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Static polarizabilities of single-wall carbon nanotubes
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The static electric polarizability tensor of single-wall carbon nanotubes is calculated within the
random-phase approximation using a simple tight-binding model and a classical correction to include
local Gelds. We Gnd that the polarizability for constant Gelds parallel to the cylindrical axis is highly
dependent on the details of the tube's electronic structure. In contrast, the polarizability for fields
perpendicular to the axis only depends on the tube radius. The relative magnitudes of these two
quantities suggests that under the application of a randomly oriented electric Geld, nanotubes acquire
dipole moments pointing mainly along their axes, with the size of the dipole inversely proportional
to the square of the minimum direct band gap.

I. INTRODUCTION

In this paper we examine the response of single-wall
carbon nanotubes to a uniform external electric 6eld E.
The xnain response of the electrons is the formation of
an induced dipole xnoment p. The quantity that relates
the two is the polarizability tensor a, de6ned by p = aE.
Since the discovery of fullerenes, numerous investigations
have been undertaken to determine n(ur) and cr(w = 0)
for C60 both experimentally, and theoretically. Re-
cently, calculations of the static polarizability have been
done for many of the other stable clusters in the fullerene
family as well. s

For the quasispherical fullerenes, there are two ma-
jor contributions to n(tu). There are the noninteracting
single-particle excitations, which give rise to the nonin-
teracting, or unscreened polarizability a!p. This is de-
6ned by

p = ~OEtot~

where Et t is the total electric 6eld felt by the electrons.
The polarizability 0.0 can be calculated by perturbation
theory with a knowledge of the single-particle energy lev-
els and wave functions. The second contribution arises
from the interaction between single-particle excitations,
making Eq q difFerent &om the externally applied field E.
It is the interacting, or screened polarizability de6ned by

(2)

that is the experimentally accessible quantity. For C60,
0.0 is roughly four times greater than 0, . This reflects the
fact that E~ ——Et t —E is large, due to the buildup of
charge on the spherical surface containing the ions.

In 1991,concentric carbon nanotubes were found, and
in 1992 single-wall tubes were first produced. These can
be thought of as the cylindrical analogues of the fullerene
clusters, with the additional feature that the ideal in6-
nite length structures are quasi-one-dimensional solids.

The issue of the response of the tubes to electric fields
is only beginning to be addressed. Random-phase ap-
proximation (RPA) calculations of e(q, u) have been done
for electrons moving &eely on a cylindrical surface. Al-
though these studies give qualitative insight into the po-
sitions of the zeros in e(q, u), they are unable to take into
account the effects arising &om the nanotube electronic
structure. The most important electronic feature is the
existence of an energy gap in most tubes. The size of the
gap can drastically affect the magnitude and overall be-
havior of response functions. This becomes particularly
ixnportant when coupled with the fact that tubes with
roughly the same radius can have very difFerent band
gaps. ' Cylindrical empty lattice calculations are un-
able to resolve these differences.

In this study, we address these issues by performing
calculations which include the atomic structure of the
carbon nanotubes. For simplicity, we focus on the q = 0,
u = 0 limit in an effort to understand the response to a
static, uniform E 6eld. The polarizability per unit length
of single nanotubes is calculated, instead of a dielectric
constant, in order to draw comparisons with the polariz-
abilities of fullerene clusters. The most obvious difFerence
between nanotubes and spherical fullerenes is their cylin-
drical structure. This causes the era and n of Eqs. (1)
and (2) to be highly anisotropic tensors with principle
axes z (parallel to the cylindrical axis) and x (perpen-
dicular to the cylindrical axis). Using a tight-binding
model, we will show that no is roughly proportional to
&, , where Eg is the minimum direct band gap and B is

9
the tube radius, while Q.q is independent of Eg and is
just proportional to B . Arguments analogous to those
used for Ceo (Refs. 2 and ll) are then applied which re-
late 0,0 to o.. We 6nd that even for insulating tubes, n
is an order of magnitude larger than a . This implies
that an external 6eld with equal z and x components will
give rise to a dipole moment pointing mainly along the z
direction.

The structure of the paper is as follows. Section II
contains the details of the models used. First the tight-
binding theory of 0.0 is presented, and then the classical
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electrostatic model relating nq to n. Section III is a pre-
sentation of the results of the calculations for all of the
tubes studied. Section IV provides an explanation of the
findings. We conclude in Sec. V.

approximations, we express the Bloch states in terms of
localized atomiclike orbitals:

lk)ni) = ) C„(k,ni)

II. MODELS

A. Tight-binding model of ao

Our tight-binding model for no is based on the
Ehrenreich-Cohen formalism for the dielectric function
of a crystalline solid. 2 In this approach, e(q, ur) is calcu-
lated within the RPA using Bloch states as the basis. If
we neglect local field effects, the real part of the dielectric
function is given by

4vrez l(k, nile ' i'lk+ q, nz) l'

k,ng, ng

xlf.'.(k+ q) —f.', (k)j

where q is restricted to the first Brillouin zone (the factor
of 2 is for spin). In order to invoke the tight-binding

x ) e'" 'ly„(r —~„—R'))
N ~,

lk+ q, nz) = ) C„(k+ q, nz)

x ) e'&"+~ '
lP„(r —~„—R))

1

N

where P„(r) and P„(r) are localized orbitals, w& and r„
are vectors denoting the positions of the orbitals within
a unit cell, and R' and R are the lattice translation vec-
tors. C„and C„are the coeKcients in the expansion of
the Bloch states in terms of the P„and Q„Bloc» sums.
We may now form the matrix element that enters the
Ehrenreich-Cohen formula. Setting R' = 0 and multi-
plying by N, we have

(k, nile * 'lkqq, n2) = ) C„(k,ni)C (k+q, n2)e' "+ '
"&(gb„(r)le ' 'lP„(r —d)), (6)

where d = w„—7„+R.
Eventually, we will be interested in the q -+ 0 limit. Because P„(r) and P„(r) are localized, we may expand the

matrix element in the right-hand side of Eq. (6) to first order in q r, obtaining

»m(&~(r) le
' 'I&-(r —d)) = (&~(r) I&-(r —d)) —i(&~(r) lq rl&-(r —d)).

Here we choose to work within orthogonal tight binding;
two localized orbitals have zero overlap unless they are
equivalent, and are on the same site. Equation (7) then
becomes

lim(g„(r)le '~'lP„(r —d)) = bl ~bRo —iq R„„(d).

R~„(d) is defined to be the matrix element of the opera-
tor r between P„centered at the origin, and P„centered
at the position d. We now have

(k, nile '~'lk+q, n2) = ) C„'(k, ni)C„(k+ q, n2)
pvR

;[(V+q) R—q.~„]

x (b& bn. p
—iq R„„(d)) (9)

for —much greater than the characteristic unit celll~l
length. Thus, we see that the matrix element is com-
prised of two terms. The first arises &om the product of
b functions and will be referred to as the "b term. " It
is equal to P C„"(k,ni)C„(k+ q, nz)e 'i' ~. If there

is only one atom per unit cell, or if g ~ w = 0 for all
p, this term is equal to zero. The second term depends
on the dipole matrix elements R„„(d)and will be called
the "dipole term. " Note that although the dipole matrix
elements are multiplied by g, both terms are the same
order in q because of the q ~ v term.

Unlike the quantities appearing in the h term, the
dipole matrix elements cannot be obtained as stan-
dard output &om Slater-Koster tight-binding calcula-
tions. They must be input as external parameters. For
the case of solids consisting solely of carbon, there are
four localized orbitals in the tight-binding basis set used.
They correspond to the carbon 2s, 2p~, 2p» and 2p,
states. At first sight, there are seven distinct dipole ma-
trix elements, represented schematically in Fig. 1. One
is on-site (d = 0), while the others are off-site (d g 0).
{More precisely, there is a set of off-site dipole matrix
eleinents for each order of nearest neighbors included. )
These matrix elements are special because any R„„(d)
can be written as a linear combination of them, in a
manner analogous to the Slater-Koster two-center inte-
gral formulas for Hamiltonian matrix elements.

On closer inspection it is seen that the matrix elements
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serious restriction for the systexns studied.
We define the unscreened polarizability per unit cell of

a crystal by the relation

4'
lim ei(q, (u) = 1+ o.o((u),~+a ' Q

(12)

(c) COC3

j'N

COCO

FIG. 1. Various dipole matrix elements between 8 and p
atomiclike states. The first (a) is on-site, while the rest are
off-site. The arrow indicates the direction of the vector r,
which gives a nonvanishing contribution to the matrix ele-
ment.

denoted by d and e in Fig. 1 are actually equal, for
xp„= yp . Also, the assumption of orthogonal tight-
binding forces b, c, and d to be zero. This is because
the origin may be translated to the point 2d, where the
integrals are zero by parity. Thus, we are left with three
special dipole matrix eleinents, one on-site (a), and two
ofF-site (f, g). Their magnitudes will be denoted R,„,
B,„,and R,„,respectively.

The R~„(d) must now be related to the special matrix
elements. For the d = 0 case, we have simply

R.„(O) = R„..(O) = R.„x. (1o)

R,„.(d) = R .,(d)
= [(1 —l )R,„+1R,„]x

+[lm (Rgp~ Rgp~ )]$
+[la(Rgp~ Rgp~)]z~

R,„,and R,„are obtained from Eqs. (10) and (11) by
the cyclic permutations x ~ y ~ z, l ~ m ~ n. All
other dipole matrix elements are zero within the &ame-
work of orthogonal tight binding. For simplicity, we limit
the ofF-site matrix elements to include 6rst nearest neigh-
bors only. It is demonstrated below that this is not a

The ofF-site case is a bit more complicated. The relations
can be derived by rotating the p orbital so that the axis of
quantization is along d. Let l, m, and n be the direction
cosines of d with respect to x, y, and z, respectively.
Then,

where ei(q in) is given in Eq. (3). If there is no in-
teraction between atoms in difFerent unit cells, ao(u) is
just equal to the unscreened polarizability of the single
molecule contained in each cell. Both eq and o.o are
second-rank tensors. The individual components may
be calculated by 6rst determining the principle axes by
symmetry, and then letting q -+ 0 along these directions.
This yields the diagonal elements corresponding to each
axis.

There are two sets of parameters that must be input
into this model: Slater-Koster tight-binding parameters,
which determine the energy eigenvalues and eigenstates,
and dipole matrix elements. All carbon nanotubes are
sp~ bonded systems, so we use the 6rst and second near-
est neighbor Slater-Koster parameters of Tomanek and
Louie. These were originally designed to reproduce the
band structure of graphite, and since have been applied
successfully to the study of carbon nanotubes. In order
to determine the optimal values for R,z, B,z, and B,z,
we must choose a reference system for which either eq or
o;o is known. Because orthogonal tight-binding is used,
it is desirable to choose a system that has a bonding con-
figuration similar to that of the tubes. This will ensure
the transferability of the parameters. C60 is a predomi-
nantly sp2 bonded system with an experimentally deter-
mined screened polarizability. Unfortunately, our tight-
binding model only has access to the unscreened polariz-
ability. This has, however, been determined theoretically
by Pederson and guong using ab initio local density
functional theory. They obtained a result of 311 Ls per
molecule for no(u = 0), roughly four times larger than
the experimental value for the screened polarizability, ~

as expected. We have calculated o.o(u = 0) of Csp using
our model for a wide range of difFerent R,z, B,~, and
R,„.We find a sensitive dependence of no(ur = 0) on
R,z, whereas the dependence on the oH-'site matrix ele-
ments is negligible. Therefore, R,z and R,„may be set
equal to zero. The local density functional result is then
obtained'if R,„=0.5 A.. If R,„and R,„are changed,
the value of ao(u = 0) is only slightly altered. For in-
stance, if R,„and R,„are both set equal to 0.5 A. while
keeping R,„=0.5 A, ap(ter = 0) is changed by less than
5'.

We have therefore constructed a tight-binding model
of the q = 0 dielectric response function without local
6eld e8ects for sp bonded carbon systems, in which the
only external parameter is an on-site s —p dipole matrix
element. Before the issue of local fields is addressed, two
points must be made: (1) The value of R,„=0.5 A. is not
to be understood as the dipole matrix element between
true atomic carbon 2s and 2p wave functions. As stated
above, the localized orbitals of this model are orthog-
onalized orbitals that may be very diferent &om their
atomic counterparts. (2) The parameters of the model
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have been chosen to describe ap bonded systems. If we
wish to study systems with other bonding configurations,
both the Slater-Koster parameters, and the dipole matrix
elements may need to be changed.

B. Local field correction: Relating ao to a

The difference between the unscreened polarizability
ap, defined in Eq. (1), and the screened polarizability
n of Eq. (2) is due to the difFerence between the total
and applied electric fields. This arises because the virtual
single-particle excitations have electric charge, and pro-
duce a local Geld. Stated another way, o.p only accounts
for the polarization of the individual single-particle wave
functions, while o. includes their mutual interaction as
well. For most bulk crystals, local Beld effects change
e by roughly 10%.x For surfaces, however, the efFect is
much greater due to the buildup of bound surface charge.
Since fullerenes are closed surfaces, local 6eld effects are
large. This is the reason for the factor of 4 difference
between np and o. of C6p.

Local fields can be taken into account within RPA by
considering charge Huctuations inside a unit cell, i.e., q
of Eq. (3) outside the first Briilouin zone. From the pre-
vious section, we see that our tight-binding model is only
valid for q —+ 0. Thus, a straightforward application of
RPA is not possible here. Instead we can take advantage
of the simple geometries of fullerenes, and construct clas-
sical models that relate E to Et, q. This determines the
relationship between np and a via Eqs. (1) and (2). The
simplest possible model is one in which the local field,
E~, ——Eq t —E, is constant within the fullerene. This is
reasonable if the fullerene is ellipsoidal.

As an example, consider C6p. ' If a spatially constant
external Geld E is applied, bound charge will form at the
surface of the sphere. This will create a depolarization
6eld E~, pointing opposite to E. If we assume that this
field is constant within the sphere, then Eq q will be con-
stant inside as well. We can relate the magnitude of this
field to the induced dipole moment, Ex, = +&. Equa-
tions (1) and (2) then give us the relationship between
exp and cI:

(13)

when bR = 1.2 A.
The same arguments will now be applied to single-wall

carbon nanotubes. Again, the goal will be to relate E to
Eq t in order to determine the relationship between ap
and n. The crucial difference between nanotubes and C6p
is their cylindrical structure. If E is in the x direction,
bound charge will build up on the surface and create a
local depolarization 6eld. If E is along z, there will be
no bound surface charge, so E~, = 0 within this model.
This is, of course, only true in the ideal case of an in-
6nitely long tube. For a tube of finite length, an external
field in the g direction will induce bound charge at the
ends. However, the resulting local Geld will be negligible
as long as the length is much larger than the diameter.
Thus, we will assume that E~, has no z component.

Since the principle axes of o.p and n are z and x (see
below), we need only consider the two cases of E along
these directions. let E be along x (J z). There will
then be a local Beld in the x direction. Assume that it
is constant inside the tube. The surface charge density
per length, which gives rise to a constant 6eld along x,
is of the form 0 (P) = op cos P, where P is the azimuthal
angle measured with respect to x. The resulting dipole
moment per length is

p =R d xo.

= 2R dPRcosgo. p cosP = z.R harp.

p

With this and Eq. (1), we have

where 0, p, and a are all de6ned per unit length. We can
now calculate the local electric field due to o(P). It can
be shown to be constant within the tube and equal to

2p E
loc—

Knowing that Eq~q
——E+Ex«, we xnay use Eqs. (1), (2),

and (17) to obtain

We see that o. is less than o.p, as expected. However, the
maximum value of a is Rs = 45 A.s. This is inconsistent
with the experixnental result of 80 A.s. ' i The discrep-
ancy can be understood by noting that the electrons that
participate in the screening are not confined to the sphere
containing the ions. This can be taken into account with
a single parameter, bR, such that the "effective radius"
is R g ——R+bR,

If E is along i', then E~, ——0. This means that Eq t ——E
and we get simply

nzz = a.pzz.

Note that all polarizabilities are de6ned per unit length.
If we combine Eqs. (18) and (19) and restore the &e-

quency dependance, we can write n(u) as a matrix

exp ((d )
o{ )

Rs&f
r

np ~((u)

g + 2~0ggN{4)
0

If we take the local density functional theory value of
311 A.s for ap, the experimental value of cx is reproduced It should be pointed out that o. is actually a 3 x 3 ma-
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trix, for x can lie anywhere in the plane perpendicu-
lar to z. Since all x axes are equivalent, we suppress
one dimension. As for Csp, cx & np, Eq. (18) is
the two-dimensional analogue of Eq. (13). Likewise,
we anticipate that it will be necessary to replace B by
R,xx = R+ bR. The question of what is the appropriate
bR is not a simple one. However, we expect the mag-
nitude of bR to refiect the intrinsic features of vr sys-
tems, such as the extent of a p orbital, etc. Thus, we fix
bR = 1.2 A. as for Csp. We show below that the results
are not sensitive to this choice.

The most important feature of Eq. (20) is that cx„
remains unscreened. This has two interesting conse-
quences: (1) Even if np and np, are comparable, xx

will be significantly greater than o. . This means that
an external electric field with equal z and x components
will give rise to an electric dipole moment pointing pri-
marily along z. (2) The response of the tubes to electric
fields will be particularly sensitive to the details of the
tube electronic structure. As we stated above, ao is de-
termined from the single-particle energies and eigenstates
[Eq. (3)]. If the energy gap is small, ap, may be quite
large. Because of Eq. (19), xx.„will be large as well.
This is not true for the caged fullerenes, in which all
components of the polarizability tensor are governed by
expressions like Eq. (14); as long as np is large enough,
xx is completely determined by R,xx R. The absence of
a large screening field along the axes of the tubes makes
it necessary to consider band structure sects in these
systems.

We are now in a position to calculate a(u = 0) for
a wide range of tubes. Our strategy is simple. First, a
tight-binding calculation is performed to determine the
E„(k),and C„(k,n) appearing in Eqs. (3) and (9). Then
a small q is chosen along z. ex(q, u = 0) without local
fields is calculated using Eqs. (3), (9), and (10), and
R,~ = 0.5 jt (R,~ ——R,~—:0). Smaller and smaller q
are chosen, and lim~~p ex(q, ur = 0) is obtained. We then
choose q along x and repeat the procedure. The exp(ur =
0) tensor is calculated using Eq. (12). Finally, we use the
electrostatic model of Eq. (20) with R replaced by R,xx =
R + 1.2 A. to determine the a(u = 0) tensor. Results of
these calculations are presented for tubes having a variety
of different radii and band gaps in the next section.

criteria on nx and nz such that the (nx, nz) tube has the
symmetry required by Eq. (20). We have assumed above
that w and z are principle axes of the o.o and n tensors.
It can be shown that any second-rank symmetric tensor
in three dimensions is "isotropic" in a plane perpendicu-
lar to a three- or morefold axis of rotation; i.e., every
direction perpendicular to the rotation axis is a princi-
ple axis. Thus, all tubes of the form (n, O) and (n, n)
with n & 3 have the required symmetry. The same state-
ment is true for screw axes. Therefore, all (nx, nz) tubes
with nx g n2 are included as well. This set comprises all
tubes of interest, for the ones not included are probably
too small to ever be found. In what follows, we may refer
to the direction w without specifying where it is pointing
with respect to the individual atoms.

We have calculated the static unscreened and screened
polarizabilities of the (n, O) tubes for 9 & n & 19. The
(n, n) tubes (4, 4), (5, 5), and (6, 6) have also been stud-
ied, as well as the chiral tubes (4, 2) and (5, 2). Table
I contains a list of the results. Since o.o, ——o, , only
n, is shown. In the cases where nq —n2 is a multiple
of three, the xninimum band gap is very small (or zero),
and o.„is effectively infinite. Thus, we choose not to list
it here. Note that this is not true for o.o . This will be
discussed at length below.

The first issue to be addressed is the overall magni-
tude of the polarizabilities. If we multiply each value by
a length, and divide by the number of carbon atoms per
that length, we obtain the polarizabilities per atom (A.s).
We may compare these to the polarizabilities per atom
of fullerene clusters. Because tubes are cylinders and
the clusters are quasispherical, their local field contribu-
tions are quite different. Therefore, it is only meaningful
to compare the unscreened polarizabilities. The quan-
tity that is most analogous to o.o of C6o is o.o . Its
value increases xnonotonically with R. It is 3.8 A. /atom
for the (4, 2) tube, and 8.5 A.s/atom for (19,0). This

TABLE I. Static polarizabilities per unit length (in 4 )
of various carbon nanotubes of radius B (A). In cases where
n~ —n2 is a multiple of three, n is extremely large and is
not given.

XII. RESULTS

We consider ideal infinitely long tubes that are ob-
tained by rolling a graphite sheet around a cylinder. The
(nx, nq) notation of Saito et al. will be used throughout.
Here, each tube is identified by its circumference vector
c = nqaq + n2a2, where aq and a2 are primitive transla-
tion vectors of the graphite sheet, which are chosen to be
60 apart. All (n, n) tubes are xnetallic, while others are
semiconductors. If nq —n2 is a nonzero multiple of three,
the tube is a very small gap semiconductor. There is a
general reduction of the band gaps as the radii increase.
This is because the infinite radius case is identical to a
planar graphite sheet, which is a semimetal.

Before results are presented, it is worth considering the

Tube (nx, ns)
(9,0)
(10,0)
(11,0)
(12,0)
(13,0)
(14,0)
(15,0)
(16,0)
(17,0)
(18,0)
(19,0)
(4,4)
(5,5)
(6,6)
(4,2)
(5,2)

R
3.57
3.94
4.33
4.73
5.12
5.52
5.91
6.30
6.70
7.09
7.49
2.73
3.41
4.10
2.09
2.46

174.7
171.6

292.4
268.3

445.5
401.4

651.1

49.1

40.6 8.9
48.5 10.3
57.8 12.1
65.7 13.9
76.1 15.8
87.4 17.9
97.4 20.1
109.9 22.4
123.6 24.9
136.3 27.4
150.6 30.2
26.6 6.0
37.4 8.3
49.8 11.0
18.8 4.2
23.1 5.2
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FIG. 2. Plot of no vs B for the tubes studied. The solid
line is a linear least squares fit to the points.

is consistent with the Cso value of roughly 5 As/atom.
The general increase with radius is also consistent with
a sixnilar trend in fullerene clusters if we assume that
a is a monotonically increasing function of np, as in Eq.
(14). We see that no„ is considerably larger than ere
This is a result of the anisotropy of the single-particle
wave functions (i.e., graphite is more polarizable along
the sheet plane direction than in the perpendicular di-
rection). It manifests itself in the matrix elements of Eq.
(3).

The increase of o.p with radius can be quantified by
plotting o,p versus R2, as shown in Fig. 2. We see that
ap is roughly proportional to B2 with a slope of 2.6, in-
dependent of the tube chirality and. band gap. Even the
zero gap (n, n) tubes have finite no, and obey this sim-
ple relation. The fact that o,p is completely indepen-
dent of the minimum band gap is particularly striking.
It suggests that there are selection rules that force the
matrix elements of Eq. (3) to be zero in cases where the
energy denominator is small. We will explore the origin
of these selection rules in the next section.

Unlike no, ere„(= n, in the present theoretical
framework) is highly dependent on the minimum gap. In
cases where the gap is zero, o.p, is infinite. This means
that the above selection rules for the matrix elements do
not apply when q is in the z direction. There is also a
dependence of this quantity on the tube radius. In fact,
ap is approximately linear in ~@, as shown in Fig. 3.
An explanation of this behavior is given in the following
section.

As can be seen &om Table I, a~~ 5np~~ for each
tube. This is a consequence of Eq. (18), with R replaced
by R + bR = R + 1.2 A.. These results are relatively
insensitive to the choice of bB; a factor of 2 increase or
decrease in bR changes cr by no more than 40%. The
ratio " is & 11. for all tubes studied. For very small
gap tubes, the ratio is extremely large. This, along with
Eq. (2), justifies our prediction that an external electric
field with equal z and x components will give rise to a
dipole moment pointing mainly along i'. Likewise, the
magnitude of this dipole moment will depend mostly on

FIG. 3. Plot of o.o„(=cr, ) vs &, for the (nq, ns) tubes
9

studied where nz —nz is not equal to an integer multiple of
three. A linear least squares Bt is also shown.

a, and will therefore be roughly proportional to ~&. It
should be understood that the relationship implied by
Eq. (18) is approximate. More sophisticated models for
local field eRects may yield results diRerent &om those
presented here. Ho~ever, we expect the general features
to be correct.

IV. DISCUSSION

In this section, we explore the origins of the depen-
dence of o.p and o.p on B and Eg. First, we see why
ap is independent of the xninixnuxn gap. Then its pro-
portionality to B2 is explained using an empty lattice
model. Finally, the linear variation of np, with ~& is

8
understood &om the point of view of a simple model
based on the oscillator strength sum rule.

In order for o.p to be completely independent of the
minimum gap, the matrix elements of Eq. (3) must be
zero when the energy denominator has its smallest values.
We can see that this is true by examining the quantity
(k, nq Ie '&'Ik+q, nq) when q = qx. Since we are consid-
ering individual tubes, the states Ik, nq) and Ik+ q, n2)
are localized along the directions perpendicular to z. The
matrix element may then be expanded to first order in
q r (= qx). Also, the absence of dispersion in the x
direction allows us to write Ik+ q, n2) = Ik, n2). This
yields

li (km, qIen' 'Ik+q, n2) = (k, nqIk, nz)q-+p
—t'(k, npIq rIk, n2)

= -iq(k, ng Ix rIk, ng) (21)

for nq g n2. As discussed by previous workers, s ~o the
Bloch states of nanotubes arise from lines of allowed k
vectors of the graphite sheet Brillouin zone which point
along k . In the Appendix, we use group theory to show
that (k, ngIx ~ rIk, n2) = 0 if Ing) and In2) arise from the
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dk ). ((k, ng(x r(k, n2)~
2z. - E„,(k) —E„,(k)

[f.', ( ) —f.', ( )]. (22)

The matrix elements of this expression can be shown to
be independent of k and proportional to R. They are
only nonzero if nq and n2 di8er by one. The energy
denominator is equal to 2

".» (nq —n2 ) independent
of k. Thus,

same line, as long as it is not the line that is farthest &om
I in (n, 0) and (n, n) tubes with odd n. In the absence of
strong 0. —m hybridization, the minimum direct gap is
always between states coming &om the same line. This
line intersects I' for the case of (n, n) tubes, and is not
the line farthest &om I' in (n, O) tubes unless n & 5.
This means that (k, nq ~e

'& '
~k+ qx, n2) is zero between

highest occupied molecular orbital (HOMO) and lowest
occupied molecular orbital (LUMO) states of all chiral
tubes, (n, n) tubes, and (n, O) tubes with R ) 2.0 L.
Thus, it follows that ao is independent of the HOMO
and LUMO states and hence Eg in these cases.

The fact that o.p is approximately proportional to R
can be best understood by appealing to an empty lattice
model of electrons moving &eely on a cylinder of infinites-
imal thickness. Such a model has been used by several
authors to study collective modes of nanotubes. In this
approach, the m-electron Bloch states of a tube of radius
R may be written as (r~k, n) = ~e'" e' ~, where n is

an integer. Their energies are E (k) = 2" . (&) + k

The band index n now refers to the rotational subbands
of the 7r-electron complex, which arise &om the lines of
allowed k vectors mentioned above. Each one of these
bands will be folded back in a reduced zone scheme, and
will acquire gaps at the Fermi energy with the addition
of the crystalline potential. Therefore, every &ee-electron
band corresponds to many bands of the tight-binding cal-
culation. We choose to use an extended-zone scheme to
simplify the argument that follows.

From the considerations outlined above, such as the
absence of dispersion in the x direction, we have

interval length g t —g =
V „; —( t)

&,
~ —(&) may be approximated by

k„& —k„- (2n —C&,2+2m'E~R2( (25)

for n &( n~. These are the terms that contribute most
to the sum. If we neglect the large n terms, Eqs. (24)
and (25) yield the approximate relation

m'
2

Qpzz oc R
F

(26)

Since m' and E~ are roughly independent of the tube
size (for tubes large enough so that the zone-folding pic-
ture applies), ns oc R2 as expected. Therefore, we see
that the behavior shown in Fig. 2 is due to three proper-
ties of the systems: (1) The matrix element of Eq. (21)
is proportional to R, and is only nonzero when n~ and
nz correspond to rotational subbands that are adjacent in
energy. (2) The energy difference between rotational sub-
bands is proportional to ~&. (3) m' and E~ are roughly
independent of R. Although this discussion has involved
a cylindrical shell empty lattice model, the conclusions
are valid for nanotubes large enough so that hybridiza-
tion eKects do not play a dominant role.

We now turn to a discussion of ap . For this case,
we consider Eq. (3) with q = qz. The relevant Bloch
states are q dependent, and the matrix elements are of
the form (k, n~~f(q, z)~k+ q, n2). Therefore, the above
selection rules do not apply; the matrix elements between
HOMO and LUMO bands are nonzero. Because the min-
imum gap in most tubes is small, we expect np to be
dominated by terms for which the energy denominator is
roughly equal to E~. This makes it reasonable to assume
that the linear dielectric response will be adequately de-
scribed by a model in which all virtual single-particle
transitions of a given tube have the same energy E~,
which is of the order of Eg. A model of this type has
been constructed for e(q = 0, u = 0) &om a generalized
Thomas-Rieche-Kuhn sum rule,

ky ~ R2 2''R
[f'-i(k) —f.'(k)] (»)

n=O

her

E Eu ) (27)

h2 ~ - 2n —1n=p
(24)

QQ 2
ny is the largest n such that 2 .~, & Ey. The

k~ is the Fermi wave vector, equal to +
&

~. It is
the wave vector where the n = 0 band crosses E~. Let
k denote the k point where the nth band crosses E~.
We then have ~ ~ ~ ~ k2 ( kq & kp ——k~. Because of
the difFerence of zero temperature Fermi factors, we are
forced to set n = j when k C [k~, k~ q]. The integral can
then be evaluated in piecewise fashion over the intervals
[k„,k„,]

O.p» ——
S~a'e' & R l

mA ~E )
(28)

where cu„ is the plasma &equency, equal to &, and
N is the number of electrons per cell that participate in
the screening. For this we use 4/atom, because one car-
bon 2s and three 2p electrons were considered in the RPA
calculation. E~ is the "average gap" of the system. The
approximate linearity in the separation of the m bands
near the Fermi level suggests that Ez will vary linearly
with Es (since there is much less contribution &om states
far away &om E&).

If we use Eq. (12) to convert Eq. (27) into an expres-
sion involving ap, we get
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where A is the area per atoxn on the graphite sheet (again,
no„ is defined per unit length). This establishes the lin-
ear dependence on ~& since we expect Eg oc Eg. We mayR

use the plot of Fig. 3 to determine the precise relation
between Eg and Eg The least squares linear fit to the
points has a slope of 17.8 eV2 A. . This, along with Eq.
(28), gives Es 5.4Es; a reasonable result considering
that the HOMO and LUMO bands of tubes have large
dispersion.

V. CONCLUSIONS

We have used a tight-binding model and a classical
electrostatic argument to calculate the static polarizabil-
ity of single-wall carbon nanotubes. It was shown that
the polarizability tensor is highly anisotropic, a conse-
quence of the inherent anisotropy of the tubes. The po-
larizability for external fields in the z direction is consid-
erably larger than that for fields along the x direction.
From this we conclude that a randomly oriented field
will, on average, give rise to a dipole moment pointing
mainly along the tube axis. The size of the moment is
proportional to the tube radius divided by the square of
the band gap. This may have significant consequences,
for it suggests that tubes with difFerent atomic arrange-
ments respond very difFerently to external fields, even
if the tube radii are similar. The issue of nonzero &e-
quency, although not considered here, can be addressed
easily within this model. One must only use a range
of difFerent u in the denoxninator of Eq. (3). In ad-
dition, the calculated matrix elements and their associ-
ated selection rules can be used to compute the &equency
dependent transverse dielectric function. This could pro-
vide a key to understanding the results of subsequent ab-
sorption measurements. The exotic geometric and elec-
tronic structures of carbon nanotubes could provide some
unique dielectric responses.

ral (n, 0) and (n, n) tubes. They have symmorphic
space groups, with the point subgroups C ~. C „con-
sists of powers of C rotations and reBections. For n
even, C has 2 + 3 irreducible representations labeled
A~) A2) Bz) B2) E~) E2) ..., E q. A~ is the totally sym-
metric representation. It has z as a basis function.
(The z direction is defined to be the C axis. ) For
odd n, C„has the 2 + 2 irreducible representations
Ag) A2) Eg) E2) ...) E -x . Again, Aq is the symmetric rep-
resentation that has the symmetry of z. For both even
and odd cases, Eq has x and y as basis functions. The
states lnx) and ln2) are eigenstates of the Hamiltonian, so
they transform according to irreducible representations
of the point group. The operator x. r can also be clas-
sified according to symmetry. (nxlx rln2) will be zero
if the combined symmetry does not contain the totally
symxnetric representation, i.e.,

I'(ln, )) x I'(x r) x I'(l )) PA, (nxlx rln2) = 0.

(Al)

Because x r = x, I (x r) = Ex. Thus,

I'(ln )) x I'(ln )) P E

It can be shown that states that arise &om particular
lines transform according to specific irreducible represen-
tations of the point group. As an example, consider the
(4, 4) tube. Its corresponding allowed lines are shown
in Fig. 4 along with the symmetrical Brillouin zone of
the graphite sheet. The dashed lines mark the bound-
ary of the Brillouin zone of the (1, 1) unit. Each line
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APPENDIX B E1 A E1 B

We wish «show that (xxxl» rlxx2) = 0 if lxxx) and
ln2) arise from the same line of allow'ed k vectors point-
ing along k . To do this, we must consider the sym-
metry groups of tubes. We first discuss the nonchi-

FIG. 4. Allowed k vectors of the (4, 4) tube mapped onto
the graphite sheet Brillouin zone. The dashed lines enclose the
Brillouin zone of a single (1,1) unit. Each line is identified
with irreducible representations of the point group C4 . A
denotes Aq, Aq and H denotes Bq, Bq.



52 STATIC POLARIZABILITIES OP SINGLE-WALL CARBON. . . 8549

is associated with one or more irreducible representa-
tions of C4 . The center line intersects the I' point of
the graphite sheet, and is associated with A» and A2.
The lines farthest &om I' are associated with B» and B2.
The two middle lines on either side of the center belong
to E». Similar assignments can be made for all even n
(n, n) tubes. It is always true that Aq, A.2 correspond
to the center line and B», B2 to the lines farthest out.
E», E2, ..., Ej, ..., are always between the two, with Ej
being associated with the jth lines away &om the cen-
ter on both sides. The picture for odd n (n, n) tubes is
the same, except that the lines farthest &om I' belong to
E i . For (n, 0) tubes, we must only rotate the hexagon

by 90, and change the density of the lines. Everything
else remains the same.

Assume that ~nq) and ~n2) arise from the same line.
There are three cases: (1) I'(~nq)) = I'(~n2)), (2)
I'(~nq)) = Aq, I'(~nz)) = Az (or vice versa), and (3)
I'(~nq)) = Dq, I'(~n2)) = B2 (or vice versa). In all C „
groups, A» x A2 and B» x B2 do not contain E». Thus,
(nq~x r~nz) = 0 for cases 2 and 3. If n is even, the direct
product of an. irreducible representation with itself never
contains E», so the matrix element is zero for case 1 as
well. However, if n is odd, E -i x E -i 9 E», while all

2

other such products do not contain E». This means that
(nq~x r~nz) can be nonzero only if (nq) and ~n2) arise
&om the line farthest &om I' in odd-n tubes.

We now turn to chiral tubes. The space groups of
these tubes are nonsymmorphic. However, factor groups
that are analogous to the above point groups can be con-
structed from powers of screw operations, i.e., rotations
about z followed by translations along z. This was done
recently by Jishi et al. for all chiral tubes. They showed
that each chiral tube has a factor group consisting of pow-
ers of a single screw operation. The factor groups are all
isomorphic to the point groups C with n even. The ir-
reducible representations are A, B,E», E2, ..., E». A is
the symmetric representation, and x, y transform as E».
Again, we may use Eq. (A2) to carry out the analysis.

Just as for nonchiral tubes, states that arise &om par-
ticular lines transform like particular irreducible repre-
sentations of the factor group. The line intersecting the
I point is associated with A, the farthest lines with B,
and the others with E», E2, ..., etc. For these groups, the
direct product of an irreducible representation with itself
never contains Eq. Thus, (nq~x . r~nz) is always zero if
~nq) and ~nz) arise from the same line. This is true for
all chiral tubes.
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