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Magnetization of graphene tubules
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Magnetization (M) comes from both the persistent currents and the spin polarization. The spin-B in-
teraction is important in a graphene tubule, because it makes the one-dimensional subband with the
divergent density of states capable of crossing the Fermi level {EF=0 eV). It causes cusps in magnetiza-
tion and power divergencies in differential susceptibility (y~), and destroys the periodicity (period
P„=hc/e) of the physical properties. The special structures shown in M and gM are found to be insensi-
tive to the chirality. The power divergencies in g~ are replaced by the peak structures at low tempera-
ture ( T). The order of gM is 10 —10; therefore, the peak structures are measurable at T( 1 K. The
temperature effect in reducing magnetization is relatively obvious for a larger semiconducting tubule.
Moreover, the anomalous temperature effect due to the spin-B interaction exists in all the metallic tu-
bules at the relatively low T. For the doped graphene tubule, M and yM exhibit more special structures,
since both the electronic structure and the finite Fermi level vary with P simultaneously. The magnetic
response is enhanced by the doping, and it is relatively strong for a larger tubule. The magnetism at the
small Aux is possibly altered from paramagnetism (diamagnetism) to diamagnetism (paramagnetism) by
varying the free-carrier density.

I. INTRODUCTION

Iijima' recently reported observation of coaxial tubules
made up of graphite carbons. Each graphene tubule is
just a graphite sheet which is rolled up in cylindrical
form. Its radius is only between 10 and 150 A. Graphene
tubules represent an interesting class of quasi-one-
dimensional (1D) system. Due to their cylindrical symme-
try and nanoscaled size, they have attracted many recent
studies. ' Among these studies, abundant single-shell
tubules could be produced in large-scale synthesis, and
their radii could cover the range from 3.5 to 30 A up to
now. Single-shell tubules are very useful in measuring
various physical properties and verifying theoretic predic-
tions. A graphene tubule in the absence of a B field
was predicted to be a metal or semiconductor. In this
work, the electronic structure of a chiral tubule threaded
by a parallel B field is calculated by the tight-binding
model. It is used in studying the magnetic properties,
magnetization (M), and differential susceptibility (yM ) of
the single-shell graphene tubule. We mainly study the
efFects due to the spin-B interaction, the geometric struc-
ture, the temperature ( T), and the doping.

The band property, metal or semiconductor, of a gra-
phene tubule was predicted to rely on the radius and the
chiral structure about the axis. The density of states
(DOS) are divergent in 1/VE form at certain band bot-
toms (corresponding to energies that are locally
minimum or maximum) for all parabolic subbands, ex-
cept that the DOS of the linear subbands in a metallic tu-
bule are finite there. The characteristic of the DOS will
be rejected in the physical properties, e.g., M and y~. A
graphene tubule with any chiral angle here exists in a uni-
form B field along the tubular axis. Its electronic struc-
ture, as done in a graphite sheet, " is calculated by the
tight-binding model, but with the periodic boundary con-

dition along the transverse direction. Ajiki and Ando
calculated it by the effective-mass approximation, and ob-
tained an electronic structure which is completely in-
dependent of the tubular chirality. These two methods
predict a similar band property, but give very different
electronic structures. A graphene tubule could drastically
change from a metal (semiconductor) to a semiconductor
(metal) during variation of the magnetic Aux (P). The en-
ergy dispersion without the spin-8 interaction is periodi-
cal in P, with a period $0=(hc/e), as a result of the
Aharonov-Bohm (AB) effect. If a graphene tubule is a
metal at P=P„ there are only liner subbands at a certain
band bottom. The linear subbands at P, will become par-
abolic at other P's, i.e., they at least have a divergent
DOS except at P, . Moreover the other subbands at least
have a divergent DOS at any Aux. This characteristic of
the DOS is not afFected by the spin-B interaction.

Ajiki and Ando" calculated M and gM of the zigzag tu-
bule (chiral angle is zero) at T =0. The spin-8 interaction
is neglected in their calculations, hence y~ shows loga-
rithmic divergencies at P, s, where the liner subbands of
a metallic tubule just touch the Fermi level (Et; =0). The
spin-B interaction is currently taken into account in cal-
culating M and yM. It could destroy the periodicity of
the band property (metal or semiconductor), so that a
graphene tubule is a metal at a certain magnetic-Aux
range including P, . This paramagnetic interaction makes
the subband capable of crossing the Fermi level before
the parabolic dispersion of the crossing subband becomes
linear. The subband crossing thus happens at P„where a
graphene tubule is metallic, but the DOS of the crossing
subband is divergent in I /VE form there. From previous
study, magnetic properties are expected to show special
structures, cusps in M, and power divergencies in yM, at

The electronic structure obtained by the tight-
binding model strongly relies on the chirality, and it

0163-1829/95/52(11)/8423(16)/$06. 00 52 8423 1995 The American Physical Society



8424 M. F. LIN AND KENNETH W.-K. SHUNG 52

varies with the Aux through the tubule. The special struc-
tures of M and y~ are examined to see whether the
chirality dependence is obvious. Further, M and yM are
calculated at various temperatures (T's) to understand
the broadening effects on the special structures. The
power divergencies in y~ will be replaced by the observ-
able peak structures at low temperature. In addition to
the broadening effect, the temperature could reduce the
magnetization. But a metallic tubule due to the spin-8 in-
teraction may exhibit an anomalous variation of M with
T.

In addition to the spin-B interaction, the doping effect
could lead to special structures in the magnetic proper-
ties. This is the intercalation of metallic atoms' and
molecules into the graphene tubules. The charge carriers
are introduced into the graphene tubule by means of in-
tercalation compounds (GIC's), ' carbon fibers, ' and
doped C60. ' The metallic atoms K and Rb (Ref. 10)
have been successfully intercalated into the graphene tu-
bules. Here the electrons are transferred from the metal-
lic atoms to the carbon atoms. Each carbon atom is as-
sumed to receive O. le on average as found in X6C60 (Ref.
14) (X =K, Rb, and Cs) and stage-1 GIC's (CsX}.'2 The
Fermi level (EF ) thus increases from zero to a finite value
according to the rigid-band model, which is similar to
that employed for GIC's. ' ' The free carriers in the
conduction bands will make a large contribution to the
physical properties. The doping is thus expected to affect
the physical properties obviously, e.g., phonon modes
and magnetization.

When P varies, the free carriers will redistribute them-
selves among the different conduction bands according to
the variations of energy dispersions with P. The Fermi
level also varies with P to keep the particle number con-
stant. The electronic redistribution is directly refiected in
the magnetic properties, and will result in the special
structures, cusps in M and sharp peaks in XM, at p, s,
where the Fermi level crosses the bottoms of conduction
bands. There are several special structures within Po even
without the spin-B interaction. Hence it is very different
than that in the undoped tubule. Compared with that of
an undoped tubule, the magnitude of the magnetic
response is obviously increased by the doping. It indi-
cates that the magnetic measurements of the special
structures are relatively easy for a doped tubule. The
magnitude of the magnetic response hardly depends on
the radius of an undoped tubule. This property is exam-
ined whether it remains so for the doped tubule. If an
undoped tubule is a metal (semiconductor) at /=0, then
the magnetism belongs to paramagnetism (diamagnetism)
at the small Aux. The magnetism is possibly altered by
the doping, because the contribution due to the free car-
riers in the conduction bands is very important. A de-
tailed study is made of the relation between magnetism
and the density of free carriers (or Fermi energy).

Magnetization in a graphene tubule is closely related to
the persistent currents observed in rings with mesoscopic
radii. ' Magnetization here consists of the persistent
currents circulating a graphene tubule and the spinyolar-
ization. For a large tubule with radius —100 A, the
former is the main contribution, and the latter is small if

The persistent currents in mesoscopic rings are
easily evaluated from the average of the transverse veloci-
ty. ' Although the electronic structure here is very
complicated, we are also able to obtain persistent
currents in a graphene tubule from the average of the
transverse velocity by calculating the gradient of the
Hamiltonian. However, a simply linear relation, as
found in mesoscopic rings, between the current carried
by each state and the angular momentum does not exist
in a graphene tubule. The magnetic susceptibility of a
graphene tubule is 10—10 times larger than that of a
mesoscopic ring. ' Hence the special structures in the
magnetic properties, the anomalous temperature effects,
and the doping effects should be observable in magnetic
measurements.

This paper is organized as follows. The electronic
structure of a graphene tubule threaded by a parallel B
6eld is calculated in Sec. II by using the tight-binding
model. Both magnetization and differential susceptibility
are evaluated in Sec. III. The spin-8 interaction is taken
into account to study the special features shown in mag-
netization and differential susceptibility. Effects due to
temperature and chirality are also discussed. Further,
doping effects on the magnetic properties are given in
Sec. IV. Finally, some concluding remarks are made in
Sec. V.

II. ELECTRONIC STRUCTURE IN A B FIELD

The electronic structure in the presence of a uniform B
field parallel to the tubular axis is simply reviewed. A
graphene tubule could be regarded as a rolled-up graphite
sheet, as shown in Fig. 1(a). It is formed by rolling the
sheet from the origin to the vector

R„=ma&+na2,

where a, =W3be„and a2=(~3/2)be„——', be . a, and
a2 are the primitive lattice vectors of the graphite sheet.
e„(e .) is the unit vector along the x' axis (y' axis), and

0
b =1.42 A is the nearest-neighbor distance. Any chiral
tubule could be determined by R„, and so the pair of the
parameters (m, n} will be used to represent it. The
chiral angle of the (m, n) tubule, 8=tan '( —V 3n)/
[(2m +n)], is the angle between vector R„(~~e„)and ex',
and the tubular radius is r = [b+3(m +mn+ n )]/(2m ).
It is sufficient to confine the chiral angle to ~8~ ~ 30' to ac-
count for all graphene tubules because of the hexagonal
symmetry. Also shown in Fig. 1(a) is the primitive vector
Rr(~~e~) along the tubular axis. The rectangle, which is
bounded by R and R, exempli6es the unity cell
of the unrolled (5, —1) tubule with 8=?0.89. The
number of carbon atoms in a tubular unit cell is
N„=4+(p +pq+q }(m +mn+n )/3, since each car-
bon atom occupies an area 3&3b /4 on an average.

It is convenient to take the coordinate (x,y) in express-
ing the electronic structure including the B Seld.
The Brillouin zone (hexagon) of the graphite sheet

and that (rectangle) of the unrolled tubule with periodical
vector R„and primitive vector R~
are plotted in Fig. 1(b). The length and width of
that rectangle are (2n.)/[b+3(m +mn+n )]
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and (2m. )/[b "i/3(p +pq+q )], respectively. A chiral tu-
bule further needs to satisfy the periodic boundary condi-
tion, and so it only has a 1D Brillouin zone (first) along
the segment I 8', i.e., the axial wave vector confined
within the first Brillouin zone is
~ky~ (m. )/[b"i/3(p +pq+q )]. A chiral graphene tu-
bule here is in the presence of a uniform B field parallel to
ey. The gauge A=BXr/2(~~e„), is chosen such that
wave vector k= i V+(—e/cubi) A. The periodic boundary
condition under such gauge is %(r+R„)=%'(r), where
%(r) is the Bloch function. The transverse wave vector

I

E(k,k, o,g)=E(k„,ky, g)+E(o,g), (2a)

where

obtained from this condition is k„=(2m[J+(Pl/0)])/
[bV 3(m +mn+n )][J=1,2, . . . , (N„/2)], and the
corresponding positive integer J serves as the angular
momentum or the subband index (see below).

The electronic structure of the (m, n) tubule is calculat-
ed by the tight-binding model, as employed for a graphite
sheet, "and is given by

E(k k, g)=cryo 1+4cos (k cos8+k„sin8) cos
3b

x, g& 0 2
(ky sin8 —k cos8)

+4cos (k sin8 —k cos8)
1/2

(2b)

and

E(o,g)= m*rz $0
(2c)

=+y0. 1+4cos
3bk

cos
&3bk

&3bk„
+4 cos

' 1/2

(3a)

and

x ~ y & 4 )armchair

=+y0 1+4cos
&3bk 3bk„

2
"'

2

&3bk„
+4cos

2

1/2

(3b)

The quantity y0=3.033 eV (Ref. 6) is the resonance in-
tegral for the nearest-neighbor interaction. The spin-B
interaction E (o ) =(go =m «r )(P/$0) is important here,
because it greatly affects the magnetic properties of a gra-
phene tubule (see Sec. III). The g factor is taken to be the
same as that (=2) of the pure graphite or GIC's. '
o.=+—,

' is the electron spin, and m* is the bare electron
mass.

The electronic structure, as is clear from Eq. (2b), is
the same for two graphene tubules with opposite chiral
angles (+8) and wave vectors (+k ) simultaneously. The
form of the energy dispersion is relatively simple for two
kinds of graphene tubules: zigzag type (8=0') and
armchair type (8=+30'). Their respective energy
dispersions, without the spin-B interaction, are

E ( kx ~ ky & 0 )zigzag

where both (v'3bk /2)„g„g and (3bk /2)„,„„., are
equal to (n/m)[J+(p/$0)] (J =1,2, . . . ~2m).
Armchair tubules are metals (see the following condition)
at /=0.

The band properties at /=0 are first discussed as fol-
lows. They are determined by the E (k, k», /=0) term in
Eq. (2b). Valence and conduction bands of a graphite
sheet are degenerate at corners" of the hexagonal Bril-
louin zone, e.g. , the X point shown in Fig. 1(b). Hence a
graphene tubule is suggested to be a 1D metal, when
R„.I E =2m. X integer (periodic boundary condition), i.e.,
2m+n =3Xinteger. The other cases belong to the
semiconducting tubules. The electronic structure of the
metallic tubule with (m, n) =(5, —1) is taken as an exam-
ple. There are N„( =28) occupied valence bands (include
two spins; Ey =0) as seen in Fig. 1(c). The other sym-
metric conduction bands (not shown) are unoccupied.
The energy dispersion of the J subband at +k is the
same as that of the (N„/2) —J subband at —

k» (not
shown). Each subband here is nondegenerate for difFerent
J's, but subbands might be degenerate for a tubule with
8=0 and +30' [see Eqs. (3a) and (3b)]. Valence and con-
duction bands are degenerate and linear relative to the H
point for J =11 [or k„=(22m)/b+63)]. For a metallic
tubule, the H point is located at —', I W (I ) [see Fig. 1(b)],
if n —m is equal (unequal) to 3d Xinteger. d is the
highest common divisor of m and n. Moreover, the DOS
of the only linear subbands relative to the H point are
finite, and all parabolic diversions at certain band bot-
toms are divergent in 1/V E form. The only difference in
the feature of the DOS between metallic and semicon-
ducting tubules is that all subbands in the latter must at
least have a divergent DOS in I/'i/E form. '

The energy dispersion is changed during the variation
of the magnetic Aux. When the spin-B interaction is
neglected, the energy dispersion in Eq. (2b) is periodic in
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~Lr~
(p q)

r'L I'~

(0 O) ~ g (zn, n)

y a&

-x'

with a period Pc. The tubules with 2m + n
=3 X integer (A3 X integer) are metals at
P, =integer Xgo [(integer+ —,

' )Pc] [see Eqs. (2b), (3a), and

(3b)], and they are semiconductors at the other P's. The
characteristic of the DOS is that the DOS are divergent
in 1/&E form for all subbands at any Aux except that
the only linear subbands relative to the H point have a
finite DOS at P, . The spin-B interaction further destro s
the periodicity of the band property (metal or semicon-
ductor), but does not afFect the characteristic of the DOS.
Therefore, a graphene tubule is a metal at a certain
magnetic-Aux range including P„and each subband has a
divergent DOS there except for the linear subbands at P, .
This special relation between band property and the DOS
will be directly reflected in the magnetic response.

III. MAGNETIZATION AND DIFFERENTIAL
SUSCEPTIBILITY

10--- EF=O H

CO
ll

A

~ —2

I I I I ~ ~ I I I J I I ~ ~ I I I ~ I f I I I I I I I I ~
/

I I I I I ~ ~ I ~ [ I I I I I I ~ I-3
0.0 0. 1 0.2, 0.3 0.4

k„(A ')

The energy dispersion formulated in Eqs. (2a) —(2c) is
used in calculating both magnetization and differential
susceptibility. The spin-8 interaction (go /m'r )(Plgc)
included in the energy dispersion is very important, be-
cause the 1D subband with the divergent DOS is capable
of crossing the Fermi level. M is expected to show spe-
cial cusps, as indicted from the previous study, as a re-
sult of the 1D subband crossings. Furthermore, yM ex-
hibits discontinuous divergencies when the subb and
crossings occur. These features are closely examined, and
their chirality dependences are studied. Temperature
effects are also included in the study. The results suggest
that special structures of the magnetic properties should
be measurable at low temperature (T ( 1 K). Moreover
the anomalous variation of M with T exists in a metallic
tubule.

thr
The electronic structure varies with the magnetic fl

t rough a tubule. Magnetization at a finite temperature

T
is a variation of the free energy with the magnetic fl1C Ux.

he canonical ensemble (here the same as the grand-
canonical ensemble) is taken in evaluating the free ener-
gy. The distribution probability of each subband state is
described by the Fermi-Dirac function

FIG. 1. (a) A graphene tubule is just a graphite sheet rolled
from the origin to the vector R =ma&+ na2, where a& and a2
are the primitive vectors of the graphite sheet. The tubular axis
is parallel to the primitive vector R~ =pa&+qa2. The x' and y'
axes are relative to the graphite sheet, and the x and y axes are
parallel to R and R~, respectively. That rectangle formed by
R and R~ is the unit cell of the unrolled tubule corresponding
to (m, n)=(5, —1). (b) The hexagonal Brillouin zone of the
graphite sheet and that (rectangle) of the unrolled tubule. A
chiral tubule has the 1D Brillouin zone (first) along the segment
I 8". I 8' here is that of the (5,—1) tubule. The H point is at

3
1"8'. (c) The energy dispersion of the metal lic (5,—1) tubule at

/=0. Each subband is described by the transverse wave vector
k„(=2mJ/b&63) or the angular momentum J. All 28 valence
bands are occupied (EF=O), and the symmetric conduction
bands are unoccupied (not shown). The arrows point at two
subbands close to each other. The valence and conduction
bands with J= 11 are linear and degenerate relative to H point.

f(E(k„,k, o,g))
1

expIP[E (k, k~, cr, P) p(T, Q)]]+1—(4)

where P=(k~T) '. The chemical potential p(T, Q) is
known to be zero at T=O, and remains so at the other
?'s and P's. The reason why p( T, P) =0 at all T s and P's
comes from the symmetric structure of both valence and
condition bands; that is, the DOS is symmetric about en-
ergy zero. p here is independent of T and P. However, it
does not behave in this way in the doped graphene tubule
(see Fig. 12 in Sec. IV). A graphene tubule only ex-
changes energy with a reservoir, and the particle number
is fixed during the flux variation. The free energy per
unit length at T is given by
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F(P, T)= g f in[1+exp[ P—E(k„,k», o,g)]] .
is&

x

The integration of dk is confined to the first Brillouin zone.
The magnetization at T is calculated from the definition

M(y, T)=— (6)

The magnetization here includes both the persistent currents circulating in a graphene tubule and the spin polarization.
If the spin-B interaction is neglected, the magnetization is equal to the persistent current density (per unit length), and
their directions are perpendicular to each other. The persistent current carried by each subband state corresponds to
the average of the transverse velocity. This average value could be evaluated from the gradient of the Hamiltonian
versus k„; therefore, we obtain the same persistent currents from such calculation. Substituting Eqs. (2a) and (5) into
Eq. (6), M(P, T) of the (m, n) tubule is thus given by

BE(k„,k, P) g~ dk
M(P, T)= —c g f f(E(k,k, o., g)) + (7a)

1st B m'r P0x

where

BE(k,k, P)
By

+27TQO
cos8sin[ 3b(k sin8 —k cos8)]

E(k„,k»P) m +mn+n

—v 3sin8sin (k cos8+k„sin8) cos
3b
2

&3b
(k sin8 —k„cos8)

+cos8cos (k cos8+k„sin8) sin
3b
2

&3b
(k» sin8 —k„cos8)

(7b)

The origination of M(P, T), as seen from Eq. (7a), is very complicated. The first term BE(k,k$»)/Bp in Eq. (7b),
which is related to the persistent current density, consists of both the axial wave vector and the transverse wave vector
(or the angular momentum). Consequently, the simply linear relation, as found in a mesoscopic ring, ' between
current carried by each state and angular momentum does not exist here. Derivative of M(P, T) versus P is the
differential susceptibility

(P, T)=~r Po
BM(P, T)

By
(8)

where p0( =4mX 10 N/A ) is the free-space magnetic permeability.
The zigzag tubule is the main object of study, since the special features shown in the magnetic response are easily un-

derstood from its relatively simple electronic structure [see Eq. (3a)], and there is no loss of generality. The magnetiza-
tion at T =0 is first studied; M(P, T) in Eq. (7a) for a zigzag tubule (8=0') is thus reduced to

r

OCCll.

M(P, T =0)„=—c g f1st

T 2n.y0
sin J+

m P1 0
2 cos J+

m P0

3bk+cos
2

1/2

3bk. 1+4cos cos J+
2 m P0

+4cos J+
m P0
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g sin
J

J+
0 f cos

therefore, both periodicity and antisymmetry are
easily identified from M(Q, T=O)=M($+$ To=0)=
—M(go —

Q, T=0). Both periodicity and antisymmetry,
as seen in the solid curve, are destroyed by the inclusion
of the spin-B interaction. A pair of detailed cusps in the
neighborhood of (to are shown in the inset, and other
pairs occur at the positions close to 2$o, 3$o, . . . , etc.
M(P, T =0) is independent of the spin-8 interaction ex-
cept in the flux regions confined by a pair of cusps.

0. 1

(bio, o)

o —0.0

he
gj

-0.1
0.0

I

f.o
eI eo

I I I I I I I I I i 0 I I I I I I I I

0.98 1.00 1.02

Z. O

FICx. 2. Magnetization M (P, T =0) of the (210,0) tubule. The
dashed and solid curves, respectively, are calculated without
and with the spin-B interactions. The spin-8 interaction des-
troys the period $0. The inset shows the details around the
cusps at P-Po.

Each occupied subb and is limited by the condition
E(k„,k, o, g.) ~0 because of EF=0. The dk integral
range close to the subband bottom (corresponding to
k» =0 for a zigzag tubule) will depend on the magnetic
flux, when the subband with the spin-B interaction inter-
sects with the Fermi level.

(210,0) and (211,0) tubules are calculated for their mag-
netization and differential susceptibility. The former has
a radius r =82.22 A, and the latter r =82.59 A. The B
field corresponding to Po is 19.47 T (19.29 T) for the
former (latter). Respectively, they are metallic and semi-
conducting (gap -0.05 eV) at /=0. Each subband
represented by J, as seen from Eq. (3a), is double degen-
erate except that two subbands J=m and 2m of the me-
tallic tubule are nondegenerate. The band property will
affect the characteristics of magnetization and difFerential
susceptibility. The larger tubules here are chosen for a
model study; however, the smaller tubules could also ex-
hibit similar magnetic properties.

M(P, T=0) of the (210,0) tubule is shown in Fig. 2.
The dashed curve is the result in which the spin-B in-
teraction is neglected. M(P, T =0) is a periodic function
(period Po), and it is antisymmetric about Po/2.
M(P, T =0) in Eq. (9) could be simply expressed as

((), =[1+C,+O(C, )]P, ,

Ci = ~go Im *r
~ l(&3vryo) I()lm +mn +n ),where

M(P, T=0) at /=0 is vanishing, because the persistent
currents coming from the two subbands J and 2m —J
cancel each other. They do not behave as stated above for
a graphene tubule with 8%0 or +30, but the net magne-
tization is still vanishing at P =0. The cancellations
remain significant at any P; hence the magnitude of M is
small.

The cusps in M(P, T =0) deserve a closer examination.
The electronic structure varies as from Eq. (3a) as P
changes. The bottoms of the subbands denoted by
J, =139 and 279 only touch the Fermi level at P=Po,
when the spin-8 interaction is discarded. The DOS of
these two linear subbands are finite there, and so there
are no cusps in M(Q, T=0). M(Q, T=0) behaves the
same but there are logarithmic divergencies in
yM(Q, T =0) (Ref. 8) (see the open circles in Fig. 8 at
P-Po). Although the spin-8 interaction is small for
P-(to, it is the main factor in determining the existence
of a pair of cusps, as seen in the inset. For example, the
spin-8 interaction (go /m *r )(P lgo) = 1.13 meV at

As a result of the spin-B interaction, both
J, =139 and 279 subbands just cross the Fermi level at
P, —0.9858 (1.0145) Po for the first (second) cusp. At
P =P„ the DOS of the crossing subbands at the band bot-
tom (k =0) are further found to be divergent in I/V E
form from the calculation of

~
dE (J„k»,P, )I

dk
~ [ ~ 1/sin(3bk l2)]. Consequently, the divergency

of the DOS at the band bottom leads to the cusps in
M(Q, T =0). The cusps, as known from a previous

study, suggest that the electron populations undergo
drastic change there. In addition to the variation of the
electronic structure with the flux, the electrons could
redistribute themselves between valence (spin-up) and
conduction (spin-down) bands with the same J, . The
redistribution only occurs within the magnetic-flux re-
gion con6ned by a pair of cusps. Concerning a pair of
cusps, the crossing conduction-band (valence-band) states
become occupied (vacant) at the first cusp, and vacant
(occupied) at the second cusp. Furthermore, the electron
redistribution could cause an anomalous temperature
effect (see below). Because subbands with divergent
DOS's intersect the Fermi level within a certain
magnetic-fiux range (see below), the spin-B interaction
also has an obvious effect on the transport properties and
the thermal properties. This paramagnetic interaction is
found to result in special step structures in the ballistic
magnetoconductance (the quantized conductance), and
divergent structures (in 1l&T form) in the heat capaci-
t 25

The cusp responds to the fact that the J, subband bot-
tom crosses the Fermi level, and the crossing position P,
thus satisfies the relation: [E(J„k» =0),0, P, )„s„s~

=~go/m*r ~. An approximate P, could be obtained
from expanding E(J„k =0,$)„.„s in the neighborhood
of P„where the dispersion of the J, subband is linear,
e.g., P, =go for a pair of cusps shown in the inset. P, is
approximately given by
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and it is about 0.014 for the (210,0) tubule. There is no
solution for a very small 8, ; that is, no cusp, as observed
from Fig. 2, is shown at P close to 0. The —(+) in Eq.
(10) corresponds to the first (second} cusp of a pair of
cusps. The magnetic-flux range ( =2C, P, ) in which a
pair of cusps exists is approximately proportional to the
magnetic flux. It is about 0.029$p for P, near to Pp, as
shown in the inset. For a graphene tubule with any
chiral angle, the approximate expression of P, in Eq. (10)
remains in similar form.

M(P, T=O) of the (211,0) tubule is plotted in Fig. 3.
The dashed and solid curves, respectively, correspond to
those without and with spin-8 interactions. Both periodi-
city and symmetry in the absence of the spin-8 interac-
tion, and the aperiodicity due to this interaction, are
similar to those (see Fig. 2) of the (210,0) tubule. The
notable differences, as observed from a comparison of the
insets here with that shown in Fig. 2, between (211,0) and
(210,0) tubules lie in the flux region close to a pair of
cusps. There are two pairs of cusps within one Pp for the
(211,0} tubule, but only one pair for the (210,0) tubule.
The cusp s here occur in the neighborhood of
P, =(integer+ —,

'
)Pp [see Eq. (3a)], where the (211,0) tubule

is a metal in the absence of the spin-8 interaction. The
pair of cusps close to —', Pp ( —,'Pp) comes from the crossing
of the J, =140 (J, =281) subband. The approximate
crossing position of the (211,0) tubule also satisfies Eq.
(15), but the flux range between a pair of cusps is nar-
rower for the smaller P, (or weaker spin-B interaction).
For example, the flux range is about 0.0185$p for the
second pair of cusps as shown in the upper inset of Fig. 3.
Another difference is that the direction of magnetization
is opposite between (211,0) and (210,0) tubules. The gra-
phene tubule with 2m+n%3Xinteger(=3Xinteger) is
basically diamagnetic (paramagnetic) at the small flux,
e.g., diamagnetism for the (211,0) tubule. These stated
differences depend only on the band property, metal or
semiconductor, in the absence of the 8 field. In addition,
the magnetism could further be altered by the doping,
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FIG. 3. Same plot as Fig. 2, but for the (211,0) tubule. The
upper and lower insets, respectively, show the details around
the cusps at P-

3 Po and —
3 $0.

and is mainly determined by the finite Fermi energy (see
Sec. IV).

The diff'erential susceptibility gM(P, T=0), including
the spin-S interaction, is shown in Fig. 4. The dashed-
dotted and dashed-circled curves correspond to the
(210,0) and (211,0) tubules, respectively. The order of y~
is 10 —10 . Two kinds of divergent forms, logarith-
mic and power forms, are found at the positions near
/=0 and P=g„respectively. The logarithmic divergen-
cy shown in the dotted-dashed curve occurs at /=0,
where there is no subband crossing. It also exhibits at
P=P, (e.g. , open circles in Fig. 8), when the spin-8 in-
teraction is neglected. The logarithmic divergency
rejects the fact that the linear valence and conduction
bands just touch the Fermi level. It is related to the
J, =140 and 280 subbands of the (210,0) tubule. This
logarithmic divergency at / =0 could be understood from
the derivative of the definite integral in Eq. (9):

(1 la)

where

+2nyp
sin J,+

Nl m
2 cos

m

3bky+cos

f (ky, P) =
1T p

1+4cos
3bk

cos J, +
2 m '

Pp
+4cos J,+

m

gQ
'1/2 +

NT P
(11b)
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The above equations are valid for any fiux, and it is
sufhcient in considering the divergent forms that sub-
bands in the summation g J are only for those touch-

ing or crossing the Fermi level. The integral upper limit
k»+(P) is the axial wave vector corresponding to the
lowest (highest) energy of the occupied valence (condi-
tion} band, and the integral lower limit k (P) is the op-
posite. At $-0, the integral limits are independent of P
there because of no subband crossing, i.e., k„=O and

k» + = (m /3b) stay the same for the zigzag tubule. There-
fore, they do not contribute to the derivative of M versus
p, and af (k», p) Iap in Eq. (11a) is the only contribution
of the logarithmic divergency. When f(k», P) in Eq.
(lib) is expanded about the small P and k for the
J, =140 and 280 subbands, its derivative versus P is ap-
proximately given by (k +3(nglm) )

' . gM(Q, T=0)
is then proportional to —1nigi by substituting the above
approximation into the first term in Eq. (1 la).

Each power divergency shown in the two curves is lo-
cated at P„where the J, subband just crossed the Fermi
level. The divergency at $, =0.9858/0 in the dashed-
dotted curve (also see the solid circles in Figs. 6 and 8) is
taken as an example to realize the general power form. It
is related to the J, =139 and 279 subbands of the (210,0)
tubule. The finite y~(P, T =0}at the left-hand neighbor-

k» ~(P) = 2
2

m*r yo

1/2

(p p,.)—

[+ ( —) is for the occupied conduction (valence) band;
], when the energy dispersion

IE(J, k» P)„s„sl—Igcr/m r
i

is expanded about the
neighborhood of k» =0 and P=P, . As a result the term,
[ak, (y)](ay)f(k', (y}}—[ak, (y)]/(ay)f(k, (y}}
in Eq. (1 la) makes an outstanding contribution to yM in
the

~ P —P, i

' divergent form. The other power diver-
gencies could similarly be proved to have the same diver-
gent form.

The cbirality of a graphene tubule is presently investi-
gated as to whether it strongly affects magnetization and
differential susceptibility. Three metallic tubules (at
/=0) —(242, —121), (230,—46), and (210,0)—with the
nearly same radii are chosen to show the chiral effect.
The corresponding chiral angles and radii are (30,
10.89', 0') and (82.04,82.52,82.22) (A). The 1D Brillouin
zone of the (230,—46) tubule is the same as that [Fig.
1(b)] of the (5,—1) tubule, so these two tubules have simi-
lar electronic structures [see Fig. 1(c)]. The magnetiza-
tion is independent of the opposite chiral angles (+8'), as
examined from Eqs. (7a) and (7b) by changing (O, k ) to
(
—8, —k»). M(P, T =0) in Eq. (7a) for an armchair tu-

bule [here a (242, —121) tubule] could be further reduced
to

hood (p, ) only reflects the fact that no subband cross-
ing occurs there. The divergency at the right-hand
neighborhood (P, + ) results from the variation of the in-
tegral limits with P, because the contribution due to the
integration of af(k, P)/a((} in Eq. (lla) is finite. That
af (k», p, )/ap is a well-behaved function within the in-
tegral range is the main reason. It is noticed that
af (k, p)!ap remains so even at p=po, since the diver-
gency, as found at /=0, is canceled by the valence and
conduction bands. This feature of af (k,g) Iap could ex-
plain why g~ here does not show a logarithmic divergen-
cy at /=go. The integral lower (upper) limit of the occu-
pied conduction (valence) band at P, + is independent of
Aux; hence the power divergency is related to the deriva-
tive of the integral upper (lower) limit versus flux for the
occupied conduction (valence) band. The relation be-
tween the integral limit and the Aux is approximated to
be

M (p, T =0)„,h„,

OCCU.= —cy f1st ~

+ 27TQO
s1n

mgo

&3bk
- 1+4cos cos

m $0

m $0

~3bk
cos

+4 cos
&3bk

2

gO
1/2 m*r $0

dk
X iE(J,k», c», $) (0 2' (12)
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The interesting flux range is that close to the subband
crossing or /=$0. Magnetization and differential suscep-
tibility in that region, respectively, are shown in Figs. 5
and 6. The results, as observed from those in Figs. 5 and
6, are very close to one another, although there are many
differences in the electronic structures among three tu-
bules, e.g., the subband degeneracies. The features like
cusps in M(P, T =0) and power divergencies in
y~(Q, T=O), are related to the subband crossings and
hence hardly depend on the chirality. Take the (230,—46)
tubule as an example. The cusp in M is only related to
the J, =505 crossing subband, and its position P, is ap-
proximately obtained by expanding the dispersion
~E(J„k»=—,'I W, P) in the neighborhood of $0. P, also
satisfies the approximate Eq. (10) as does the (210,0) tu-
bule. The power divergency a:

~ P —P, ~

' in yM is fur-
ther obtained by expanding the above dispersion at the
neighborhood of k =—', I W [or 18 in Fig. 1(b)] and

P =Po. Another (242, —121) tubule does behave so. These
expansions explain why the essential features shown in M
and y~ are insensitive to the chirality. The chirality only
has very weak effect on the magnitude of M and yM, as
obtained from the results of the metallic and semicon-
ducting (not shown) tubules.

Cusps in M and power divergencies in yM at T =0 are
expected to be broadened by the finite temperature.
M(P, T) of the (210,0) tubule is shown in Fig. 7 at various
temperatures. The results (the shortest-dashed curve)
without the spin-8 interaction at T =0 is also shown for
the comparison. The cusps (solid curve) are hardly
affected by the temperature at T~0. 1 K (not shown).
They are gradually flattened by the increasing tempera-
tures, and disappear at T~10 K. The corresponding
yM(P, T) is shown in Fig. 8. The power divergencies
(solid circles) at T =0 are replaced by the peak structures
at finite T. If T ) 10 K, the spin-B interaction effects are
completely buried by the thermal broadening. This is be-
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FIG. 6. The differential susceptibility comes from the magne-
tization shown in Fig. 5.

cause the magnitude of the spin-B interaction ( = 1 meV)
corresponds to the thermal energy at T =10 K. The
broadening effects in the semiconducting (211,0) tubule
(not shown) are similar to those shown here. The magni-
tude of yM is about 10—10 times larger than that mea-
sured from the mesoscopic rings. ' The peak struc-
tures in yM(P, T) should be experimentally observable if
Tis below 1 K.

The temperature does not destroy the period of the AB
oscillation as the spin-8 interaction does. But it has
another important effect in that the magnitude of the
magnetization decreases as T increases. That the addi-
tional persistent currents due to conduction-band states
(vacant states at T =0) could reduce the net contribution
of the valence-band states is the main reason. It is noted
that the variation of spin polarization with temperature is
negligible except at the relatively high T. The amplitude
of M(P, T =0) is situated at P-P&6 (-Po/4) for the tu-
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Flax. 10. Same plot as Fig. 9, but shown at /=0. 99$o. The
inset shows the details of the (210,0) tubule at low temperature.
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FICx. 9. The variation of magnetization with the temperature
is shown at P=Po/6 for the various zigzag tubules with
2m +n =3Xinteger.

bules with 2m +n =. 3Xinteger (%3X integer), e.g., the
(210,0) [(211,0)] tubule shown in Fig. 2. The variation of
M with temperature is shown in Fig. 9 at P=Po/6 for the
various tubules with 2m +n =3X integer. These zigzag
tubules are semiconducting at P=Po/6. They have ener-

gy gaps proportional to 1/r (somewhat affected by the
spin-B interaction), and the largest tubule, the (210,0) tu-
bule, has an energy gap corresponding to -300 K. With
increasing temperature, the occupation probability of
electrons in the conduction bands increases. At room
temperature, conduction and valence bands that are
strongly affected by temperature are only those closest to
the Fermi level Ez=O. For example, for the (210,0) tu-
bule, these subbands are J=140 and 280. A larger tu-
bule has a smaller energy gap and subband energy spac-
ing, so that the cancellation of the persistent currents be-
tween conduction and valence bands with the same J is
more significant at a fixed temperature. Hence the tern-
perature effect, as seen from Fig. 9, in reducing magneti-
zation is relatively obvious for the larger tubules. The

temperature that reduces the amplitude of magnetization
at T =0 to half of the value is approximately proportion-
al to 1/r for the various tubules, as indicated from the en-

ergy gaps. It is —120 K for the (210,0) tubule. This
feature is almost independent of the chirality, because the
energy dispersions of the subbands closest to the Fermi
level behave similarly. Moreover, it stays the same for
another kind of tubule with 2m+n+3X integer. The
temperature effects mentioned above are shown at the
magnetic Aux, where a graphene tubule is semiconduct-
ing.

When a graphene tubule is metallic at a certain
magnetic-fiux range confined by P, in Eq. (10), the varia-
tion of magnetization with temperature may exhibit
anomalous behavior. The persistent currents (or M) in-
crease at the relatively low temperature as T increases.
Due to the spin-B interaction, the valence J, subbands in-
tersecting with the Fermi level have vacant states near
the band bottom. Hence electrons could occupy those
states at TAO, and they make a contribution similar to
the net contribution of the other valence-band states.
When this contribution (increasing persistent currents) is
larger than that (decreasing persistent currents) coming
from the conduction bands, it causes the anomalous
behavior. Figure 10, shown at /=0. 99$o, clearly illus-
trates such behavior, e.g. , the existence of the peak struc-
ture. The anomalous behavior also exists in the (21,0) tu-
bule, although there is not a peak structure in the
dashed-circled curve. The reason is -that the spin polar-
ization (positive) here is larger than the persistent current
density (negative), and the main variation of M with T
comes from the latter. In addition, the spin polarization
might cause the magnetization to change direction and
increase with increasing T at relatively high temperature,
e.g., M of the (210,0) tubule at T-500 K (see the solid
curve).

IV. DOPING EFFECT

Graphene tubules could be intercalated with alkali-
metal atoms, ' as was done for doped C6o (Ref. 14) and
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GIC's. ' Electrons are transferred from alkali-metal
atoms to carbon atoms, and each carbon atom in the sat-
uration composition, as found in X6C6o and stage-1 C8X,
is assumed to receive 0.1 e on an average. Doped zigzag
tubules are chosen here for a model study, and the doped
armchair tubules are also included to understand the
chirality effect. Equation (7a) is used to calculate the
magnetization at T =0, but the Fermi energy (the chemi-
cal potential at T =0) in the Fermi-Dirac function needs
to vary with P. Owing to the crossings of 1D conduction
bands by the Fermi energy, M and gM, respectively, are
expected to show special cusps and discontinuously sharp
peaks. They are calculated for the doped tubules with
various radii to see whether the magnetic response
markedly relies on the radius. Moreover, M at a small
Aux is investigated to show the relation between magne-
tism and Fermi energy [E~(/=0), or free-carrier densi-
ty].

The electronic structure of the graphene tubule is sup-
posed to remain intact during the intercalation, as em-
ployed in the stage-1 GIC's, ' ' i.e., the effect of the in-
tercalation is restricted to the fixing of the Fermi energy.
According to the rigid-band model, the Fermi energy
[Ez(0)] in the absence of the B field is determined by the
free-carrier number per unit length. The relation between
the Fermi energy and the linear density could further be
obtained from E (J,k», P =0) in Eq. (2b). The result of the
(210,0) tubule is shown in Fig. 11. The cusps (marked by
arrows) come from the crossings of the subband bottoms
by E~(0), and they are related to the divergent DOS at
the band bottom (k» =0). The linear density of the (m, 0)
tubule is D =(0.4m /3b) e/A, when each carbon atom is
assumed to averagely receive 0.1 e from the intercalant
atoms. The assumed linear density of the (210,0) tubule is
D = 19.7178 e/A, and the corresponding energy, as indi-
cated by the solid circle in the inset, is E~(0)=2. 1311eV.
The angular momenta corresponding to the occupied
conduction bands are within the range 115~J~ 305, and
the nearest subbands from the Fermi level are J=305
and 115. The magnetism at the small Aux is principally
dependent on D or E~(0) (see Fig. 18).

A doped graphene tubule only exchanges energy with
the reservoir when it exists in a 8 field. The noninteract-
ing electrons occupy the subbands according to the ener-

gy dispersion in Eq. (2a), and the Fermi energy [Ez(P)]
at T =0 varies with P to keep the carrier number con-
stant. This behavior is apparently different from that of
the undoped tubule, since the Fermi energy always stays
the same (E~ =0) for the latter (see Sec. III). E~(P) of the
(210,0) tubule is shown in Fig. 12. Without the spin-B in-
teraction (dashed curve), E» (P ) is periodic in Po and sym-
metric about Po/2. Both periodicity and symmetry are
easily identified from E(J,k», P) =E (J —l, k», P+Po)»d
E(J,k, p)=E( —J —l, k, po p). There are fo—ur cusps
within Po. The number of cusps depends only on the in-
trinsic electronic structure. There are four subband bot-
toms for which energy ranges at 0 ~ P ~ Po cover E~(0).
This explains why there are four cusps within Po. The
spin-B interaction E(o,g), as seen in the solid curve,
trivially destroys symmetry and periodicity. The number
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FIG. 11. The relation between the Fermi energy [EF(0)] and
the linear free-carrier density (D) is plotted for the (210,0) tu-
bule. The arrows mark the positions of the cusps. The inset

0

shows the details around the assumed density D =19.7178e/A,
which is indicted by the solid circle with EF(0)=2.1311eV.

of cusps is doubled due to the Zeeman splitting for the
two spins. Both radius and chirality (not shown) affect
only the positions and the number of the cusps, and the
essential features shown here remain similar for other
doped graphene tubules.

The cusps, as stated in Sec. III, imply that the electron-
ic structure undergoes drastic change. However, the
electrons here redistribute themselves among the different
conduction bands as P varies. The Fermi level EF(P) just
crosses the bottom of the J, conduction band at a certain

P, . The divergency of the DOS at the band bottom thus
results in a cusp there. The magnetic property, magneti-
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FIG. 12. The variation of the Fermi energy with the magnet-
ic Aux is plotted for the (210,0) tubule. The solid and dashed
curves, respectively, correspond to those with and without
spin-B interactions. The insets show the details around the
cusps at the small Aux.
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zation (see below), is sensitive to the electron distribu-
tions; therefore it also exhibits similar cusps. A closer
analysis near the cusps could reveal valuable one-body
properties (e.g., yo and J), because they are shaped by the
one-body electronic structure. The first cusp in the
dashed curve (see the upper inset; P, =0.029/0) is taken

as an example. It is due to the crossing of the J, =305
conduction band by EF(P). If P is greater (smaller) than
0.029/0, the J,=305 subband is an empty (occupied) sub-
band. The left-hand slope of the cusp could be obtained
from the conservation of the free-carrier number, and it
is given by

dE~(P) dE(J„k =0,$)

27TQO sm 1+2cos

J, +

(13)

Equation (13) means that the main change of the free-
carrier number at P, comes from the J, conduction band
with the divergent DOS. This exact relation has been
checked numerically. Equation (13) remains the similar
form for other cusps in the absence of the spin-B interac-
tion, and it only needs to add a Zeeman term,
ger/ mr $0, for those in the presence of the spin-8 in-
teraction. It is useful in understanding the one-body
properties of the graphene tubule. The formula of the
right-hand slope of the cusp is very complicated, and
neglected here. In short, the slope in Eq. (13) is exact at
the left-hand (right-hand) neighborhood of the cusp, if
the J, conduction band becomes an empty (occupied)
subband at P & P, (P & P, ).

We use Eq. (7a) to calculate the magnetization of the
doped tubule at T=O. M(P) of the (210,0) tubule is
shown in Fig. 13. The dashed curve is the result in which
the spin-B interaction is neglected. M(P, T =0) is a
periodic function, and is antisymmetric about Po/2.
Both periodicity and antisymmetry are similar to those in
the undoped tubule (see Fig. 2). There are four cusps
within Po here, but no cusps for the undoped tubule. The
reason in explaining the occurrence and number of the
cusps is the same as that stated in E~(P). The difference
between the doped and undoped tubules arises from the
fact that the m-band electrons in the former could redis-
tribute themselves among the different conduction bands,
and those in the latter always occupy the same valence
bands.

When the spin-8 interaction is included, it obviously
destroys periodicity and symmetry, as seen in the solid
curve. Hence this paramagnetic interaction plays an im-
portant role for the doped tubules as well as for the un-
doped tubule. The result (solid-dotted curve) for the un-
doped tubule is also shown for comparison. The main
differences between the doped and undoped tubules in-
clude the number and positions of the cusps, and the
magnitude of magnetization. There are eight cusps, as
shown in the solid curve, within Po for the doped tubule,
but only a pair of cusps (at 0.9858$o and 1.0145/0) occur
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FIG. 13. Magnetization of the (210,0) tubule. The solid and
dashed curves, respectively, correspond to those with and
without spin-B interactions. The result of the undoped tubule
(solid-dotted curve) is also shown for the comparison. The ar-
row marks the position of the cusp in the undoped tubule. The
insets show the details around the cusps at the small Aux.

at the neighborhood of $0 for the undoped tubule. The
Zeeman splitting in the doped tubule results in two neigh-
boring cusps coming from the spin-up and -down states,
respectively. This behavior is very different from that of
the undoped tubule, since a pair of cusps in the latter re-
sult from the same spin state. The cusps of the doped tu-
bule possibly occur at a very small Aux. For example, the
first cusp in the solid curve is at P, =0.028$o (B =0.54 T;
see the upper inset). This implies that the special struc-
tures of the magnetization are more easily observed in the
doped tubule, owing to the smaller B field. The number
and the positions of the cusps basically depend on band
dispersion and Ez(0) (or free-carrier density).

Doping could increase the magnitude of the magneti-
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zation by one order. For the doped tubule, the contribu-
tion due to all the valence bands is thus inferred to be
much smaller than that due to the occupied conduction
bands by one order. As a result of the cancellation be-
tween the two degenerate subbands 2m —J and J, the
magnetization is zero at P =0. Each valence band
remains occupied during the variation of the magnetic
flux, and, furthermore, the large cancellation similar to
the /=0 case leads to a smaller contribution. However,
the contribution due to the two degenerate conduction
bands (occupied or unoccupied) nearest to the Fermi level
is very important. The reason is that one of the two bands
will become unoccupied (or occupied) at P) P„and the
cancellation of the magnetization between them may van-
ish quickly. Take the magnetization close to the first cusp
(see the solid curve in the upper inset) as an example. The
Fermi level crosses the bottom of the J, =305 conduction
band with spin-up states at P, =0.028/0, and this band
becomes unoccupied at P )P, . The magnetization at
/=0 just cancels out for both J= 115 (positive) and 305
(negative} subbands. Furthermore, the cancellation be-
tween them disappears rapidly as the magnetic flux in-
creases gradually. Therefore, the net contribution (posi-
tive) due to the J =115 and 305 subbands could be re-
garded as the main contribution of the magnetization at
small flux.

y~(P), including the spin-B interaction, is shown in

Fig. 14. The open circles and the dashed-dotted curve, re-
spectively, correspond to the doped and undoped tubules.

g~ of the undoped tubule exhibits the logarithmic diver-
gency at P-0 and the power divergency (1/QP —P, ) at
$-0.9858/0, and that of the doped tubule exhibits the
discontinuously sharp peaks (divergent) at certain cross-
ing positions. These sharp peaks are related to the
derivative of the integral upper limit (or the Fermi
momentum) in Eq. (11a) versus P. The approximate Fer-
mi momentum of the J, conduction band could be ob-
tained from the expansion of the energy dispersion
[E(J„k~,cr, g}] in Eq. (2a) about k»=0 and P=P, . The
derivative of the Fermi momentum versus P is further
found to be proportional to [8 EF(P)/8 P]' . The sharp
peaks in yM are consistent with the variation of EF(P)
with P (see Fig. 2). At low temperatures, these sharp
peaks are replaced by the peak structures, as seen in Fig.
6. The magnitude g~ of the doped tubule is 10 —10
and is about ten times larger than that of the undoped tu-
bule. Furthermore, it is much larger (10 —10 times) than
that obtained from mesoscopic metal rings. ' Hence
it is relatively easy to observe special structures, cusps in
M, and sharp peaks in yM in the doped tubule.

For the undoped tubules with 2m +n
=3Xinteger (%3Xinteger), the magnitude of the mag-
netic response hardly depends on the radius (or m is pro-
portional to 1/r; not shown), and they are paramagnetic
(diamagnetic) at the small flux. The doping would have
an obvious effect on the above features. The magnetiza-
tion plotted in Fig. 15 is shown for the various doped tu-
bules with (m, n) =(210,0), (105.0), (42,0), and (21,0). The
spin-B interaction is neglected here for simplicity. The
carrier number per area is the same for each tubule, and
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FIG. 14. The differential susceptibility of the (210,0) tubule.
The open circles and the dashed-dotted curve, respectively, are
those of the doped and undoped tubules in the presence of the
spin-B interaction. The insets show the details around the
discontinuously sharp peaks (open circles) at the small Aux.

the Fermi energy Ez(0} is very close between tubules.
The positions of the cusps vary from one tubule to anoth-
er because of the different electronic structures. If the en-

ergy difFerence ED=Ez(0) E(J„k—=0,/=0) between
Ez(0) and the bottom of the highest (or lowest unoccu-
pied) occupied band is small, then the first cusp shown in
M (P) would occur at the small ((},. For example, ED, the
(2100) tubule, is 0003 eV, and the first cusp is at
p, =0.029/0. M ( p ) basically shows three kinds of
behavior (the third kind shown in Fig. 17). The first kind
is that M(P) quickly increases at the small fiux and then
shows a cusp, e.g., M (P) of the (210,0) and (42,0) tubules.
We could ascribe this behavior to the net contribution of
the two degenerate bands 2m —J, and J„one of which is
crossed by the Fermi level and becomes unoccupied at
P) P, (as explained in the previous paragraph). The two

doped tubules exhibit paramagnetism at small flux, as
seen in the undoped case. The second kind of behavior is
that M(P) of the (105,0) and (21,0) tubules decreases
gradually, and the first cusp occurs at the moderate P
[e.g., p, =0.34/0 for the (21,0) tubule]. These two doped
tubules exhibit diamagnetism at small flux. This means
that the doping could change the magnetism of the gra-
phene tubule. M (P), due to the valence bands, is positive
for the undoped tubule with 2m+n =3Xinteger, so
that the diamagnetism is related to the contribution of
the occupied conduction bands. The linear degenerate
conduction bands J=—', m and ~3 m at /=0 are found to be
the main contribution of the diamagnetism. The magne-
tism of a doped tubule is determined by the competition
of the two sets of degenerate bands above. There is not a
simple relation between magnetism and radius, as ob-
tained from the calculations, but it is closely related to
the Fermi energy (see Fig. 18). The doped graphene tu-
bule may be paramagnetic or diamagnetic, and so are the
related GICs. ' ' The corresponding g~(P) is shown in
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introduced intercalants could bring the Fermi level close
to the bottom of the highest occupied (lowest unoccu-
pied) conduction bands; i.e., the doped tubule is paramag-
netic (diamagnetic) under such a condition. Moreover,
the special structures shown in M and y~ occur at small
flux. A similar relation between the magnetization and
Fermi energy also exists in the armchair tubule
(242, —121) (pluses), and so the feature is independent of
the chirality. Although the tubule used in this study has
2m+n =3Xinteger, a similar feature (not shown) is
obtained for another kind of tubule with 2m
+n&3 X integer. Hence the magnetism of the graphene
tubule is possibly changed by introducing various inter-
calants, and it depends on the Fermi energy (or free-
carrier density) and electronic structure. This feature is
apparently different from that of the undoped tubule,
because the undoped tubule with 2m+n =3Xinteger
(%3Xinteger) must be paramagnetic (diamagnetic) at
small Aux. The doping effects on the magnetism here are
similar to those found between graphite (diamagnetism)
(Ref. 27) and GIC's (Refs. 12 and 26) (the magnetism also
depends on E~}.

V. CONCLUDING REMARKS

The magnetization and differential susceptibility of a
graphene tubule with any chiral angle is studied in this
work. There are cusps in M(P, T=O) and power diver-
gencies in yM(P, T=0) as a result of the spin-B interac-
tion. The special structures shown in M and y~ are in-
sensitive to the chiral angle (for tubules with the nearly
same radii). The temperature effect in reducing the mag-
netization is relatively obvious for a larger semiconduct-
ing tubule because of the smaller energy gap. Further-
more, an anomalous temperature effect is found to exist
in a metallic tubule at relatively low temperature. For
the doped graphene tubule, the magnetic properties
strongly depend on the Fermi energy (or the free-carrier
density) in addition to the geometric structure (including

the radius and chiral angle).
The sPin-8 interaction is important in a graphene tu-

bule, although its magnitude is small. It causes Zeeman
splitting for the two spins, and makes the 1D subband
capable of crossing the Fermi level at the fiux P, before
the parabolic dispersion of the crossing subband (J, ) be-
comes linear. The subband splitting destroys the periodi-
city (period Po) of the physical properties, and the diver-
gent DOS of the crossing subbands results in cusps in
M(P, T =0) and power divergencies in yM(P, T =0). The
power divergencies in y~ are expected to be replaced by
the peak structures at low temperature T ~ 1 K. More-
over, the anomalous variation of M with T is caused by
the spin-8 interaction. The magnetic susceptibility in a
graphene tubule is 10—10 times larger than that of a me-
tallic ring; ' hence the anomalous features due to the
spin-B interaction should be observable in the magnetic
measurements. In addition, the spin-B interaction could
lead to step structures in the ballistic magnetoconduc-
tance, and the divergent structures (in 1/&T form) in
the heat capacity. In short, the importance of this
paramagnetic interaction could be veri6ed from the mea-
surements of magnetization, magnetoconductance, and
heat capacity.

The doping effects on the magnetic properties are sum-
marized as follows. The Fermi energy here is very sensi-
tive to the variation of the magnetic Aux, but it always
remains zero in the undoped case. The magnetization ex-
hibits cusps even without spin-B interaction; moreover,
the doping alters the number and the positions of the
cusps in the presence of the spin-B interaction. The spe-
cial structures, such as discontinuously sharp peaks,
shown in the susceptibility are related to
[,"r}E+(P)lr}P]'~, and those of the undoped tubule be-
long to the power or logarithmic divergencies. The mag-
nitude of the magnetic response could be increased by the
doping, and so it is relatively easy to observe the special
structures shown in M and y~ for the doped tubule. The
magnetic response is relatively strong for the larger
doped tubules, but it hardly relies on the radii for the un-
doped tubules. If the undoped (m, n } tubule has
2m +n =3 X integer ( W3 X integer ), it is paramagnetic
(diamagnetic) at the small flux. However, the magnetism
of the doped tubule may be paramagnetic or diamagnetic,
and it is closely related to the energy difference between
the Fermi level and the bottom of the highest occupied
(or the lowest unoccupied} conduction band. Various in-
tercalants could be introduced into the graphene tubule
to alter the Fermi energy (or free-carrier density), as done
for GIC's. ' Therefore, the magnetism is possibly
changed by the doping. The doping effects on the mag-
netic properties are expected to remain similar for a more
complicated system, an n-layer coaxial tubule.
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