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We discuss the use of moment-based approximations to tight binding. Using a maximum entropy
form for the electronic density of states, we show that a general interatomic potential can be defined that
is suitable for molecular-dynamics simulations and has several other desirable features. For covalent
materials (C and Si), properties where the atoms are in equivalent environments are well converged at
low-order moments. For defect environments, which offer a more critical (and relevant) test, the method

is found to give less satisfactory results. For example, the vacancy formation energy for Si is too low by
-2 eV at 10 moments relative to exact tight binding. Attempts to improve the accuracy were unsuccess-

ful, leading to the conclusion that potentials based on this approach are inadequate for covalent materi-

als. We speculate that this may be a deficiency of low-order moment methods in general. For metals, in

contrast to the covalent systems, we find that the low-order moment approach is better behaved. This
finding is consistent with the success of existing empirical fourth-moment potentials for metals.

I. INTRODUCTION

Atomistic simulations are playing an increasing role in
the design and understanding of modern materials. Be-
cause the predicted properties are only as accurate as the
interatomic potentials used in the simulation, the devel-
opment of improved potentials is currently receiving
much attention. The "ideal" potential would be closely
based on electronic structure principles; it would be ap-
plicable to a wide range of bonding types (i.e., metallic,
covalent, ionic); it would describe a range of densities
(solids, liquids), symmetries (crystals, surfaces, clusters),
and coordination number; it would allow for bond disso-
ciation; it would be easily parametrized for new systems;
and it would be computationally efficient. The last re-
quirement is diametrically opposed to the others and
must be balanced accordingly. Many empirical potentials
exist that work for limited classes of materials. For ex-
ample, effective-medium —based methods' work well
for metals. For covalent systems, a different approach is
required, because angular terms are required to model the
strong directional bonding. Specialized potentials with
explicit three-body terms have been developed for the
group-IV elements and hydrocarbons. Empirical poten-
tials that describe metallic-covalent alloys are virtually
nonexistent.

The tight-binding total-energy method (TB) may fill
this gap. TB parameters exist for both metals and co-
valent materials and the description of alloys appears
straightforward. Traditional TB methods require the di-
agonalization of the tight-binding Hamiltonian matrix,
for which the computational work scales as N (N is the
order of the TB matrix). This severely limits the number
atoms that can be simulated in a practical sense, and has
spurred the development of approximations that scale as
N. These ¹caling methods generally fall into two
categories: those based on the moments of the electronic
density of states (DOS), and the more recently proposed

iterative solutions for generating the density matrix' or
eigenvectors ' directly. The moment-based approach
is the subject of the present paper.

In this paper we report on attempts to develop a gen-
eral moment approach that is suitable for molecular-
dynamics simulations. We construct low-order moments
(0, 1,2, . . . , n,„) of a tight-binding Hamiltonian. The
DOS is characterized with a maximum entropy (ME)
solution that satisfies the n,„+1 moment constraints.
The DOS is filled with valence electrons and an electronic
energy is computed. This method has many attractive
features: (1) ME makes the best possible use of limited
moment information in a statistical sense; (2) large n

converges to the exact-TB (diagonalized) limit; (3) n

can be chosen to trade accuracy for speed; (4) the valence
electron filling is based on chemical identity; (5) semi-
quantitative electronic structure information is obtained
because a DOS is constructed; (6) one can use existing TB
parameter sets, avoiding parametrization studies; and (7)
the method is suitable for molecular dynamics.

For metallic systems, successful potential forms have
been developed that correspond to a simple second-
moment approximation. '" Some potentials based on
methods beyond the second moment have been pub-
lished. ' ' Interatomic potentials for Si (Ref. 14) and
for half-filled d-band metals' (Cr, Mo, and W) using up
to and including fourth moments have been presented.
The electronic energy is based on the eigenvalues of the
second-moment matrix and a linear function of the
fourth moment scaled by the —,'-root of the second mo-
ment. In this manner the question of the density of states
is bypassed. In addition, for the Si potential, a dipole
term was added.

Pettifor' has proposed a many-body potential based
on the moments of the bond order (a bond orbital versus
an atomic orbital basis). Instead of constructing the DOS
that exactly reproduces the first n, „moments, a pertur-
bation theory treatment is used that generates an average
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DOS that captures the essence of the many-body
behavior of the true DOS. For example, Pettifor and
Aoki' have applied this approach up through sixth mo-
ment in an analysis of the hcp/bcc/fcc stability of transi-
tion metals, and Alinaghian et al. ' have examined s- and
sp-valent systems with a fourth-moment approximation.

The recursion method can also be viewed as a
moment-based method. In a study relevant to the goals
of the present paper, Glanville, Paxton, and Finnis
compared the recursion method with the ME method as
applied to d-band metal calculations of the tight-binding
electronic energy for fcc, hcp, and bcc structures. Other
relevant recursion studies of Si include those of Paxton,
Sutton, and Nex and Paxton.

Brown and Carlsson investigated low-order moment
expansions for the calculation of the electronic energy of
lattices and defects of d-band materials. They con-
sidered various schemes for truncating approximations to
the DOS and concluded that the best results were ob-
tained with the ME and recursion methods. Recently,
Drabold and Sankey have proposed an ¹caling statist-
ical approach that uses the ME principle and random
vectors to generate highly accurate estimates for mo-
ments. They have applied this to a tight-binding descrip-
tion of optical phonons in GaAs and the structure of
large fullerenes (up to 2160 atoms).

In this paper, we address the question of whether a use-
ful approximation to TB can be found for a few moments,
and discuss the suitability of moment-based methods in
general for describing covalent and metallic materials.
We are led to the unfortunate conclusion that low-order
moment methods (i.e., n,„~10)probably are not suit-
able for an accurate description of covalent materials.
Examination of the simplest possible point defect, an un-
relaxed vacancy, is sufficient to demonstrate the inade-
quacies of the moment approach. However, a study re-
stricted to properties of nondefective solids [(e.g., lattice
constant, cohesive energy, elastic constants, structural
energy differences)] can lead to the incorrect conclusion
that the method works well, converging quickly to the
exact-TB limit. For metals, the convergence properties
of a low-order moment expansion appear to be better
behaved.

II. THEORY

A. Moments and density of states

We begin by expressing the total energy of the system

atoms. ) The electronic energy is defined as
EFE„„=2J e n (E)de,

where n (e) is the total electronic density of states and the
factor of two accounts for the closed-shell spin state (two
electrons per orbital). The form of Eq. (1) can be justified
within the Harris-Foulkes ' variational scheme as an
approximate solution to the density-functional ground-
state energy. The Fermi energy EF is found from

EF
N„l=2 n e de,

where N„,~ =g;N„,&, n„, is the number of atoms in the
system, and N„l, is the number of valence electrons on
atom i. The total DOS can be expressed as

n (e)=gn;(e),

where n; (e) is the DOS projected onto atom i If d. esired,
a local Fermi energy, EF, , can be determined for each
atom DOS (instead of determining a single global EF), via

N„,~; =2I n;(e) 'de . (6)

For a single component system with all atoms equivalent,
EF; =EF for all atoms i.

The electronic energy is based on a one-electron TB
model for the system. The exact total DOS, n (e), can be
determined by diagonalizing the TB Hamiltonian, al-
though this is only practical for systems containing less
than —10 atoms. Instead, we characterize the DOS
from its energy moments. The mth moment projected
onto atom i is

p, = f e n(e)de.

The moments can be computed ' for orbital
I i, a ) as

where +=1, . . . , n„b is the angular momentum index
(s,p„, . . . , d ~, . .. ) and P is the TB Hamiltonian. The en-

ergy of
I i, a ) for an isolated atom is e; . A trace over or-

bitals yields the atom moment,

Pmi QPmi a&

which is invariant with respect to rotations of the coordi-
nate system. The global mth moment is given by

tot elec +Epair

iLi, =gp, =Tr[8 ] . (10)

E„„is the electronic energy and

(2)

The zeroth and first moments are evaluated trivially as
iMO; =(i,ali, a) =1, and p„=(i,alkali, a) =e;, r'espec-
tively. For moments higher than first, Eq. (8) is evaluated
by inserting a complete set of orbitals. For example,

where P(r;J ) is a pairwise potential, a function of the in-
ternuclear distance r;J = Ir,~ I, representing core-core in-
teractions and neglected contributions to the true elec-
tronic energy, such as double-counting terms.
(Throughout, sums over Roman indices are sums over

p„=++&i,aIPjI, p&(j,pIBIi, a &

j p

=[M, p] (11)

The TB matrix elements (i,al8lj, p) =h Ii(r;. ) in Eq.
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(11) are assumed to have a two-center form; the radial
dependencies are parametrized and the angular depen-
dencies are determined by the Slater-Koster relations.
Note that the sum over i in Eq. (11) includes i =j terms,
which give rise to self-energy factors such as e;

Improved TB models exist in which many-body effects
are incorporated by defining the two-center matrix ele-
ments that depend on the local environment of the two
atoms. That type of scheme is compatible with the ap-
proach presented here. It would increase the time spent
defining the two-center matrix elements without affecting
the work to evaluate the moments and DOS.

Rotational invariance of the moments, and hence the
energy expression, is crucial in designing a useful poten-
tial. The common approach of tracing the moments over
the orbitals of each atom [Eq. (9)] offers rotational invari-
ance while providing more information about the system
than the global moments. Although the individual orbit-
al moments are not rotationally invariant, there are ways
to define invariant submoments of a given atom. One ap-
proach' ' is to use the eigenvalues of the mth-moment
matrix

(12)

For example, n,„=2 yields a Gaussian and n,„=4
cases are typically smooth, bimodal distributions; yet, for
n,„=4 with p4=[pz] (p&=@3=0), the only possible
solution, two delta functions positioned at +Qp2, comes
out naturally from Eq. (14).

As pointed out by Glanville, Paxton, and Finnis and
Turek, the ME solution is often hard to converge. The
transformation method of Bretthorst helps in this re-
gard. (We were able to obtain stable solutions for n

up to -20.) However, once a ME solution has been con-
verged, reconverging for similar moments requires only
two or three iterations in a standard NR procedure,
without any need for transformation. By exploiting this
feature, the ME approach can be used effectively in
molecular dynamics (MD). The new electronic energy at
each time step is quickly found, as are the numerical
derivatives of the electronic energy with respect to the
moments, which require only one NR iteration.

Note that E,&„depends parametrically on the choice of
Ebai and e',» in Eq. (13). We find that this dependence is
weak if they are chosen such that the distribution decays
to nearly zero at the limits.

Another approach, which we refer to as the "shell-trace"
method, is to sum individual angular momentum shells
independently. For Si, this leads to an s trace ([p;],, )

and a p trace ([p;]„+([p;]~~+([p;]„).
If an s-orbital basis is used, the second moment be-

comes a scalar. The second moment approximation en-
ergy expression E„„;= —Qp2, can be derived by
neglecting the first moment and using a half-filled Gauss-
ian DOS.

S = —f 'n (e) log[n (e) ] de,
bot

(13)

subject to the n,„+1moment constraints. The solution
is

n(e)=exp gl, .ej, j =0, 1, ... , n
. J

(14)

where the [A, ] are coefficients determined from a non-
linear search for the solution with zero error in the pre-
dicted moments. This is usually accomplished using a
Newton-Raphson (NR) algorithm. As expected from the
derivation, the ME method gives the smoothest (least-
peaked) distribution that satisfies the moment conditions.
Nonetheless, it can yield quite peaked shapes if necessary.

B. Maximum entropy method

The best approximation (in a statistical sense) to the
DOS given the first n, „moments (0, 1, . . . , n,„) is the
maximum entropy solution. Mead and Papanicolaou
demonstrated the usefulness of the ME approach for vari-
ous applications in mathematical physics. Brown and
Carlsson applied ME to low-order moment expansions
of the DOS for d-band materials.

In the ME approach, one maximizes Shannon's entro-
py

C. Procedure

We now discuss the steps for computing the energy in
this ME approach. First, the appropriate orbital basis
and the form for the radial hopping integrals are chosen.
For Si, this would be an sp basis, with h (r} specified for
ss o., sp o., pp o., and pp m interactions. For a given
geometry of the atoms, the pair energy is computed from
Eq. (2) and the moments [p; ] are computed for each
orbital in the system. The mth moment of orbital a on
atom i is the sum over all possible paths having m links
that start and end on orbital ~i, a). Orbitals ~i, a) and
~j,p) are "linked" if I;~jp&0, as determined by the
cutoff range of h &(r,"), which is typically one or two
neighbor shells. The contribution from each path is the
product of the m matrix elements. Path links that begin
and end on the same atom j are included, contributing
5 @ to the product. Forming partial products (e.g., all
products with k links beginning on atom i and ending on
atom j) speeds the evaluation. Once the moments have
been computed for every orbital, a rotationally invariant
set is obtained by either tracing over the whole system
["global trace, " Eq. (10}],over each atom ["atom trace, "
Eq. (9)], or over each angular momentum shell on each
atom ("shell trace"). For each traced set of moments, a
DOS is found using the ME procedure discussed above.
Given these DOS's, we define five methods for calculating
a total electronic energy for the system, as discussed next.

In the "global-trace" method, the single DOS con-
structed from the fully traced moments is populated with
electrons to define a single, total electronic energy, using
Eqs. (4) and (3). In the "atom-trace" method, the global
DOS is defined as the sum over the atom DOS's, each
constructed from a separate ME solution using atom-
traced moments, and this global DOS is populated with
electrons to determine a single electronic energy. The
"shell-trace" method is analogous to the atom-trace
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method, with the global DOS summed over the DOS's
for every angular momentum shell for every atom. The
advantage of the atom-trace and shell-trace methods over
the global-trace method is that they provide successively
more detail in the DOS, while retaining the correct
overall moments. All three of these approaches have a
global Fermi level, allowing charge transfer among the
atoms. Also, all three converge rigorously to the exact-
TB energy (obtained from exact diagonalization of the
TB Hamiltonian) as n,„~oo.

Alternatively, the atom DOS's can be populated indi-
vidually as in Eq. (6), leading to an electronic energy for
each atom, so the total electronic energy is given by
E„„=g;E,&„;. This modification can be made to either
the atom-trace or the shell-trace methods, leading to our
definition of the "charge-neutral atom-trace" and
"charge-neutral shell-trace" methods, respectively. Al-
though these two methods do not converge to exact TB
with large n,„,they are consistent with arguments made
by Sutton et al. that enforcing charge neutrality on
each atom leads to a higher-quality TB approximation.
They also offer the advantage that an energy can be
defined for each atom. If desired, this same charge neu-
trality constraint can be applied to exact TB. This is ac-
complished, after diagonalization, by using the eigenvec-
tors and eigenvalues to project out the DOS for each
atom. This will be referred to as charge-neutral exact
TB.

In comparing the methods, we observe that the rate of
convergence to exact TB improves in going from global
trace to atom trace to shell trace, as might be expected
because of the extra detail in the DOS. Also, the charge-
neutral-atom-trace energy is greater than or equal to the
atom-trace energy (and similarly for the charge-neutral
shell-trace energy relative to the shell-trace energy), be-
cause the charge transfer that occurs in going from local
Fermi levels to a global Fermi leve1 can only lower the
energy.

For systems in which all atoms are equivalent, the
charge-neutral methods are equivalent to their global-
Fermi-level counterparts. Also, because the global-trace
moment is then equal to the atom-traced moments
(within a normalization factor), the atom-trace and
global-trace methods are equivalent.

The shell-trace and atom-trace methods require more
computation than the global-trace methods because mul-
tiple ME searches must be performed. However, for
n,„~4 this extra work becomes negligible once good
starting guesses for [A,~ J have been found (e.g., from a
previous MD step).

The boundary conditions (BC's) in the calculations
presented below are either periodic or infinite. For the
"infinite" BC's, a sufKiciently large cluster is carved out
around each atom such that the moment loops sense an
infinite crystal. For infinite BC's, only the charge-neutral
methods can be used, because the total number of elec-
trons in the system is undefined. In the periodic-BC cal-
culations, the moment loops can wrap around as n,„ is
increased, leading to different results than the infinite
BC's. The advantage of periodic BC's is that direct com-
parisons can be made with exact-TB calculations.

III. RESULTS

To determine the accuracy of the ME method, we com-
pare to exact TB, which is defined as the exact diagonali-
zation of a TB Hamiltonian for a system of a given size.
This properly determines the accuracy of the approxima-
tion and decouples the issue of the accuracy of the TB
Hamiltonian itself.

Electronic energies are calculated with respect to the
separated atom limit. For n,„&4, there is an ambiguity
in the calculation of the isolated atom electronic energy
for sp-orbital systems, because the ME solution does not
yield separate delta functions (atomic levels). For this
reason, n,„&4 results are not shown.

The ¹ tom vacancy formation energy is defined as
b,E„,=E ' E(N ——1)/N where E is the energy of
an ¹ tom periodic system and E ' is the unrelaxed
energy of the system with one atom removed. Similarly,
the ¹ tom interstitial formation energy is defined as
bE;„,=E +' E(N—+1)/N where E +' is the unre-
laxed energy of the system with one atom added. Be-
cause the defect region is not allowed to relax, the abso-
lute error in the electronic energy contribution equals the
absolute error in the total vacancy or interstitial energy.
Using the relaxed defect energy would unnecessarily
complicate matters, because it would contain contribu-
tions from the moment approximation we are testing as
well as from the interplay between the pair potential and
the TB Hamiltonian.

A. Covalent materials

For Si, the TB parameters of Goodwin, Skinner, and
Pettifor were utilized. Exact-TB results for up to 1000
atoms (5 X 5 X 5 supercell, ao = 10.259 bohrs, 1 bohr

0=0.5292 A) were generated. First nearest neighbors
(NN's) only were used for the calculation of the cohesive
energy (E„h), surface energy, bE„„, and bE;„„while
the full range potential (which is only slightly different,
essentially cut off between first and second NN's) was
used for the calculation of the equilibrium lattice con-
stant and bulk modulus. Exact-TB values for hE„, and
hE;„t using this potential have been reported previously
by Wang, Chan, and Ho ' for the 64-, 216-, and 512-atom
periodic systems.

First, properties of the bulk diamond lattice are con-
sidered. Because the atoms in the perfect lattice are
equivalent, the charge-neutral and global-Fermi-level cal-
culations are identical, as are atom trace and global trace.
The Si DOS for n,„=2,4, and 10 are shown in Fig. 1(a).
By the tenth moment, the bandgap (near energy =0) is
readily apparent. In Fig. 1(b), the n,„=20DOS and the
exact-TB DOS for the 216-atom periodic system are
shown. As can be seen in Fig. 2, E„„converges quickly
with the number of moments; this is consistent with pre-
vious recursion studies. ' The error at n,„=10,rela-
tive to the 216-atom exact-TB result, is 0.08 eV/atom for
a periodic 216-atom system using the global-trace
method. Changing to infinite BC's is seen to have almost
no effect. The results change a little when the shell-trace
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Finally, two point defects are considered, a vacancy
and an interstitial. Figure 5(a) shows the unrelaxed va-
cancy formation energy for a 216-atom periodic system.
As indicated, the exact-TB result is 5.8 eV. Although the
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FIG. 5. Unrelaxed Si vacancy formation energy. (a) 216-
atom periodic system. () global trace; (+) atom trace; (o)
charge-neutral atom trace. The dashed line is the exact-TB re-
sult. (b) infinite BC's; (0 ) charge-neutral atom trace; (0)
charge-neutral shell trace; (+) charge-neutral, DOS for each or-
bital, orbitals rotated by second-moment eigenvectors. The
dashed line is the exact-TB result for a 1000-atom periodic sys-
tem, which closely approximates the infinite system.
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FIG. 6. Unrelaxed Si tetrahedral interstitial formation ener-

gy (electronic energy contribution only) vs n,„ for a 216-atom
eriodic system. () global trace; (+) atom trace; (C)) charge-

neutral atom trace. The exact-TB result is indicated by the
dashed line.
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0FICi. 7. Unrelaxed C vacancy formation energy (electronic
energy contribution only) for a 216-atom periodic system. ()
global trace; (+) atom trace; (o) charge-neutral atom trace; (0)
infinite BC's, charge-neutral shell trace. The dashed line is the
exact- TB result.

respectively. In contrast to Si, both the global-trace and
atom-trace predictions show oscillations with n

These oscillations disappear when charge neutrality is im-
posed (see the charge-neutral atom-trace curve), and
hence may be due to a charge-sloshing e6'ect. Also in-
cluded on Fig. 7 are the charge-neutral shell-trace results
for infinite boundary conditions, which are seen to closely
track the charge-neutral atom-trace values with periodic
BC's.

The errors found in the point defect energies for silicon
and carbon represent a serious problem for the develop-
ment of an accurate interatomic potential. For Si, the

predicted AE„, is too low by 2 eV at 14 moments. At
th 1 er values of n (e.g. , 4—8) desirable for a fast
semiempirical potential, the predictions are low by
eV, and carbon is even worse. For a system at T =1000
K, changing hE„, by —3 eV increases the equilibrium
concentration of vacancies by 15 orders of magnitude. As
discussed in the next section, we examined a number o
modifications to the method in search of an improved
description of the vacancy, with no success.

While we do not fully understand the reason for the
poor convergence, a likely explanation is t at t et the ME

oment expansion of the DOS provides a better descrip-
tion of an atom adjacent to a vacancy than an atom in t e
bulk because the vacancy-adjacent atom has states in the
band gap. Smearing of the DQS into the gap [evident
even at n,„=20; see Fig. 1(b)] raises the predicted elec-
tronic energy of the bulk system, lowering hE„,.

Another possible explanation is that the range of the
electronic perturbation about the vacancy defect reaches
further than the low-order moment loops. We can rule
this out in three ways. First, the extremely small change
in hE„, when comparing exact TB with charge-neutral
exact TB supports the concept that the perturbation is
short ranged; charge oscillations can be truncated to zero
range without impacting the electronic energy
significantly. Also, test calculations using a recently
d loped method that enhances the stability of the MEeve ope m

42method at higher moments show that to achieve 0.5-e
accuracy requires 50 moments; the range of a 50-moment
path is twice the size of the 216-atom supercell. An accu-
racy of 0.1 eV requires 100 moments. Finally, exact cal-
culations within a truncated Hamiltonian space, present-
ed elsewhere, achieve convergence to better than 0.5 eV
within a range corresponding to 10 moments. In fact,
one conclusion that can be made in comparing that study
with the present one is that using high-order moments
( ~ 50) within a short truncation range is morenmax-
effective than using low- to medium-order moments, even
though they reach farther.

Whatever the cause, errors of this magnitude in the Si
vacancy energy at low-order moments appear to be a

44, 45, 46common feature of moment-based methods.

B. Metals

First, we consider the Skinner-Pettifor s-band model
for hydrogen, using a bcc lattice of 1024 atoms at
a =3 7 bohrs with first- and second-NN interactions. In0 ~

~ ~ ~ ~

the exact-TB calculation, the E,&„contribution to E„h is
—38.90 eV/atom. The global-trace ME prediction of
E„h oscillates, with an error of +0.8 eV/atom at 4 mo-
ments and —0.14 eV/atom at 20 moments. Figure 8
shows the convergence of hE», wit n~», while the con-
vergence is slow, the overall error (-0.3 eV) is much
better than for the covalent systems.

Next, we considered d-band metals, for which the
relevant radial hopping integrals are dd cr, dd ~, and
dd 5. Within a canonical d-band model,
ddm =C P(rNN Ir,z), where C = —6, C =4, Cs=4,
r" is the interatomic distance, and rNN is the nearest-

EJ
2 5neighbor distance. P= ', W(S/rNN), where —W is the d-



52 LOW-ORDER MOMENT EXPANSIONS TO TIGHT BINDING FOR. . . 8773

2.0 I I I I
I

I I I I

I
I I I I

I

I I I I

U) 1.5
Q)
C
Q)

0
U
E

1.0—

0.5—
U
U0

0 I I I I I I I I I I I I I I I I I I I

0 5 10 15
moments

20

For bcc d metals, a periodic 686-atom system (7 X 7 X 7
supercell; first- and second-NN model) was employed.
Again, the global-trace ME prediction of E„h (not
shown) is very good, with a rms error of 0.79p and O. 1 lp
for n,„=4and 10, respectively. AE„„ is shown in Fig.
10; the rms error is 2.4p and 1.Op for n,„=6 and 20, re-
spectively.

To summarize, we find fast convergence with the num-
ber of moments for the cohesive energy of a variety of s-
and d-band metals. This is consistent with previous ME
calculations ' and recursion calculations on metal
systems. Furthermore, in contrast to the covalent sys-
tems, the convergence of the vacancy formation energy in
metals appears adequate at low-order moments, perhaps
because there is no band gap. This is consistent with the
success of the empirical fourth-moment potentials for
transition metals. '

FIG. 8. Unrelaxed vacancy formation energy for bcc hydro-
gen. All results use a periodic 1024-atom system. (C) ) charge-
neutral-atom trace; (0) global trace. The exact-TB result is indi-
cated by the dashed line.

band width and S is the Wigner-Seitz radius. To main-
tain generality, energies are presented in units of p, and
the pair potential contribution (which would be metal
specific) is zero. Typical values for P are 0.16 eV for Cr,
0.24 eV for Mo, and 0.26 eV for W. Quoted rms errors
refer to the average over the d-band fillings from d ' to d .

For fcc d metals, a periodic 500-atoin system (5 X 5 X 5
supercell; first-NN model) was employed. The global-
trace ME prediction of E„„(not shown) is very good for
all d-band fillings; the rms error for d' through d is
0.45P and 0. 16P for n,„=4and 10, respectively. b,E„„
is shown in Fig. 9; the rms error is 1.7P and 1.4P for
n,„=6and 20, respectively.

IV. VARIATIONS ON THE APPROACH

Because of the poor prediction of the vacancy forma-
tion energy in Si and C, the moment-based approxima-
tion to TB described above appears to be unsuitable for
use as an interatomic potential in covalent materials. Us-
ing the Si vacancy formation energy as the benchmark,
we examined a number of variations on this approach
with the goal of finding a better approximation. All the
approaches we considered were designed to converge to
exact TB (or charge-neutral exact TB) in the limit of
large n,„. None offered substantial improvement in the
vacancy formation energy. For completeness, we brieAy
discuss these here.

Increased information about the local environment of
an atom can be obtained if the moments, and a DOS, are
computed for each orbital, rather than tracing over the
whole shell or atom. As discussed above, the key is to
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FIG. 9. Unrelaxed vacancy formation energy for fcc d metal,
using the global-trace method on a periodic 500-atom system
(electronic energy contribution only). () d'; (4) d; (+) d;
(X) d; O) d; (t) d; (CI) d; (O) d; (Y) d . The exact-TB re-
sults are indicated by the n,„=24values.
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FIG. 10. Unrelaxed vacancy formation energy for bcc d-

metal (electronic energy contribution only). All results use the
global-trace method on a periodic 686-atom system. Same
legend as Fig. 9. The exact-TB results are indicated by the

n,„=24 values.
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n(e)= g A. ej. +5
J

where 5 is a small number that prevents the denominator
from going to zero, and the IA, ] values are determined
from a NR search for the correct moments, as in ME.
(For k =2, this form is essentially the "all-poles" mod-
el. ') Qualitatively, this form of DOS looks like the ME
form, but is more peaked, especially as k is increased. In-
vestigation of k =1, 2, and 4 within the charge-neutral
atom-trace approximation yielded only small improve-
ments in hE„, for n,„=4, raising it by 0.24, 0.13, and

choose a definition for each orbital such that rotational
invariance is maintained. One method is to diagonalize
the second-moment matrix on each atom [see Eq. (12)],
using the eigenvectors as the invariant set of orbitals. ' '

The second moment for each of these orbitals is simply
the corresponding eigenvalue, while the nth moment is
obtained by transforming the nth-moment matrix with
the second-moment eigenvectors. (Alternatively, the
eigenvectors of one of the higher-moment matrices can be
used as the rotationally invariant orbital basis. ) This type
of approach has the disadvantage that the energy deriva-
tives necessary for MD are not easily determined analyti-
cally, because derivatives of the eigenvector coefficients
must be found. However, it offers a test of how much of
the slow convergence to exact TB is due to the informa-
tion lost when the moments are traced. Figure 5(b)
shows that the predicted vacancy formation energy im. -
proves by about 0.2 to 0.3 eV relative to the shell-trace
method (charge neutral in each case), and the improve-
ment is fairly constant over the examined range of
n,„=4—12.

To explore the possibility that there exists some orbital
transformation that offers even greater enhancement, we
tried the following experiment. Using a random number
generator, 1000 independent, 4X4 orthogonal transfor-
mation matrices were generated. One at a time, these
were applied to transform the orbitals on both a bulk Si
atom and a Si atom adjacent to a vacancy. Four times
the energy difference between these two atoms represents
a first-NN approximation to the vacancy formation ener-
gy, AE,"„'. Using n, =4, AE„"„' ranged from 0.8 to 2.3
eV with an average of 1.4 eV, compared to AE,"„'=2.4
eV obtained when the second-moment eigenvectors
defined the transformation. We conclude that it is very
unlikely any orbital transformation exists that dramati-
cally improves the vacancy formation energy. An in-
teresting observation from this study was that for the
atom in the perfect bulk environment, transforming using
the second-moment eigenvectors gave a lower bound on
the energies obtained from the random transformations.
Any orbital transformation that mixed the s and p orbit-
als raised the energy, while rotating the p orbitals among
themselves had no effect on the energy. In contrast, for
the atom adjacent to the vacancy, the random transfor-
mations usually lowered the energy relative to the
second-moment eigenvector transformation.

As an alternative to the ME form for the DOS, we
tried functions of the type

k —1
max

0.06 eV, respectively. For n,„=6, this approach was
used to calculate the first-.NN approximation, AE,"„',
with the result being a decrease in AE,"„' for each of the
three k values.

We also tried various "basis-set" approaches, in which
the DOS was expressed as a linear combination of DOS's
predetermined from a variety of environments. This has
some appealing features. Computing the DOS in this
way does not require a nonlinear search. Also, the basis
set DOS's can be determined using more moments than
the n, „used in the final run; even the exact-TB DOS
can be employed. Although more expensive, these calcu-
lations need be done only once. The resulting DOS thus
has much more structure (and hopefully more accuracy)
than if it is determined from the n, „moments alone.
Because the basis is not necessarily complete (there may
not be a linear combination that exactly reproduces the
desired moments), a polynomial correction can be added
to the DOS to obtain the exact moments if desired. Al-
though this type of approach looked promising initially,
ultimately we could not find a viable method. We con-
clude that the low-order moments do not make a good
measure set for distinguishing different environments.
For example, consider the moments for
n =6 t pp pi . ~ ~ p6] as a seven-dimensional vector.
For an atom in the bulk crystal with lattice constant
scaled by 1.025 (isotropically expanded by 2.5%) the re-
sulting moment vector has a larger overlap with the vec-
tor for an atom adjacent to a vacancy (measured as the
cosine between the two vectors} than it does with either
the perfect bulk crystal or the bulk crystal expanded by
5%. As a result, the predicted energy has significant er-
ror.

Finally, in a different vein, we note that attempts to
reparametrize the TB Hamiltonian to raise hE„, were
also unsuccessful. Perhaps ironically, the exact-TB va-
cancy formation energy in this model for Si (-6 eV) is
very close to the cohesive energy (-6 eV), similar to the
prediction that would result from a simple pair potential
(E„h=b,E„„}.In a search of the parameter space of
h (r) using a traced fourth-moment ME energy, only this
trivial, unsatisfactory result [h (r)~0, leaving only the
pairwise contribution] was found to off'er significant im-
provement in hE„,.

V. CONCLUSIONS

A general interatomic potential form can be construct-
ed using low-order moments of the tight-binding Hamil-
tonian in conjunction with the maximum entropy ap-
proach to determine the density of states. The number of
moments can be varied to trade accuracy for speed, and
existing tight-binding parameter sets can be employed.
Imposing atom-by-atom charge neutrality and tracing
over rotationally invariant orbital subsets generally im-
proves the quality. However, a careful study of the con-
vergence of various properties as the number of moments
is increased leads us to the conclusion that this approach
may not be accurate enough for covalent materials. In
particular, the vacancy formation energy for Si and C are
predicted to be too low by more than 2 eV at ten mo-
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ments. Attempts to improve the method were unsuccess-
ful, leading us to speculate that this may be a general
property of low-order moment methods. However, the
approach may prove useful for metallic systems, in which
the convergence is more rapid.

An important finding is that for environments in which
all the atoms are equivalent, the calculated properties are
often quite accurate (relative to exact TB), in spite of the
deficiencies of the method. Properties that depend on
truly defected environments o6'er a much more critical
(and relevant) test of the potential.
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