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The electronic structure of SmS in dependence of the lattice constant is calculated by means of
density-functional theory. The local-density approximation (LDA) to the exchange and correlation
potential is einployed. The 4f electrons, however, are treated in three difFerent ways, viz. , (i) as
localized core states, (ii) as extended band states, and (iii) as self-interaction corrected (SIC) band
states. While the experimentally observed Sm valency of normal state SmS (black phase) cannot be
described by methods (i) and (ii) the SIC calculations are consistent with the measured value. For
pressures above 30 kbar, method (ii) agrees well with the observed Sm valency, whereas methods
(i) and (iii) fail. Therefore we conclude that the phase transition in SmS is very similiar to the
n-p transition in Ce metal. The SIC band structure shows the splitting between the occupied and
empty 4f states due to the large on-site electron correlation. The Fermi level e& is situated in
the gap between the S 3p states and the Sm band states mainly of 5d character. In the high-
pressure phase the 4f states presumably become delocalized, resulting in vanishing self-interaction
corrections. Therefore the uncorrected LDA results are appropriate for the high-pressure phase.

I. INTRODUCTION

The electronic structure of SmS has attracted much
attention during the last years. ~ This permanent inter-
est is mainly due to the fact that the material shows an
isostructural first-order phase transition at a pressure of
6.5 kbar, which is accompanied by dramatic changes in
the electronic system, manifesting itself in a spectacular
color change Rom black to golden, ' and also in the lat-
tice dynamics. For SmS under normal conditions (i.e. ,
in the black phase), there is no doubt that the mate-
rial is semiconducting and the samarium ions have va-
lency 2+, at least with only very small deviation, being
in the Eo ionic ground state. For the golden phase, the
situation is not as clear. It seems to be necessary to
consider two diferent regions. The erst region, directly
above the phase transition, is mixed valent, with a samar-
ium valency of about 2.6 &om spectroscopic methods and
susceptibility measurements and about 2.8 from the
Vegards-law analysis of lattice constant measurements.
A puzzling fact is the temperature dependence of the re-
sistivity, which is semiconductorlike. ' Also, the point-
contact experiments and the far-in&ared spectroscopy~
show that there is a gap of 7 meV. Although this gap is
wider than the gap measured in the related compound
SmB6, the conductivity at 4 K is larger by several or-
ders of magnitude. The latter fact in connection with
the argument that the parity of the lowest d band be-
tween I' and X in SmS is diferent &om that of SmB6
suggests that there is only a pseudogap present. At
pressures above 30 kbar, the temperature dependence of
the resistivity turns to a more or less metallic behavior at

low temperatures and the valency increases towards 3.
From measurements of the transport properties, it was
concluded that it is very close to 3; whereas &om Lapp

absorption, a value of 2.9 was derived for 72 kbar. Al-
though most of the experimental work was carried out
20 years ago, high-quality band structure calculations
have been done only in the last decade. The first fully
relativistic and self-consistent band structure was given
by Strange, using the linear mufBn-tin orbital method.
In his calculation, spin-orbit coupling yields a splitting
of about 0.6 eV between the 4fsI2 states and the 4f7/z
states. At normal volume, these two bands are crossed
by the lowest 5d band resulting in a metallic behav-
ior. For a volume exceeding the experimental volume
by 5%%uo, a gap of about 130 meV is found between the
4fsIz states and the 5d band. By decreasing the lat-
tice constant, the d bands broaden till the lowest d band
lies completely below the f bands. This happens at
80%%uo of the normal volume. Although these calculations
provide an intriguing picture of the valence transition
and also of the semiconductor to metal transition, they
cannot account for the splitting of filled and empty f
bands, which is expected to be 6—7 eV &om x-ray photoe-
mission spectroscopy and bremsstrahlung isochromat
spectroscopy measurements. Lopez-Aguilar and Costa-
Quintana4 tried to overcome this drawback by introduc-
ing the Coulomb correlation "by hand, " thus extending
the Kohn-Sham equations by an additional Hubbard-U
term, which distinguishes between the occupied and un-
occupied states. Consequently, they found a semicon-
ducting state due to the Hubbard-like splitting between
the occupied and unoccupied bands. Since the underly-
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ing uncorrelated band structure was calculated without
taking into account relativistic efFects, the results may
have qualitative significance, but the spin-orbit splitting
is not reHected. Lu et al. studied the applicability of
the local-density approximation (LDA) in a systematic
way. The full potential linearized augmented plane wave
(FLAPW) calculations used include spin-orbit coupling
and nonspherical potential terms and therefore provide
accurate ab initio results. If these authors treat the 4f
states as band states, they find no dramatic change in
the band structure by variation of the volume between 0.6
and 1.4 times the experimental value. The FLAPS band
structures disagree with the results given by Strange,
but are in accordance with our findings as will be shown
below. From a total energy calculation, Lu et al. deter-
mined the equilibrium lattice constant to be 5.52 A. On
the other hand, they calculated the value 5.89 A. , if they
put the 4f electrons into the core. The related experi-
mental lattice constants are 5.67 A in the mixed valence
(MV) state and 5.97 A. in the normal state, respectively.
Furthermore, this calculation showed that the bulk mod-
ulus fits much better to the experimental value of the
normal phase, if the 4f states are treated as core states.
Drawing the conclusion that the LDA provides an inade-
quate description of the 4f electrons in SmS, the authors
refer to the Ce (Ref. 21) problem, where the situation was
the same. It was this analogy that motivated us to re-
consider the band structure of SmS in light of the results
on cerium, ' which are a breakthrough in the density-
functional treatment of the p-o. transition. The inclusion
of the self-interaction correction (SIC) to the localized
electron states provides a tool to handle occupied and
unoccupied states di8'erently in an ab initio calculation.
The aim of the present paper is to investigate three dif-
ferent approximations to density-functional theory with
respect to their ability to describe the Sm 4J' occupation
and related properties of SmS. The mean 4f occupation
number determines the electron density n(r) and is, con-
sequently, a ground state property. In Sec. II, results are
presented for LDA calculations with 4f orbitals treated
as core states. Section III is devoted to conventional LDA
calculations. The e8'ect of self-interaction corrections to
the electronic structure is discussed in Sec. IV.
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the Fermi level is much higher than the position of the
unoccupied 4f levels. This argumentation rests on the
assumption that the Kohn-Sham occupation rule, valid
in a rigorous density-functional theory, could be applied
as well to the case of localized 4f states (in combina-
tion with the LDA), which are simulated as a partially
occupied core shell:

n(r) =) ~@k(r)~'8(&~ &i,)

FIG. 1. The density of states for SmS with 4f states
treated as core states. The lattice constant is 5.97 A. (a)
4f occupation fixed to six, (b) 4f occupation fixed to five.
The thick lines mark the position of the 4f core levels. The
inconsistency of case (a) lies in the fact that the 4fsyz levels
(assumed to be occupied) are above the Fermi level. Case (b)
on the contrary yields inconsistently the 4f7y2 levels (assumed
to be empty) below the Fermi level (op =0).

II. 4f ELECTRONS TREATED
AS CORE ELECTRONS

Motivated by the finding of Lu et al. that the LDA
with 4f orbitals included in the band provides an in-
adequate description of normal-state SmS (with experi-
mental lattice constaiit 5.97 A.), we calculated the band
structure with the occupation of the 4f core states fixed
to five and six, respectively. Since the core f states were
not allowed to hybridize with band states, their final en-
ergy levels are determined to first order in the crystal
Beld (the difFerence between the LDA crystal potential
and a spherical atomic site potential). It is obvious that
the resulting picture (Fig. 1) displays in both cases an
unstable electron configuration. If the configuration is
4f, the Fermi energy is far below the occupied 4fsy2
levels. On the other hand, if the 4f configuration is 4f5,

+) ~@4f(r) ~'8(ez —e4f ),
4f

N = ) 8(e~ —ei, ) + ) 8(ep —e4f),
k 4f

where n(r) is the electron density, @i, and @4y are one-
particle wave functions of band and 4f states, respec-
tively, with related eigenvalues ek and e4f, N is the elec-
tron number, e~ is the Fermi level determined by the
second equation, and 8 is the step function. In order to
find the occupation number, where the 4f levels are at
the Fermi energy, we varied the occupation number be-
tween five and six. These calculations resemble the work
of Dederichs et al. , who fixed noninteger occupation
numbers with the help of Lagrange multipliers.

The results shown in Fig. 2 correspond to the lattice
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FIG. 2. The position of the 4fqy2 levels relative to the
Fermi level in dependence on the occupation number of the
4f core states. The 4f occupation number was fixed by hand
during the calculation. The parameters at the curve are the
lattice constants. The lines are guides to the eyes.

constant in the normal state (u =5.97 A.) and in the MV
state (a=5.67 A), respectively. Accepting the state where
the sixfold degenerate 4fs~2 level is at the Fermi energy
as a stable electron configuration, one finds the 4f occu-
pation to exhibit a very small change from 5.60 to 5.48
only; thus, there is no chance to describe the observed
valence change of 0.6—0.8 by means of this method.

III. 4f ELECTRONS TREATED
AS BAND STATES

In this section we will investigate how the valence de-
pends on the lattice parameter if the 4f states are treated
as extended states. Two recent calculations due to Lu et
al. (using a "full potential" LAPW scheme) and later
on Masjukova and Farberovich (using a "muffin tin"
LAPW scheme) yielded very diferent results regarding
the arrangement of the 4f subbands and the total den-
sity of states in their dependence on the lattice con-
stant. The probable reason for these differences lies in
the better treatment of the potential by Lu et aL We
employed the optimized linear combination of atomic or-
bitals method in its full relativistic version. The k
sums were done using 1511 k points in the irreducible
part of the Brillouin zone. The results of our calcu-
lation agree very well with the results given in Ref. 6.
In Fig. 3 the total overall band structure and the to-
tal density of states is shown. The band structure for
different lattice constants is plotted in Fig. 4. Start-
ing from a hypothetical system with an expanded lattice
with a=6.17 A, we inspected the change with decreasing
lattice parameter going to a =5.57 A. , corresponding to
very high pressure. We confirm the statement given in
Ref. 6 and contradicting both Refs. 3 and 7 that no dras-
tic change occurs in the band structure, neither a gap
opens as stated in Ref. 3 nor a rearrangement of the 4f

FIG. 3. 4f states treated as valence states. The band
structure and total density of states for a =5.57 A (e&=0).
The density of states (at the right-hand side) is given in ar-
bitrary units.

peaks occurs like in Ref. 7. For comparison with Refs.
6 and 7, we show in Fig. 5 the total density of states
(DOS) in the vicinity of the Fermi energy for both the
normal and the compressed phase. The 4f net occupa-
tion in a Mullikan population analysis shows again small
changes only with a variation of the lattice constant (5.49
for a =5.97 A to 5.36 for a=5.67 A). The total energy
calculations reported in Ref. 6 yielded a lattice constant
of 5.52 A. being about 2% less than the value a=5.62
A. interpolated from the adjacent trivalent rare earth sul-
phides for the hypothetical Sms+S lattice2~ and 2.5% less
than the reported high-pressure lattice constant. This
difference is the typical value found by using the LDA.
Prom these results, together with our calculated valency
of about 2.68 corresponding to a net 4f occupation of
5.32 (a=5.57 A.), it seems to be justified to assume that
the conventional LDA description works correctly for the
high-pressure phase of SmS, but not for the normal pres-
sure phase.
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FIG. 4. 4f states treated as valence states. The band
structure in the vicinity of the Fermi energy (op=0) for the
lattice constants (a) 6.17 A. , (b) 5.97 A. , (c) 5.77 A. , and (d)
5.57 A.
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be in the midst of a hybridization gap if the 4f count is
even and in one of the adjacent peaks if the 4f count is
odd. Clearly the presumptions of the model are too rigid
in comparison with the complicated composed structure
of the states at the Fermi level. Nevertheless, the calcu-
lated DOS at the Fermi level is very small. The reason
that it is not zero is the dispersion of the 4f baud, which
was neglected in Ref. 17. From our calculated band struc-
ture, it is obvious that there exists a pseudogap and a
Fermi surface making the material at least semimetallic
(cf. Fig. 4). It should be noted, however, that the reso-
lution of gaps or pseudogaps of some 10 meV is beyond
the capabilities of today's band structure schemes and
the results on this energy scale depend on details of the
potential construction, the wave function basis, etc.
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The partial DOS depicted in Fig. 6 supports the hy-
bridization model as summarized in Ref. 29. This model
takes into account a broad d band crossing a narrow 4f
band and the hybridization between the two bands. Mar-
tin and Allen' argued within this model that on the
grounds of the Luttinger theorem, the Fermi level should
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FIG. 6. 4f states treated as valence states. The partial
densities of states for a =5.57 A.
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FIG. 5. 4f states treated as valence states. The total
density of states in the vicinity of the Fermi energy (c&=0)
for (a) 5.97 A. and (b) 5.57 A.

IV. SIC-LDA CALCULATIONS

In the preceding sections it was shown that neither the
conventional LDA calculation nor the calculation with
4f core treatment in LDA can account for the experi-
mentally observed valency of Sm in the ambient pressure
phase of SmS. This is similar to the situation in the p
phase of elementary Ce, where the correct lattice param-
eter is obtained &om LDA with 4f core calculations2i at
the price of violating the Kohn-Sham orbitals occupation
rule (we find for Ce c4/ --sz + 1.5 eV ). Recently, Szotek
et al. and Svane2 repaired this blot by introducing
SIC to the localized 4f states. Together with an uncor-
rected LDA (Refs. 22 and 23) or a generalized gradient
approximation calculation for the low-volume o. phase,
this method provides the best available 6rst-principles
description of the equation of state of Ce.

Self-interaction corrections to the local-density ap-
proximation aim at removing the unphysical interaction
of a localized electron with the (Hartree and exchange-
correlation) potential generated by itself. This self-
interaction is not completely canceled in the LDA and
thus the corrections improve the LDA for systems with
localized states. In particular, the SIC-LDA description
is exact for one-electron systems, where the conventional
LDA is weak by construction. In the case of atoms, all
occupied states are localized and there is no doubt how
to apply the self-interaction correction. Related calcula-
tions on ionization potentials and electron afBnities pro-
vide results much closer to experimental data than LDA
and Hartree-Fock results.

Including the self-interaction correction to the LDA,
calculations on extended systems meet the nontrivial
problem of a proper determination of the localized occu-
pied states to be corrected. From a formal point of view,
both the number and shape of the localized states had
to be varied to minimize the total energy. ~ The present
calculation aims at a veri6cation of the compatibility of
a SIC-LDA calculation with the experimentally observed
valency. Thus, the complete 4fs/2 subshell containing
six states was chosen to be occupied and self-interaction
corrected. The radial shape of these states was de-
termined self-consistently, i.e., they are recalculated in
each iteration step. The SIC potential was taken in a
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FIG. 7. 4f states treated as valence states. The six 4fsy2
states are self-interaction corrected. The total density of
states for (a) a =5.97 A and (b) a=5.57 A. , with ey =0.

spherical approximation. In atomic systems, orthogo-
nalization corrections for states calculated with slightly
state-dependent effective SIC-LDA Hamiltonians are, in
general, small. These corrections are neglected in the
present calculations.

In Fig. 7, the DOS obtained &om SIC-LDA calcu-
lations as described above is presented for two different
values of the lattice parameter (normal state and strongly
compressed). The splitting between the occupied 4fsy2
and the unoccupied 4fq/2 states amounts to about 10 eV.
This value is larger than the on-site Coulomb correlation
energy U 6 eV, in accordance with the results by Tem-
merman et al. on elementary Pr.a Consequently, the
self-interaction corrected occupied 4f levels do not fit, as
in the aforementioned case of Pr, to the spectroscopic ob-
servation of 4f states just below s'~. On the other hand,
the main 4f peak in the unoccupied part of the DOS is
situated about 7 eV above the sulfur 3p peak in fair agree-
ment with combined photoelectron and bremsstrahlung
isochromate data.

We hesitate to overemphasize the spectroscopic inter-
pretation of the Kohn-Sham (with and without SIC)
density of states, having no connection to observable

quantities &om the formal point of view. The valency
is much better suited for comparison with experimen-
tal data in Kohn-Sham-like density-functional theories,
however, since it is an integral over a projected charge
density. It is evident &om Fig. 7 that for both lattice
parameters considered, the assumed localized con6gura-
tion 4f fulfills the Kohn-Sham occupation rule: The 4f
states assumed to be occupied (SIC applied) and unoc-
cupied (no SIC applied) appear to be well (3 eV—5 eV)
below the highest occupied S 3p and above the lowest
&ee electron state, respectively. Moreover, no other inte-
ger occupation (in particular five) would fulfill this rule,
since the Coulomb shift connected with the change of n4f
by one (cf. Fig. 2) is larger than 6 eV.

From these considerations it follows that &om all cal-
culation schemes applied, only the SIC-LDA method can
provide results consistent with the experimentally ob-
served valency of normal-state SmS. In the high-pressure
phase, the assumption of all 4f states being delocalized
(conventional LDA) yields a Sm valency in accordance
with the experiment. SIC automatically disappear for
completely delocalized states; thus, SIC-LDA is formally
equivalent to the conventional LDA in this case. As a
final consequence, our calculations support the idea of a
4f localized: 4f delocalized transition between the
normal and high-pressure phases of SmS, as has been
suggested for the isostructural o. ,' p phase transition
in elementary Ce. In SmS, this transition is accompanied
by a valence change in contrast to the isovalent behavior
of Ce metal. 3 '

V. SUMMARY

The valency of SmS has been calculated for different
lattice parameters, using the conventional LDA, I DA
with 4f core treatment, and SIC-LDA. Only the SIC-
LDA results, together with the assumption of six local-
ized 4f states of Sm, are consistent with the experimen-
tally observed divalent state of Sm in the normal pressure
phase of SmS. In the high-pressure phase, conventional
LDA calculations yield the correct valency. These end-
ings are consistent with a transition &om localized to
delocalized 4f states of Sm in SmS under pressure.
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