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We investigate the absorption spectrum and the distribution of radiative decay times for two-
dimensional excitons in semiconductor quantum wells, as affected by a random adiabatic in-plane
excitonic potential. We limit our discussion to the case of a white-noise potential. Such a potential
could arise as a result of Quctuations in the composition of an alloy semiconductor, or alternatively,
Quctuations in quantum-well thickness. We find, in general, that the shortest radiative decay time
is directly proportional to the inhomogeneous broadening of the exciton line in absorption, which
in turn is proportional to the correlation parameter of the random potential. We calculate the
magnitude of the correlation parameter for several cases of potential interest. The theory is in
qualitative agreement with available experimental data.

From the earliest days in the history of undoped semi-
conductor quantum wells, exciton absorption and re-
combination spectra have been used to estimate or ver-
ify the quantum well growth parameters. The energy at
the peak of the spectrum was immediately understood
to be that of an exciton and thus related to the one-
dimensional (1D) "particle in a box" confinement ener-
gies of the electron and the hole. Somewhat later it
was also recognized that the exciton linewidth could be
used to estimate Huctuations in the width of the box,
and the linewidth quickly became a standard measure of
the interface quality: narrow linewidths imply uniform
interfaces, and good quantum wells.

The Stokes shift, or the di8'erence between the exci-
ton peak energies for absorption and emission, has also
been recognized. to be important. While the peak of ab-
sorption can be thought to depend simply on the intrinsic
mean quantum-well thickness, the emission peak must be
explained as a more complicated average over the actual
partially thermalized exciton population. Even the con-
cept of mean quantum-well thickness is not yet fully un-
derstood, as pointed out by Warwick, et aL. ,

4 who called
attention to the fact that an actual interface likely has a
complicated spectrum of Huctuations. It is the purpose
of this paper to make a theoretical contribution to the
understanding of both absorption and emission spectra
and their relation to the interfacial structure. In doing
so, we use simplified, single-parameter, models of inter-
facial disorder to obtain densities of states and transition
rates for two-dimensional weakly localized excitons.

We took our original inspiration &om the seminal work
of Feldmann et al. ,

5 who measured exciton recombination
rates in a variety of samples and then related thexn to
the corresponding homogeneous linewidths. They further
saw a connection between. the linewidth and a coherence
volume (coherence area in the 2D case) over which the

center-of-mass wave function is "coherent. " We find this
connection to be somewhat mysterious. In this paper
we develop an alternative description of the coherence
volume, related closely to the localization length. The
spectrum of localization lengths, in turn, can be related
to the spectrum of Huctuations in the exciton's potential
energy as it moves in the plane of the quantum well.
Finally, this random potential is analyzed in terms of
interfacial and alloy disorder.

The idea that the exciton recombination rate should
depend on the center-of-mass coherence volume goes
back at least to the work of Rashba and Gurgenishvili,
who discussed the giant oscillator strength that could be
found for an exciton weakly bound to a point defect: the
weaker the binding, the larger the (center-of-mass) wave
function, and hence the larger the oscillator strength.
Numerous authors have made use of this idea to develop
understanding of the optical properties of quantum-well
and quantum-wire excitons. For example, Hanamura"
and later Andreani, Tassone, and Bassani showed how
the 1D confinement of a 2D &ee exciton would allow it
to couple to a 1D density of photon states and recom-
bine radiatively with a well defined lifetime. This idea
has been extended by Citrin and by Srinivas et al. ,
to include dephasing processes, removing the limitation
of total excitonic &eedom. Others have sought to de-
velop statistical models of exciton trapping or classical
localization, ' and have shown the important eKect of
in-plane localization on excitonic nonlinearities. ' The
lifetimes of quantum-wire (1D) excitons have also been
explored theoretically by Citrin. ' The experimental
investigation of the lifetimes of excitons in a variety of
2D and 1D structures has been the focus of a number
of publications ' ' and the relation of these to the
present work will be discussed later.

For our description of the exciton's random 2D poten-
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tial, we invoke a model of statistical interfacial rough-
ness, which lends itself to the well-developed theory of
localization. In our model, there is no long-range corre-
lation of the interface structure, so we can make no con-
tact with those ' ' who invoke atomically smooth
"grown islands" with lateral dimensions exceeding the
exciton Bohr radius (10—15 nm). We are not aware of
any statistical techniques for generalizing our theory to
allow some long-range correlation.

The rate of radiative recombination is described by the
following expression:

...).1(~14lf) I

where n is the re&active index, u and c are the frequency
and velocity of light. For the heavy-hole exciton, sum-
ming over p, gives

).1(&14lf)l' = It
(X'+ iY)

P

(X + iY)

=KP
where P = (Slp IX) is the Kane matrix element, and K
is the square of the overlap integral of electron and hole
wave functions:

K = d red rh, re)&g ~ X'e

W(r. , rh) = @(R)p2D(p) X.(z.) Xh(zh), (5)

where p h, and z h are the electron and hole positions
along and in the perpendicular to the plane of the quan-
tum well, respectively, p = p, —ph, R = (m, p, +
m~lph)/(m, + m~~) is the coordinate describing the po-
sition (in-plane) of the exciton's center of mass, and
m, and m~~ are the respective electron and hole masses.
p2D(p) is the function describing the relative positions
of the electron and the hole in the plane of the quantum
well (QW). In the strictly 2D case, (p2D has the form:

As a result, the rate of radiative recombination can be
written in the following form:

1 K
+r +0

Q2
3~ $37 un» is of the order of 1 ns for

all semiconductors. The overlap integral in Eq. (3) ex-
presses the strong sensitivity of the radiative process to
the correlation of electron and hole motion.

We shall consider only the case of a two-dimensional
exciton for which the wave function can be written as the
following product:

where a = rh2/ye2 is the exciton Bohr radius, 1/p =
1/m, + 1/m~~ is a reduced effective mass. In the quasi-
two-dimensional case, a can be considered as a variational
parameter. 4(R) describes the exciton's center-of-mass
motion in the plane of the quantum well. y, (z, ) and
yh(zh) are the wave functions for electron and hole mo-
tion in the direction of the QW axis. For an electron
or hole in the absence of the other, this function is that
of a particle in a one-dimensional rectangular quantum
well. For our purposes here, we recognize that these
functions appear only in the integral J' dzy, (z)yh(z),
which is of order unity and in any case is constant, in
a given structure, for all excitons under consideration.

Substituting Eq. (5) into Eq. (3) one gets the following
expression for the rate of radiative recombination of the
ith exciton state:

I P(o) I'». f ~2~@ (R(
7) L 70

A2

+ V(R) 4 (R) = e 4(R),

where M = m, + m~~ is the total mass of the exciton.
The exciton's radiative lifetime depends on the exciton

state i and we can reasonably limit our interest to the
average decay rate (at energy e'),

) . b(e, —e)
1

~„(e) ) b(e; —e)

which can be rewritten in the following form:

2

) dR'@, (R) b(e; —e)
(o) I

T0 ) b(e; —e)

where K, =
I
jdzy, (z)gh(z)1 . One can see that the

rate of exciton radiative recombination depends strongly
on the exciton's center-of-mass wave function through
the factor

I I d BC';(R)1 . This factor has the dimen-
sion of an area, and expresses precisely the idea of the
"coherence area" of the radiating exciton. The radiative
recombination rate is enhanced by this area divided by
the efFective area of the exciton 1/1(p(0)12 .

Prom now on we will study this function in nonideal
quantum wells, in which the exciton line is inhomoge-
neously broadened. We will use the adiabatic approx-
imation: we assume that the energies of electron and
hole quantization (within the well), as well as the bind-
ing energy of the two-dimensional exciton are larger than
the inhomogeneous broadening. In this case, the exci-
ton's center-of-mass wave function is described by the
Schrodinger equation with the adiabatic random poten-
tial V(R):

v»(p) = —2p/a8 (6) Iv (0) I' It; &(e)
~o p(e)

(1o)
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where p(s) is the density of exciton states, and the func-
tion A(s) is directly proportional to the exciton absorp-
tion coefficient. It is easy to show that A(s) satisfies the
following condition:

1 1
(~ —0.67) + 5.28 &

A(s) = —
q (16)

0.86

)
' +

( + 1.5)' )
~ ) —1.5

To evaluate A(s), we turn our attention to the poten-
tial function V(R). We will assume that it is a white-
noise random potential, satisfying the following correla-
tion relation:

(V(R)V(R')) = r a(R —R.') . {12)

(fV(R) e'" d~R

)A(s) =— 8(s —sg),8 2~~ ~a

(13)

The value of I' will be obtained later for several diferent
cases. In the case of the white-noise potential, the func-
tion A(s) has been discussed previously by Raikh and
E&os. We outline their conclusions brieQy.

In an ideal quantum well, direct optical excitation of
&ee excitons is possible only at a single isolated &e-
quency, because of the requirement of the wave vector
or momentum conservation. Absorption of light over a
broad range of energies is made possible by scattering or
localization of the exciton in the potential V(K).

At large energy e, the excitonic wave functions are
nearly plane waves, and one can use perturbation the-
ory to calculate A(e). The result isso

where 7 = s/W. The function A(s) is presented in
Fig. 1, multiplied by lV and by 5, the first in order to
make it dimensionless and universal, and the second sim-
ply to make it reach a peak value near unity. Recall
that A(s) represents the shape of the exciton absorption
line, whose half width A can be found &om the figure:
4 = 3.7W = 0.59MI'/hz. so Since in the figure the en-
ergy scale is also normalized by the parameter TV, we
see, as expected, that the absorption spectrum becomes
broader and correspondingly weaker at the peak as the
disorder, W, increases, so that its integrated strength
remains constant.

The problem of defining the zero of energy is not triv-
ial, but has been shown by Thouless and Elzain to have
an acceptable solution. For our purposes and for com-
parison with experiments, the energy scale can be set by
the position and the width of the absorption spectrum,
in comparison with A(s).

In Fig. 1, we also show the dependence of the dimen-
sionless density of states p(s)/po calculated by Thouless
and Elzain for a white-noise potential. po ——M/2ah2
is the 2D density of states for &ee, nondegenerate par-

where S is a normalization constant, si, ——(hk)z/2M is
the kinetic energy of the exciton, k is the exciton's wave
vector in the plane of the quantum well. Using Eq. (12),
we get from Eq. (13):

CL

~x

R'
A(E) =— for c' )& W (14) CL

0.5

where W = MI'/2vrhz is the appropriate energy scale for
discussing localization of a particle of mass M.

In the opposite extreme, i.e., the low-energy absorp-
tion tail (s ( 0, ~s~ && W), the absorption coefficient was
found by the optimal Huctuation technique. Here, the
absorption is determined by those optimal Quctuations
that are capable of localizing excitons most deeply. The
procedure then gives

A(s) =
/

—'
/

e l'l/ for /s/ )) W .
0.24 /' el&

qWy

Joining of Eq. (12) and Eq. (13) and using the
proper normalization of A(e) leads to the following
expressions:

00n —-————-
-10 -5 0 5

s/ W
10

FIG. 1. Spectra of absorption (A), radiative recombination
rate (A/p), and density of states (p), for 2D excitons in a
white-noise random adiabatic potential with strength param-
eter W. The energy scale and the curves are all normalized
by the same parameter W, so each function fits any random
potential. The integrated absorption strength is independent
of the broadening parameter, and the minimum radiative life-
time (found at the peak of the A/p curve) is directly propor-
tional to W. The normalizing parameter for the density of
states is the 2D free-particle density of states M/2z'5 .
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One can see that the minimum time of recombination is
directly proportional to the width of the exciton line L.
Feldmann et al. , use, by assumption, a similar relation-
ship, but with the recombination time proportional to
the homogeneous linewidth, rather than as in our theory,
the inhomogeneous linewidth. Each is an inversion of the
usual inverse relationship between lifetime and width in
the case of lifetime broadening.

On ea,ch side of the peak the recombination rate de-
creases: for low energies because of the shrinking of the
wave function @(R) for more strongly localized states,
and for high energies as the states approximate more ex-
actly those of &eely propagating nonradiative excitons.

Next we consider the question of how the energy de-
pendence of the radiative lifetime might acct the shape
and the time dependence of the recombination spectrum.
The rate of recoxnbination at a given energy will depend
not only on the radiative lifetime, but also on the rate at
which excitons jump between their localized states, ernit-
ting and absorbing phonons. Two temperature regimes
can be identified.

At low temperature, the distribution of excitons in the
tail of localized states will be far &om equilibrium. This
is a result of the fact that radiative rates will be over-
whelrningly faster than thermalization rates. The rate
of exciton tunneling between localized states decreases
drastically in the tail of the distribution because the con-
centration N(e) of states to which the exciton with local-
ization energy ~s~ can jump decreases exponentially with
~e~, according to

—(cI

N(e) = p(c) de = 0.18Wpoe I'I/ (18)

As a result the average tunneling distance grows and
makes further thermalization very improbable.

The position of the maximuxn e of the luminescence
line can be taken to be approximately equal to the en-
ergy at which the thermalization tixne is equal to the re-
combination time. Excitons &om shallow states can live
long enough to reach this energy, but those below e
will probably decay radiatively before further therxnal-

ticles of mass M. Finally, we plot also the function
A(s)/p(e) made dimensionless by multiplying by Wpe.
This function, according to Eq. (10), represents the dis-
tribution of the radiative rates 1/v„(s'), normalized by
vo/(K' Sx,(p(0)[ ), where S~, —— (1/W)(2mb /M)
(1/F)(2m h2/M)2. S~, is a characteristic area determined
by the above combination of particle mass and depth of
potential Huctuations.

We call particular attention to the fact that the recom-
bination rate appears to be reduced by disorder. From
the height of the peak of this curve, we see that fastest
rate of recombination in this distribution is described by
the following expression:

1jv„(s) exp( —s/kT) p(s) de

exp( —s/kT) p(s) ds

~.(o)~*».f»""' '"""
exp( —e/kT) p(s) de

(19)

7 (T) increases with temperature simply because the
higher-energy, nearly &ee excitons, have longer radiative
lifetimes. In the limit kT )) W, one can obtain

~o pp kT
l~(0) I'It.

~p kTM
2mh2 ((p(0) (2 K, ' (2o)

and the radiative lifetime has no dependence on the de-
gree of disorder. This expression is identical to the result
obtained for free exciton emission by Andreani et al. ,
when we take into account the "triplet" exciton state,
whose radiative lifetime is electively infinite.

Numerical calculation of Eq. (19) shows that Eq. (20)
remains valid with 10'% accuracy if kT ) 1.4 W, i.e., if
kT ) 0.38 b. where b, is the linewidth (inhomogeneous)
of the exciton's absorption spectrum. One can see that at
the low temperature lixnit for Eq. (20) (for kT = 0.38 K),
the lifetime is only 1.9 times longer than the shortest ra-
diative lifetime given by Eq. (17) and it is also propor-
tional to the width of the exciton line. As a result the
fastest exciton radiative decay time that can be observed
at any texnperature is in the range of v;„ to 1.9&;„
and is limited by the exciton's inhomogeneous broad-
ening. Equation (20) may have a very narrow or even
nonexistent range of validity if the exciton linewidth is

ization. To find the balance between these competing
processes and to determine the resultant spectrum re-
quires a detailed understanding of the thermal relaxation
of the localized excitons. An excellent calculation of site-
to-site transfer rates for localized excitons has been made
by Takagahara, who evaluated the phonon-assisted ex-
citon transition rates within the adiabatic approxima-
tion. He included. both the tunneling mechanism and
the long-range Coulomb mechanism in his calculations.
We have not yet attempted to convolute his work with
ours. A recent eKort to calculate a distribution function
for nonequilibrium localized excitons used only an energy
dependent density of states, ignoring the energy depen-
dence of radiative lifetime and localization radius.

Direct experimental access to the radiative lifetime of
a localized exciton appears impossible, except perhaps in
the case of direct optical excitation in the low energy tail
of absorption. An alternative has very recently appeared,
using a near-field microscopic technique to isolate the
sites at which excitons are localized.

At high temperature (kT larger than the exciton
linewidth W), the process of thermalization is much
faster than that of radiation. In this case, there will
be a Boltzmann distribution of exciton energies, and the
decay times at all energies will be determined by the
average decay tixne w(T). Neglecting the possibility of
nonradiative decay, this time is determined by
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comparable with the exciton binding energy.
Most of the experimental investigations of the

decay time as a function of QW thickness and tem-
perature really show instead its dependence on the in-
terface quality. There is little quantitative agree-
ment between these data and calculations done on
the basis of an ideal quantum-well model. One can
find a connection of the decay time with inhomoge-
neous broadening in the data of Sauer et al. for
GaQ 47InQ 53As/Ga In& As„P~ &

QW's. Two types of
samples with diferent inhomogeneous broadening were
investigated there. In the QW's with the same thick-
ness, the decay time was shorter for the sample where
inhomogeneous broadening was smaller. This is in qual-
itative agreement with our results. Nevertheless more
experimental investigations of this effect should be done
for comparison with the theory.

In the Appendix which follows, we evaluate the cor-
relation parameter for several cases of interest. From
these we have evaluated the shortest radiative life-
times, for quantum-well thicknesses of 2 nm, where
the alloy Quctuation have their strongest inBuence.
The results are as follows: for GaQ 471nQ 53As/InP,

1.2 x 10 s; for CdTe/CdQ sMnQ 2Te, 3.4 x
10 s„ for GaQ 7InQ 3As/GaAs, 7.4 x 10 s; and for
GaAs/AlQ 3GaQ 7As, 2.2 x 10 s. These theoretical de-
cay times are extremely short, and are predicted for
QW's for which the only randomness in the exciton's
adiabatic potential comes &om alloy Buctuations. These
times could be observed in ideal quantum wells, in the
absence of quantum-well-thickness Quctuations. Realis-
tic modeling of well-thickness Huctuations is beyond the
scope of this paper. We have investigated the efFect
of atomic-scale white-noise Buctuations at the interfaces
and shown that they produce negligible contributions to
the correlation parameter I'. Extension of the model to
include atomic clusters (short-range correlations) indi-
cates that such correlations increase considerably the pa-
rameter I', and hence the distributions of energies and
lifetimes. However, we see no way to extend our model
to include the long-range order that appears to be present
in quantum wells with large uniform areas referred to as
islands. This is a serious limitation to the applicability
of our technique, as a preponderance of actual quantum-
well samples show evidence of long-range islandlike cor-
relations. Within the confines of a large island, however,
our theory could account for broadening and lifetime ef-
fects.

In conclusion, the decay time of the 2D exciton lu-
minescence depends not only on the exciton's internal
properties such as binding energy, the overlap integral
between electron and hole wave function, and Kane ma-
trix. elements, but also on the exciton's external motion
in the QW plane. In our model with a white noise ran-
dom potential, the resulting spectrum of localized exciton
states gave us a correlation between the inhomogeneous
broadening of the absorption line and the radiative de-
cay time. We found the minimum recombination time to
be directly proportional to the width of the exciton line.
This is, as noted above, in qualitative agreement with
some recent experimental data.
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AP PENDIX.

In this section, we will show how to evaluate the cor-
relation parameter I' for two cases of potential interest,
namely, those in which the quantum well is an alloy and
the barrier is a simple binary III-V semiconductor (I)
and in which the roles of alloy and binary semiconduc-
tors are reversed (II). In these cases the "well width
fluctuations" are simple consequences of the fluctuations
of chemical concentrations in the alloys.

Case I. The quantum mell is a semiconductor alloy and
the barrier is a normal binary semiconductor. In this
case the random potential acting on electrons, V, (r), and
holes, Vq(r), can be written in the form

( )
n, p, ((r)/N, lzl & I/2;

e, h & —
p lzl & I-/2 (Al)

where ((r) is the random fluctuation of local concentra-
tion of atoms in the semiconductor alloy A B~ &om
the average value xN, where N is the concentration of
lattice cites:

K(r)~(r )) = ~x(1 *)~(r r ) . (A2)

n, = dE, /dx and ng = dE„/dx characterize the rate
of the shift of conduction and valence bands with com-
position x. Using the adiabatic approximation, we can
obtain the random potential V(R) acting on the exciton
center of mass:

v(a) = f ai '
d~~p. (z)~'~~» )~Q'v. (R+ ~p, ,)

+ dzd p gh Z +2D p Vh R — p, Z

(A3)

Using Eq. (Al) and neglecting (m, ~~/M) p in comparison
with R, an assumption whose validity is implied in the
adiabatic approximation, we can obtain an expression for
I" in Eq. (14):

In Fig. 2, we present the calculated dependence of I'
on L for quantum wells of In Ga~ As within barriers of
GaAs and InP. For the strained Ga Inq As/InP system,
we use the conduction band ofFset AE, = (464 —408 x)
meV (Ref. 35) in the range 0.4 & x & 0.6 and the ex-
perimental effective masses m, /mQ ——0.033 + 0.027 x

(1 —*)x L/2 L// 2
I' = n, dzy, (z) -',- n„dzy„(z)4 ( 2 4

I,/2 L/2 )—
(A4)
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