the walls of the dot. The bounces will depend
critically upon initial conditions (like the widths of the
entrance and the exit channels) and inhomogeneities in
the wall geometry. One does not expect periodic varia-
tions in the conductance with magnetic field or with dot
size, as for the large field case, but rather aperiodic Auc-
tuations like the conductance variations in a mesoscopic
conductor. ' We will concentrate on the behavior in this
low-field regime and show that the conductance is not
completely chaotic but that there exist pronounced regu-
larities in its response to changes in field and dot size.

A. Coulomb blockade oscillations

Charging effects are important when the conductances
of both point contacts are less than the conductance
quantum 2e /h. The periodically appearing conductance
peaks in Fig. 3(c) are Coulomb blockade oscillations, due
to the incremental charging of the island by single elec-
trons. This phenomenon has been observed by several
groups and single-electron effects in semiconductors are
reviewed by van Houten, Beenakker, and Staring. The
coupling capacitance between the gate and the dot can be
determined from the average period between the peaks
b, V =e/Cs. For V~& the average period was 1.7 mV and
the corresponding capacitance to one gate pair was

Cgz 9 X 10 ' F. The positions of the peaks are not tru-
ly periodic, but slightly shifted due to the spacing be-
tween successive energy levels. The difference between
single-electron energies can be extracted from the peak
positions, by subtracting the average period correspond-
ing to the charging energy. The method has been used to
map the energy spectrum in the quantum Hall regime. '

The single-electron charging of the island creates a re-
normalized energy spectrum where the single-electron
levels are separated by the bare level spacing and the
charging energy, EE*= DE+ e /C. The following
measurements are performed when the conductance of
one point contact varies from 0 to -4e /h. The charg-
ing of the island only affects the measurement when the
conductance of both point contacts is less than 2e /h,
that is, in the region where Coulomb blockade oscilla-
tions are observed.

B. Measurements in high magnetic Geld

The conductance of a quantum dot oscillates periodi-
cally as a function of magnetic field or size of the dot,
when Landau-level edge states are formed in high mag-
netic fields. The period is determined by the magnetic
Aux enclosed by the edge states.

The long period oscillations seen in Fig. 3(a) are due to
a variation of the area. Each period corresponds to a
change of fIux within the edge state by one Aux quantum
No=h/e. The area change is b 2 =h/eB for each period
(at 1 T, b, A =4. 1X10 ' m ). We can therefore deter-
mine the variation of the area induced by the gate volt-
age. The radius changes Ar =1.6 nm for each Aux quan-
tum at B=1 T, if the dot radius is 0.4 pm. The relation
between hr and the gate voltage is then hr /6 V z
=0.07 pm/V obtained from the data of Fig. 3. A11

presented measurements are performed with the same
sample, but it has been thermally cycled and stored in air
between measurements. We assume that the relation be-
tween size and gate voltage has changed insignificantly
between the measurements.

The long period oscillation and the Coulomb blockade
oscillation are superposed when the conductances of both
point contacts are low; see Figs. 3(b) and 3(c). Staring
et al. ' measured and explained a periodic envelope of
Coulomb blockade oscillations in a quantum dot and
found the number of Coulomb blockade peaks in each
period of the envelope to be inversely proportional to the
magnetic field. The Landau levels are filled sequentially, '

one electron enters each of the Landau levels when one
magnetic fIux quantum is added to the dot. The trans-
port process involves tunneling to the outermost level fol-
lowed by an equilibration to the inner Landau levels. The
amplitude variation is explained as due to variations of
the tunneling probability to predominantly the outermost
Landau level. A similar behavior has been observed in
this dot, with the long period oscillation as a function of
gate voltage inversely proportional to the magnetic
Geld

The amplitude of Coulomb blockade oscillations di-
minishes at high point contact conductance, and only the
long period oscillation remains. Long period conduc-
tance variations also appear at lower fields and even at
zero field. These variations are not as periodic as those at
higher field.

Both kinds of oscillations have a similar temperature
dependence (Fig. 3). The increase of the amplitudes
ceases below 0.2 K. This may be related to a difference
between the mixing chamber temperature and the
effective electron temperature. We believe that the elec-
tron temperature is not lower than about 100—200 mK,
even when the mixing chamber is at base temperature 15
mK. Meirav et al. ' have also found that the electronic
temperature fails to reach temperatures below 100 mK.
They match the shape of Coulomb blockade peaks to the
derivative of the Fermi-Dirac distribution function to ob-
tain a more precise estimate of the effective temperature.

The number of modes in one quantum point contact
changes when the gate voltage is varied. This can be seen
in Fig. 3(a) at T=2 K where the conductance has two
steps, indicating that the number of modes changes from
zero to two in that gate voltage interval.

C. Measurements in weak magnetic Beld

Conductance variations were also seen at low magnetic
field, even at zero field. Nonmonotonic variations of the
conductance are seen in Fig. 4, as a function of gate volt-
age on one gate pair, at B=0 mT. They have an ampli-
tude that is considerably larger than the one of the
Coulomb blockade oscillation. We will argue that they
are due to variations in the density of states at the Fermi
energy. The energy spectrum of the dot is not affected by
the charging energy at gate voltages higher than
Vgz . 1 45 where the conductance of the swept point
contact is estimated to be higher than 2e /h. The spec-
tra obtained by McEuen et al. and Ashoori et al. are
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FIG. 4. Conductance oscillations as a function of Vgz at
B=0 T, T=15 mK. The other gate pair is in the lowest trace
at Vg3

—1.180 V and is changed with —12 mV for each of the
offset traces to —1.228 V in the top trace. Both the area of the
dot and the width of the point contact increase, when the Vg2 is

swept.

FIG. 5. Conductance oscillations as functions of Vg2 for fixed

Vgi= —1.34 V. The magnetic field is 8 =0 mT in the bottom
trace and increases in steps of 4 mT for each trace to 44 mT.
Prominent equidistant dips appear marked with dots in the
zero-magnetic-field trace. The Coulomb blockade regime,
where charging effects have to be accounted for, is estimated to
be below Vg2= —1.35 V. T=20mK.

both measured in the Coulomb blockade regime, where
the charging energy has to be taken into account. The
geometric form of the dot changes somewhat between the
different traces, but despite this some structure remains.
Three large dips (marked with dots), with about the same
separation in gate voltage, can be seen in all traces. A
fourth smaller dip can be seen in the Coulomb blockade
regime, but the separation to that dip is larger. This
periodicity is one of the characteristics that can be ex-
plained with our simple transport model that will be de-
scribed in Sec. IV.

The two-terminal conductance is shown in Fig. 5 for
the second dot of the same sample (see Fig. 2), but mea-
sured nine months later. Any configuration of scatterers
is therefore not the same. Three dips appear at equidis-
tant position also in this measurement. These are marked

by dots in the figure. The oscillation changes drastically
when a weak magnetic field is applied. No correlation
between the different sweeps is obvious, even though the
magnetic field step is only 4 rnT between the different
traces. The correlation, however, can be seen when the
data of Fig. 5 are displayed as a grey-scale image of the
conductance as a function of the swept gate voltage and
the magnetic field in I-mT steps; see Fig. 6(d). A third-
order polynomial is subtracted from each sweep to make
the oscillatory behavior more visible and remove the
effect of the increasing .conductance of the point contact.
Four grey-scale pictures are shown. They are taken with
a change of 10 mV of V, , between the different images.
Bright and dark regions denote maxima and minima in
the conductance, respectively. We observe a characteris-
tic pattern in the four images. Three or four dark regions
appear at zero magnetic field in Figs. 6(a)—6(d) corre-
sponding to the dips with low conductance in Fig. 5.
Moreover, three bright regions with high conductance
can be observed. The patterns shift and change slightly

for the different settings of V &, but the general features
can still be recognized in the different images; i.e., the
behavior is not chaotic. There are diagonal features that
appear approximately periodic, like a wave pattern. Di-
agonal dark and bright regions can be seen in the upper
part of the images. They are separated by a smaller dis-
tance than the dips mentioned above.

Characteristic features, e.g., dark spots at zero magnet-
ic field, can be seen in all four grey-scale images, but
small shifts occur from image to image. There are, how-
ever, also features in the images that become much less
pronounced and change randomly. The movement of
conductance maxima can be seen as diagonal patterns
over the whole magnetic field range in some gate voltage
regions. This wavelike pattern can be seen at the top of
Figs. 6(c) and 6(d), whereas is not seen in Fig. 6(a). The
geometric form of the dot alters when the gate voltage on
one pair is changed. The form may be elliptic, with the
size and eccentricity varying as a function of gate voltage.
The form of the boundary changes, but not su%ciently to
destroy the regularities of the conductance variations at
zero magnetic field.

Alternative ways to test any correlation are to present
the data in the form of power spectra or autocorrelation
functions. We have analyzed fast-Fourier-transform
(FET) power spectra of conductance variations as a func-
tion of magnetic field when the voltage on one gate pair is
varied. High amplitudes of FFT's are observed for low-
frequency variations of the magnetoconductance. The
spectra, however, are dificult to interpret and analyze. A
small variation in gate voltage changes the distribution of
spectral peaks mainly in amplitude, but small shifts of po-
sitions are also observed. We have chosen not to average
or smooth the spectra (narrow peaks may be insignificant
when smoothed). Instead we transform a number of mag-
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FIG. 7. The maximum amplitudes of 20 FFT power spectra
of magnetoconductance traces plotted on a linear scale. Two
steps, marked with arrows, can be seen, where the amphtude de-
creases approximately one order of magnitude. Only the y-axis
scale has been changed between (a) and E,

'b). Vg2 is varied in a
range from Vg2= —1.410 to —1.372 V, and Vgl

= —1.310 V.
The total change in radius is approximately 13 nm for this
range.

netoconductance traces within a small range of the gate
voltage and show the maximum values of these as a func-
tion of magnetic frequency, giving an envelope for the
amplitudes.

The result is shown on a linear scale in Fig. 7 and on a
logarithmic in Fig. 8. As shown in the latter, there is a
general, roughly exponential, decay of the maximum am-
plitude with magnetic frequency. However, in our case
the decrease is not featureless. The amplitude signif-
icantly decreases at f=100 T ' (marked with an arrow
in Fig. 7). This frequency corresponds to the Aharonov-
Bohm frequency of a ring with radius r =0.36 pm.
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FICx. 8. Same data as in Fig. 7 but on a logarithmic scale, and
with arrows at the same positions, indicating steps of approxi-
mately one order magnitude. The steps are naturally less pro-
nounced on a logarithmic scale.

IV. ELECTRON TRANSPORT MODEL

We will now compare the experimental results with
theoretical ones obtained with a simplified model, name-
ly, that of a perfectly circular dot with no inAuence of
contacts. The dominating characteristics of the experi-
ments are a complex but regular variation of the conduc-
tance. Smaller effects arise from irregularities and cause
random variations of the conductance. The observed
small weak localization dip can be attributed to the irre-
gularities of the boundary. The energy spectrum will first
be calculated and we will find that the energy levels will
tend to coincide at different energies, giving rise to peaks
in the electron density of states. The eigenenergy levels
are affected by an applied magnetic field. Knowing the
electron density of states, the conductance of a dot con-
nected weakly to two reservoirs can be calculated. The
leads represent a perturbation of the individual electron
states, but although the levels become Lorentzian
broadened the level structure remains essentially intact
when the leads are opened.

A. The energy spectrum

The energy levels of the dot are obtained by solving the
Schrodinger equation HV(r, 8) =E+(r, 8) in cylindrical
coordinates, with a hard-wall confinement at r=a. The
magnetic field is in the z direction and a symmetrical
gauge A(r, o, z) =(O, rB/2, 0) is chosen. The Hamiltonian
can be written as

fi 1 8 8 1 8r
r 3r Br r2 Qg2

2
eBr
2A

This problem can be solved in weak magnetic fields by us-
ing perturbation theory. This approximation is valid if
the cyclotron radius r, =m 'U~/eB is much smaller than
the dot radius. UF is the Fermi velocity and I is the
effective mass of the electrons.

The perturbed eigenenergies are given by

E„=EOy„+2na+—,'a 1+, (2)2 2(n —1)
2

7n, m

$2

2m a

where the magnetic field dependence enters in
+=~a Be/h, the Aux through the dot with radius a nor-
malized to the magnetic Aux quantum. They are related
to the zeros of the Bessel functions y„,where the index
m denotes the number of the root to the nth-order Bessel
functions, J„(y„)=0,n =0, +1,+2, . . . , and m =1,2,
. . . . Eo corresponds to the average spacing between lev-
els in the dot.
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A few levels are plotted as a function of magnetic field
in Fig. 9(a) in order to visualize the origin of regions with
high density of states. Two levels E„ofzeroth order;
(n, m ) = (0,20) and (0,19), are drawn in Fig. 9. They have
only a weak quadratic magnetic field dependence due to
the cancellation of the second term in Eq. (2). There are
several other levels that are close in energy to (0,19) and
(0,20) around 8 =0. These are of even order in n,
exemplified by (+2, 19) and (+4, 18) in the diagram. It is
possible to draw a curve that touches all the curves of en-
ergy versus magnetic field tangentially. In analogy with
optics, this curve is called a "caustic" and it passes a re-
gion of high density of electron states. Similarly, it is
possible to draw a caustic to the (0,19) region. Between
these two caustics are the levels (

—1, 19) and (1,19)
which also have a weak magnetic field dependence. Close
in energy to these are other odd n states [exemplified by
(+3,18) and (5,17) in Fig. 9]. The odd levels give rise to
another caustic. Thus it is possible to map gently sloped,
parabolic bands of high electron density of states in ener-

gy versus magnetic field diagrams. The magnetic field
dependence is stronger for higher-order levels, giving a
larger slope, as illustrated in the figure by a few lowest-
order-in-m roots of high order in n, n =51,52.

The energy spectrum is affected by the dot size [see Eq.
(2)]. The whole spectrum will change and regions of high
density of states will pass through the Fermi energy when
the radius is varied. Traces are drawn to describe the res-
onance conditions E„=EF,in Fig. 9(b), for the same
levels as in Fig. 9(a). The lines give the variation in ra-

(a) is o—

100—

bQ

5 0

4 'o o Io 0'0 0( 0
' 000((000 '

ID o' o' 0 0'
00 0 0 0 0 0 00 0 0 OOOO 0 0 0 0 0 0 OOOO 0 0 00 0 O O oo Oo O O 0 00 0 D 0 0 O 0 0 O O 0 0 O O O O

0 0
0 0 0 0 0

0 0 0 o (' p 00 0000 0 0 0 0
O O oop 0 oO 00 0 0 Q 0 Q 0 00
0 o— Q ~ 0—

0 00 00000 0 0 00 0 00 0 0 0000 0
0

o 0 000 0 0 00 0 0 0o o
0

o 0 0 o ooopoo o 0 0 0 0 o 0
0 0 0 0 0 pp Do o o 0oooo 0 o 0 p 0 0 0 0

o o oo o o oo0 0 oOOOo O O00 0 0 00 0 0 00QDOO 0
0 0 0 0 0 0 0 0000000 0 0 0 0 0 0 0o o o o o p

0 0 O 000000p 0 0 0 o 0o o o o 0 0 0 o0o
o Oooo 0 o o 0 ooOo 00 0 o

0 o o o00000 o o0 0 0 0
0 0 0 0 0 0 0 00 0 0 0DOO 0

0 0 0000000 0 00 p O

0 0 0 00000 0 00 00000ODO
o 00 0 0 0 0 0 0 0 000000 0 0 0 0 0 00 0 0 0

O 0 0 0 O O 0 0 O O 0 0 0 0 0 O OO O 00«»00 0 O 0
0 0 0 0 0 0 0 0 00 00 0 0 0 0 0 0 0 0
0 0 0 Q Q 0 000 Dpo0 0 000 0 0

0 0 0 0 0 0 0p 0 0 0 0
0 0 0 0 0 p 0 0 0 0

O 0 0 0 0 0000 00 0 0 0 0
0 0 0 0 0 0 0 00 o 0 0 00000Q 0 0 0 00 0 0 00 00 O Q

0 0
0 0 0 0 0 0 0 0 p 0 0 0 O

00 0 0 0 0 0 0000000 0 0 0 0 00 0 o 00 0 0 0
0 0000 0 00000 0 000 00 o oo oo 0 0

0 00000000000
0 0 0 0 0 0 0 0

0 Oooooo 0 0

0 0 0 0O O 0 0 DOOOOOD O 0 O O0 0 0 0o 0 0 Qooooo 0 0 0 00 o o 0 0 00 0 0 0 00 DOPOO 0 O 0 0 0o ooo o O OOD O
0 00 0 0 00 0o o o oo o

o 0 0 0 0 0000000 0 0 0 ( 0
O O 0 0 O OOOOOO O 0 O O

0 0 o
O O o 0 O DOOOD O O O O O0 0 00 Op 0 0 0

O 00000000000000 0o o 0 o Qoooooo o 0 o o0 0 0 00 0000 Op 0 Q 00 00 00 OOOO 0

00 I ( I i I I I s

~ M

-80 -60 -40 -20 0 20 40 60
Quantum number n

(b)

V

10.0—E

)
OQ

5.0—
C

0 0 0 0 000 0 0 0 0 0 p 0000000 0 0 0 0 0 0 0 00 0 0 00 0 0 0 0 o O 0 0o o 0 0 o o 0 0 0
0 0 0 0 0 000000 0 0 0 0 0 00 p o o oo 00 0 0 0 0 0 00 0 0 0 0 0 0 0 0~ (Lo —0 -0 —

QGGD ~ —
D

0-0~-O- ~-G0 0 O 0 00 00 0 00 0 0 O 0 0
0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 P0 0 0 000000 0 0 0 0 0 0
0 0

000 0 00 00 0 0 OOOO 0 00 0 0 0 0 0
0 0 000 000 000 0 0 0000 0 0 0 0 D

0 0 0
o 0

0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 00 0 0 OOO 000 0 0 0
Q 0 (I O 0 0 (I (I 0 0 0 0

D 0 0 00000 0 0 0
o oo 0 oo 00 0 0 00 0 0 0 0

0 O O O 0 0 0
o o000000000000000000o o o oo oo o o

0 0 0 0 0
0 0 0 0

0 0 O O 0 O OOODO 0 O 0 o o 00 o o 00 0 0 00 OQ 0 0 0o o o o0 00 000 0 00 0 O 00 00 0 0 0 0
0 ooo o0 0

00 0 00 0o 0 0 o o p 0
0 0 0 0 0 OP 00 0 0 0 0 0 o
0 0 0 0 OO 0 0 0 0 0000 0 o0000o o«o o oo 0 0 0 00 Oo 0 O

0 0 0 0 0 0 0
0 o ooooo 0 0 o oQ 0 00 00 0 0 0 0 OOOO ODD0 0 000000 0 0 0 0

o oooo oo 00 0 00000 0 0
Q 0 0 0 00 00000 0 0 0 0 0 0 00 0 0

0 0 0 0 0
O OOO 0 OOOOOD O OOOOD
o ooo o 0 ooo 0 0
0 000 000 00000 0 0 0 0 o 000 0 OOOO 0 o 0
0 000 000000 0 OOOO0 0 0 0 000 00 0 0 o o000 (000000 0 0000 0 0

0 0 0 000000 0 0 0 0 0 0 0 0 00 0 00 DO 00 0 0 0 0 0
0 0 0 0000000 0 0 0 0 0 o 00 0 0 O oOP0000000000000 0 0 00 0 0 00000 00 0 0 0 0 0 0 00 0 0000 00 0 0 0 0 0 00 0 00 00 0 0 0 0 0 0 00 0 0000000 Op 0 0 0 0 0 00 0 000000 00 0 0 0 O 0 0Oo 0 O 000 0 0 0

OO OO OOD «I
0 000000 00 0 0 0 0 0
0 00000 OQ 0 00Dooopo 00 0 0 0 0o o o

0.0
-80 -60 -40 -20 0 20 40 60

Quantum number n

(c) is.o—

10.0—

bQ
5 0

" GIP 0 Ippppdpp Pp 0 Q QGG I p pG G Gp0 0QGG 0 0 QGGG 0 p0 0 0 Gppppp
GQ 0 0 0 00 0 0 0 0QGG 0 0 QG 0 0 QQGQQ oooo 0

0 0 0 0 Qppop 0 0 0 00 0 Q 0 0 0 0 0 Q 0 0 0 0 0~~a ~~0 ~ ~~ (!
p 0 0pp0 00 p p 0 0 Q 0
Q OOOO P QPPPO 0 GGP 0 G 0

Q 0 0 0 Q G
0 Gpp 0 O GGOG 0 Q O

QQQQGG p 0 G 0 0 0 0 p 0
Q ppo Q 0 0 0 QQQQ 00 0 0 0 Q 0 Q 0 0 0p ppppppp 0

G 0 0 Q 0
0 0 0 p Q 0 0 0 p 0 0 0 0 0
0 Ppp 0 GQGGQG P 0 GGPGQG P 0 0
0 Q QP 0 p G 0 0 0
0 0 0ppppp Q 0 0 0 0 Q 0 0

oGp op 0op o 0 opo 0 00 0
Qp 0 Pp G 0 OOG 0pp Q 0 Q 0 0 G Q

0 0 0 Q Q 0 Q 0 0 0 0
GGQ Qpppppp 0 0 QQGQQ 0 0 0 0 00 0 0 0

0 0 0Qpp QGQpQG Q 0 Qpppp 0 00 0 Q 0 Q 0 p 0pp Q pp 0 pOOp 0 0 0 0 p0 0 Gpppppp Q 0 0 0ppp 00 0 GPGGD 0 0 0 0 Q0 0 0 p0 ppQQ GGQQGQ 0 o QQGG 0 o 0 0GG 0 o
0 QG o GQ 0 0 Gp 0 Go 0 0 o G Q 0
0 0 0 0 0 00 0 0 0 GG 0 00 QQQQQ 0 0 p 0 0 0GQGD QG 0 ppppp 0 0 0QGQQGQGQQQpQGG

QQ p(»pp 0 Gpppp 0 0
QG 00 GQ GQGG p p

0 0 0 0 0 0 0
0 OGo GG 0 0 0 0 0 0 0
0 QGQQQQ 0 Q 0 0 0 0 0 0 0 G0 G0 0 0 0 0 0 0 p0 GGGGQp 0 0 Q 0 p 0 0 Q QDppppp QGGQGGG G Q p 0G Q 0 0

GGGGG Oo OO Qp 0 0 0 0 0Q p Q
0 0 QDGPG 0 0Qppppppppppp 0 0 0 0 pGGQQQGGQGQQ Q 0 0 0 pQppQGGQQGQQGGQQ

GQQQQQQQQ 0 Q 0 Q p
Qppp 0 0 O 0 0

dius as a function of magnetic field, where the condition
is valid. In an experiment, both area and depth of the po-
tential well vary as a function of gate voltage. The small
difference between Figs. 9(a) and 9(b) shows that calculat-
ing the conductance as a function of radius, or as a func-

/I /I I I I I I

-100 -50 0 50 100
Magnetic field IIT]

FIG. 9. (a) E„vsB. The levels are marked with quantum
numbers: the order n and root m. a =0.4 pm. The levels (0,19)
and (0,20) show the change of energy between di8'erent roots for
zero-order levels. The levels (52, 1) and (51,1) show the change
between the first root of highest-order levels, both in energy and
the periodicity in magnetic field. In (b), the dot radii a„
which give a resonance condition E„=E~=13.2 meV, are
plotted as a function of magnetic field.

0..0 I

-80 -60 -40 -20 0 20 40 60
Quantum number n

FIG. 10. (a) —(c) Energy diagrams at (a) B=0 T, (b) B= —50
mT, and (c) B= —100 mT. The energy of each state is plotted
as a function of its quantum number n. The ordering of levels in
inverted parabolas results in recurrently appearing maxima of
the density of states and corresponding peaks of the conduc-
tance. The conductance traces shown to the left, with arbitrary
unit, are calculated for T=400 mK.
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tion of depth of the potential, gives the same spectral in-
formation. The complexity of the spectrum can be seen
in Fig. 11, a calculation of conductance as a function of
radius and magnetic field at low temperatures, where sin-
gle level resonances [corresponding to a„(B)in Fig.
9(b)] are resolved and prominent parabolic caustics can
be seen.

The energy levels are plotted versus the quantum num-
ber n, for magnetic fields 8 =0, —50, and —100 mT, in
Figs. 10(a)—10(c). Energies where the density of states is
high can easily be recognized in these diagrams, i.e., at
the top of inverted parabolas. The states forming an in-
verted parabola around n =0, just below the line through
E =14 meV, are those that contribute to the top caustic
in Fig. 9. The tops of the parabolas shift to the left and
to higher energies when the perturbing negative magnetic
field is applied. The high-order levels also form parabol-
as, but they have a stronger linear magnetic field depen-
dence and result in diagonal caustics (levels with positive
n have positive slope).

0.37 '':;~;:,„:,,

0.35 I::-::."

0.34:-
-100

?'

-50 0 50
Magnetic field [mT)

100

B. Conductance calculation

The dot is connected to two reservoirs and the conduc-
tance can be calculated with a Landauer-type formula
where we assume that the levels are Lorentzian
broadened:

G = J dE — T(E)
h dE

e 1 ~ 9n, m'
Ak~T„(1+rj )' ' (3)

0.37

where t4 ~ =expt(E„Ez)lk&T]—and T(E) is the
transmission probability for states at the energy E. We
assume that the transmission probability is equal for all

0.38

FIG. 12. Calculated conductance as a function of radius and
magnetic field at T=400 mK. In this grey scale the resonant
levels are smeared and overlap.

states and the thermal broadening kz T is larger than the
Lorentzian broadening I . (This is not the case for strong
magnetic fields, where the transmission probability is
higher through the outermost edge state. ) Equation (3)
relates the conductance to the density of states of the dot,
with the thermal smearing determined by the derivative
of the Fermi-Dirac function df /dE.

The regularity of conductance variations originates
from recurrent crossings of coincident levels with the
Fermi energy. The regularity is not clearly seen when the
temperature is low, as every level causes a conductance
peak of equal height. The individual levels are smeared
at higher temperature and regions with high density of
states become visible in the conductance. In Fig. 10,
peaks in conductance occur at the same energy as where
tops of inverted parabolas are located in the level dia-

0.6

a 0.36

0.4

0.35 0.3

0.2

0.34
-100 -50 0 50

Magnetic field [mT]

0. 1

0 100 200

f[T]
300 400

FICx. 11. Calculated conductance as a function of radius and
magnetic field, at 100 mK. Compare with Fig. 7(b), where a few
resonance lines a„{B)derived from the relation E„=EFare
plotted.

FIG. 13. Same spectra as in Fig. 14 but with logarithmic y
axis. A generally exponential decay of amplitudes can be seen,
but with a stepwise drop at f= 100 T
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FICx. 14. Power spectra of calculated magnetoconductance.
a =0.3400 pm and a =0.3404 pm. Even a small change of ra-
dius makes significant changes of the spectra: peaks shift and
amplitudes change.

FICr. 16. Same as in Fig. 15 but on a logarithmic scale, and
normalized to fit the experimental data of Fig. 8 (grey line).
Drops in amplitudes at 100 and 200 T ' are marked by arrows.

gram. The conductance as a function of both magnetic
field and dot radius is shown as grey-scale images in Fig.
11 for T=100 mK and in Fig. 12 for T=400 mK. A
bright image indicates high conductance. In Fig. 11, the
thermal smearing is not pronounced and single level reso-
nances can be distinguished, whereas in Fig. 12 only
peaks in conductance due to coincident levels are seen.
Caustics from low order n are seen as recurrently appear-
ing inverted parabolas of high conductance. The diago-
nal pattern, with both positive or negative slopes, is due
to coincidences of levels with larger positive or negative n
values.

The theoretical magnetoconductance has, like the ex-
perimental, been analyzed with fast-Fourier-transform
power spectra. The power spectrum has been predicted
to decay exponentially at high magnetic frequencies for a
chaotic quantum dot. As shown in Fig. 13, we indeed
find a generally exponential decay of amplitudes, but in
addition there are frequencies where the amplitude de-
creases stepwise. The power spectra of single sweeps
change when the radius is slightly varied (see Fig. 14).
The amplitudes of some peaks increase, whereas other
peaks get smaller. The variation of peak heights as a
function of dot radius can be predicted with periodic or-
bit theory.

To get a more clear picture, we calculate the power
spectra for several theoretical magnetoconductance
sweeps corresponding to small changes in the dot radius
and plot an envelope representing the maximum values of
the amplitude as a function of magnetic frequency. This
is shown on a linear amplitude scale in Fig. 15 for 25
sweeps of magnetoconductance where the dot radius was
changed from 0.36 to 0.37 pm. A rapid decrease of the
envelope of the power spectra with magnetic frequency is
noted. However, there is also a marked step in amplitude
at f= 100 T . This is of the same order as in experi-
mental data, as shown on a logarithmic scale in Fig. 16.

The large amplitude of low-frequency components can
be explained. The energy levels of the dot change and
cross the Fermi, when the magnetic filed is varied. These
consecutively lead to conductance peaks. The shortest
magnetic field period is due to levels E„with the
strongest magnetic field dependence, namely, those with
m =1 and high quantum number n (see Fig. 9). The
period corresponds approximately to the addition of a
magnetic flux quantum to the dot. Other levels with
lower n have a weaker magnetic field dependence and
cause conductance peaks with larger separations in field.
The power spectra will therefore have high amplitudes
for frequencies below the Aharonov-Bohm frequency
f=m.a elh, which, for a dot radius a =0.36 to 0.37 pm
is f=100 T '. This drop is seen in the power spectra
(Figs. 15 and 16), where the maximum amplitude drop by
one order of magnitude at f= 100 T ' and a second drop
is seen at twice that frequency.

U. DISCUSSION

300

FIG. 15. The maximum amplitudes max[Sg(f, a)] of 25
power spectra of calculated magnetoconductance at T=0.4 K,
where the radius a is varied from 0.36 to 0.37 pm.

We have found that the energy levels of a perfectly cir-
cular disk can be used to model the conductance varia-
tion of a quantum dot in a two-dimensional electron gas.
There is qualitative agreement between experimental and
numerical conductance traces. The conductance varia-
tions, as a function of size and magnetic field, are charac-
terized by coincidence of energy levels into "caustics. "
When the magnetic field is varied, these caustics cause
low-frequency variations of the conductance. The most
pronounced regularity is large conductance variations
when the gate voltage is varied, which is due to energy
levels with low quantum number n that coincide in a kind
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of shell structure. In relation to the semiclassical "bil-
liard ball" model, these low n states correspond to an
electron bouncing back and forth in the dot. As the tra-
jectories do not enclose any flux, these levels have only a
weak magnetic field dependence due to bending of the
electron trajectories by the Lorentz force. The highest n

level can be seen as a trajectory of an electron that
bounces very close to the boundary. It encloses almost
the entire area of the dot and has therefore a stronger
magnetic field dependence.

A large dot with many electrons contains many possi-
ble trajectories. The most prominent trajectory is the
pendulum motion, the next is triangular, then square,
etc., all enclosing different areas. Each of these levels will
have a periodicity in magnetic field due to the
Aharonov-Bohm effect. Our model gives a similar result
of recurrently appearing states giving resonant condi-
tions, with the strongest field dependence of the highest-
order levels. The large changes of magnetoconductance
between traces with modest variations of the radius may
be mistaken for being uncorrelated due to the complexity
and difference in magnetic field dependencies of the
states.

The shell structure with recurrently appearing energies
with a high density of states results in conductance varia-
tions that are seen at temperatures up to several Kelvin
even though the average separation between levels is
smaller than thermal fluctuations The energy separation
between the shells with coincident levels is, as seen in Fig.
10, slightly smaller than 1 meV, which corresponds to
thermal fluctuations at 10 K.

The analyses of magnetoconductance power spectra
generally give an exponential decay of amplitudes for
high frequencies. The exponential decay is very similar
to the semiclassical prediction for a chaotic system. It
should be noted though that it agrees even with our cal-
culations, which are nonchaotic. We can, however, also
see stepwise decreasing amplitudes for low frequencies.
Steps are not necessarily seen in the power spectrum of
an individual experimental or theoretical magnetocon-
ductance trace; but looking at maximal peak heights of
power spectra, steps occur at frequencies corresponding
to adding integral fractions of Aux quanta through the
area of the dot. If we consider either classical trajectories
or Bessel function orbits, each state will enclose different
effective areas. The largest enclosed area for a single or-
bit is the dot area ma, for an orbit twice around the dot
it is 2~a, and so forth. The contribution to the conduc-
tance from a single loop trajectory is higher than from a
multiturn loop. Therefore, we see a higher amplitude of
components with frequencies lower than f=m.a e/h,
corresponding to additions of single flux quanta to the
dot. We can only see two steps in the experimental
power spectra. This may be due to elastic and inelastic
scattering events changing the trajectory. The second
step corresponds to electron with trajectories going twice
around the perimeter (enclosing twice the dot area). This
is comparable to the mean free path of our dot. We can-
not assume regularities of conductance oscillations of
higher frequencies, where the electron path must be
longer than the mean free path.

3x10

2x10

1x10
U

- Ix10
40 60

AB [mT]

80 100

FIG. 17. The autocorrelation of experimental magnetocon-
ductance sweeps. Four curves are shown for the same data as
used for the experimental power spectra in Figs. 7 and 8. The
inset shows autocorrelation for 15 traces in the same range.
There is no universal form of autocorrelation of experimental
data.

Autocorrelation functions have been used to analyze
the energy spectrum of chaotic systems, and a universal
form has recently been predicted. " ' We calculated
autocorrelation of magnetoconductance sweeps for both
experimental and calculated data. The form of the corre-
lation function changes drastically between different
sweeps for which the gate voltage (dot size) has been
changed slightly; see Figs. 17 and 18. The form is not
universal, and in some cases there is a clearly periodic
correlation. We can therefore conclude that for the inte-

800

600't

400—

-200—

20 40 60
wo [mTl

80

FIG. 18. Autocorrelation of numerical magnetoconductance
sweeps, for different radius (a =0.3452, 0.3462, 0.3482, 0.3492
pan) at 0.4 K (arbitrary y scale). The form of the correlation
function changes and the width of the zero peak varies when the
radius changes even a small amount. There is no universal form
of the numerical autocorrelation functions. The inset shows a
number of autocorrelation traces, where the radius is changed
within the interval 0.34—0.35 pm.
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grable system we do not find a universal form of the auto-
correlation.

A signature of chaos can, in our opinion, be observed
most directly in our grey-scale images of the measure-
ments. Chaos will break the coincidence of energy levels
from caustics and spread them more evenly, diminishing
the regular variations of the density of states. In Fig. 6,
the first image ( V i

= —1.31 V) represents a more chaotic
system than, for example, the third (V, = —1.33 V),
since the short-period diagonal patterns that correspond
to trajectories along the perimeter (or levels with high
quantum number n) are almost completely washed out.
The longer period structure of dark and white spots,
which correspond to orbits with fewer bounces (low n), is
not as sensitive to the shape of the dot.

VI. CONCLUSION

Our study shows that the experimental magnetocon-
ductance of a quantum dot can be modeled by a
simplified model, in which the energy eigenvalues of a cir-
cular dot are calculated as functions of magnetic field and
dot size. We have not taken into account the influence of
contacts that are dificult to model in a magnetic field.
Qualitatively, there exists a strong resemblance between
the general behavior of the experimental and simulated
conductance as functions of magnetic field and dot size.
Individual magnetoconductance curves vary drastically
as the gate voltages, the size, or form of the dot are
changed slightly. Seemingly, there is no correlation.
However, a grey-scale image of the conductance as a
function of both field and size shows regions of charac-

teristic, nonchaotic behavior. These conductance varia-
tions can be traced to coincident levels in the energy dia-
gram of the dot. With this simple model it is possible to
extend the comparisons between experimental and calcu-
lated data to more complex geometries than a circular
one.

Individual power spectra of the magnetoconductance
also vary from trace to trace depending upon small
changes in the confinement. There is a general, exponen-
tial decay of the average amplitude with magnetic fre-
quency. However, we have discovered that it is possible
to distinguish steps in the power spectra at characteristic
frequencies, corresponding to integral fractions of flux
quanta through the dot, if many spectra are superim-
posed and one considers the envelope of the maxima of
the power spectra amplitudes. This was the case for both
the experimental and the calculated curves but only two
steps could be traced in the experimental situation. This
is probably due to the limitation set by a finite mean free
path of the electrons in the dot.
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