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The electron transport properties in 6-doped semiconductor systems are studied. The subband
electronic structure of the d-doped system is obtained by solving the coupled Schrodinger and
Poisson equations. The screening of the quasi-two-dimensional electron gas is taken into account
for the ionized impurity scattering through the matrix dielectric function within the random-phase
approximation. The quantum and transport mobilities are calculated numerically as a function of
the total electron density and the width of the doped layer at zero temperature. The intersubband
scattering and the effect of empty subbands above the Fermi level on the electron mobilities are
investigated. The calculated mobilities are in reasonable agreement with the available experimental

results.

I. INTRODUCTION

In recent years, there has been increasing interest in
the study of the electron transport properties in é-doped
semiconductor systems. The é-doped systems are, in gen-
eral, characterized by a rather high electron concentra-
tion, which makes them different from the other quasi-
two-dimensional (Q2D) systems, such as heterojunctions
and quantum wells. Typically, several subbands are oc-
cupied in a §-doped system and the effects resulting from
the occupation of several subbands are very important.
An advantage of the actual system is that no interfaces
are present to confine the electrons and ionized impurity
scattering is by far the most important scattering mech-
anism.

A large number of experimental investigations! '3 have
been carried out on the electron transport properties in
6 layers. However, the theoretical studies on the electron
transport properties of §-doped systems are limited in
some way. Gillman et al.? reported the calculation re-
sults of temperature dependence of the average electron
drift mobility in §-doped GaAs and they found the same
trends as found experimentally for the Hall mobility. But
they did not give details about the calculation and the
electron subband mobility at low temperature was not
obtained. However, in §-doped systems, the electrons in
different subbands have very different mobilities. Gold et
al.** studied theoretically the electron transport in struc-
tures with low doping concentration such that only the
lowest subband is populated. They included the influ-
ence of the disorder in the doping layer on the density
of states and screening effects. The mobility was cal-
culated by using a multiple-scattering theory. Mezrin
and Shik!® calculated the electron mobility in heavily
doped 9§ layers using screened Coulomb potential within
the Thomas-Fermi approximation (TFA). Very recently,
Gonzalez, Krupski, and Szwacka!® calculated the elec-
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tron subband transport mobilities due to the ionized im-
purity scattering. The screening on the Coulomb scatter-
ing potential was taken into account within the random-
phase approximation (RPA). In Refs. 15 and 16, the cal-
culations for electron mobility were based on the elec-
tronic subband structure obtained within the semiclassi-
cal Thomas-Fermi approximation,'”'® which yields ana-
lytical expressions for the effective confinement potential
and subband wave functions. In doing so, they had as-
sumed the impurity layer with zero thickness. Further-
more, the condition of a vanishing background acceptor
concentration was used in Ref. 15. In order to introduce
a finite background acceptor concentration, a variational
approach was employed and the electron subband wave
function and the transport mobilities were obtained up
to three subbands in Ref. 16.

In this work, we study the electron subband mobil-
ities in heavily doped é layers. To describe the sys-
tem more realistically in such a way that the results ob-
tained can reflect the experimental situation, we calcu-
late the electronic structure of the § layer by solving self-
consistently the coupled Schrédinger and Poisson equa-
tions. Although the calculation of the electron transport
properties becomes more laborious using the numerical
self-consistent results for the subband energies and wave
functions, the distribution of the donors and acceptors
and the exchange-correlation contribution of the 2D elec-
tron gas can be easily introduced. As a result, the influ-
ences of the doping concentration and the thickness of
the doped layer on the electron subband mobility can
be studied in contrast with previous works. In our cal-
culation, the screening effects of the 2D electron gas on
the scattering potential of the ionized impurity are in-
cluded and the effect of the empty subbands above the
Fermi level on the electron mobility is also investigated
through the dielectric matrix within the RPA. The the-
ory is applied to Si §-doped GaAs structures.

8363 ©1995 The American Physical Society



8364

The paper is organized as follows. The electronic struc-
ture of the system is presented in Sec. II. In Sec. III, the
scattering potential and screening effects on it are de-
scribed. The transport mobility obtained from the Boltz-
mann transport equations within the relaxation time ap-
proximation and the quantum mobility coming from the
linear response theory are exhibited in Sec. IV. The nu-
merical results for the electron mobilities and the com-
parison with experiments are discussed in Sec. V. We
present our concluding remarks in Sec. VI.

II. ELECTRONIC STRUCTURE OF THE
SYSTEM

We consider the following impurity distribution for a
Si §-doped GaAs structure,

o= (PR

where Np is the areal impurity concentration, Wp is
the width of the doped layer, which is taken in the
zy plane. For typical experimental conditions, we have
Np 2 10*2/cm? and Wp < 100 A. At such a high
doping level, the average distance between impurities is
smaller than the effective Bohr radius ag = A%¢q /m*e2
(ap =~ 100 A for GaAs) and the electron wave function
of the individual Si donors overlaps strongly with each
other. As a consequence, the donors no longer act as iso-
lated trapping centers and an impurity band is formed
just below the conduction band of GaAs. The electrons
are free to move in the doping plane and they do not
freeze out on the donors at low temperature. Due to
the interaction between the ionized impurities and the
delocalized electrons, an effective attractive potential is
formed in the z direction, which confines the electrons
close to the § layer. The electron energy in this direc-
tion is quantized into discrete levels and a Q2D electron
system is formed. In GaAs, a critical n-type doping con-
centration is about 0.3 x 102 cm™2.13 In the low doping
concentration regime below this critical Mott density, the
electron wave functions of the individual donors do not
have an important overlap with each other. No impu-
rity band is formed and the conduction takes place by
electrons that hop from one donor site to another. In
this case, the electric conductivity vanishes at zero tem-
perature. In the present work, we are interested in the
electron transport in the J-doped systems in the high
doping concentration regime.

The conventional way to determine the electronic
structure of the § -doped system is to employ the so-
called self-consistent calculation within the Hartree-Fock
approximation.!872011 It amounts to replace the ex-
act many-particle potential by an average one. Each
electron is assumed to move in a self-consistent poten-
tial Vic(2) and the coupled one-dimensional Poisson and
Schrédinger equations have to be solved self-consistently.
In such a calculation, the impurity distribution, the
exchange-correlation potential of the 2D electron gas,
and the nonparabolicity of the conduction band can be
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included. In another way, the electron subband energy
and wave functions of the é-doped system can be ob-
tained within the semiclassical TFA. It has been proven
that for a system with zero-thickness doping layer and
vanishing background acceptor concentration, such an
approximation yields the results that are equivalent to
those obtained from the self-consistent approximation.'”
The advantage of the TFA is that it gives an analyti-
cal expression for the effective confinement potential and
subband wave functions. However, it is difficult to take
into account the thickness of the doped layer and the
acceptor background.

In this work, the subband wave functions are obtained
from a self-consistent solution of the one-dimensional
Schrodinger and Poisson equations. The total electron
energy and wave function can be written as

En(ky) = En + (k) (2)
and

T,z (2,9,2) = ¥al exp(ik) - 7)), (3)

) 1

2)——
VA
where n =1, 2,..., is the subband index, 7 (EII) is the

electron position (wave vector) in the zy plane, F, is the
subband energy, ¥,(z) is the electron wave function in
the 2 direction, e(k) = h2kff /2m* is the electron kinetic
energy, m* the electron effective mass, and A is the area
of the sample.

The Schrédinger equation in the z direction is given by

B2 d2%¢,(2)

T o2m* dz?

+ V;c(z)"/}n(z) = En"/)n(z)’ (4)

where Vic(2) = Vi (2)+Vic(2) is the effective confinement
potential, which is composed as a sum of the Hartree po-
tential Vi (z) and exchange-correlation potential Vi (2).
The Hartree potential, due to the electrostatic interac-
tion of the electrons with themselves and with ionized
impurities, is determined by the following Poisson equa-
tion:

4me?

% = ?[ne(z) —np(z) + nal, (5)

where n.(z) is the electron concentration distribution and
n4 is the ionized background acceptor concentration. In
Eq. (5), we assumed that all the donors in the doping
layer are ionized. At zero temperature, the electron dis-
tribution is obtained by

N

Er
ne() = 3 [#n(2)? L o(E)dE, (6)

n=1

where N is the number of the occupied subbands, p(E)
is the electron density of states of the system, and Ep
is the Fermi energy. For a parabolic conduction band,
p(E) = m*/wh? is a constant for the 2D system. The ef-
fect of the nonparabolicity of the conduction band on the
electronic subband structures can be included through
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electron density of states (or the effective mass m*).
In the numerical calculations, we found that using the
usual formalism for Q2D systems,?! the nonparabolic-
ity modifies the self-consistent solution slightly. So, we
will not give the details here. The total electron den-
sity Ne = [*°_ne(z)dz is determined by the difference
between Np and N4, where N, is the areal ionized
acceptor concentration and can be estimated from the
thickness of the depletion layer. For ny = 10'*/cm3,
Ny ~ 10 /cm?.

The exchange-correlation potential Vi (z) is a function
of electron density and can be evaluated within the local-
density approximation??

e? 2

8megap anr,

Vie(2) =

Ts

1+ 0.05451n (1 + 11'4)] ,

(7)

where a = (4/97)/3 and r, = [47n.(2)/3]"/3/ap.
We performed a self-consistent calculation for the sub-
band electronic structures of a Si §-doped GaAs system.
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FIG. 1. The subband energy as a function of (a) total elec-
tron density for Wp = 20 A and (b) the width of the doping

layer for Np = 5.5 x 102 /cm?®. The dotted line indicates the
Fermi level.

In the calculation, we took the parameters m* = 0.07my,
€0 = 13.18, and ns = 10'*/cm?® . The electron exchange-
correlation energy and the band nonparabolicity were in-
cluded. We input the donor concentration Np and the
width of the doped layer Wp. The effective confining po-
tential profile Vi.(z), the subband energy E,, the wave
function ¥, (z), the Fermi energy Er , and the subband
electron population were obtained. We confirmed that
the subband electron population density from our calcu-
lation is in good agreement with the electron densities ob-
tained from Shubnikov-de Haas (SdH) experiments.!1:13

Figure 1 shows the subband energy FE, as a func-
tion of (a) the total electron density N, for Wp = 20
A and (b) the thickness of the doped layer Wp for
Np = 5.5 x 10'?/cm?. In the figure, the energy level
E,, is measured from the Fermi energy Er, which is in-
dicated by the dotted line. In Fig. 1(a) for Wp = 20
A, only the lowest subband is populated at low electron
density (low doping concentration). With increasing N,
(or Np), the effective confinement potential becomes nar-
row and deep. The distance between two levels increases
and more subbands are populated. The n=2, 3, and 4
subbands begin to be occupied at N. = 0.58, 1.62, and
4.76x10'2 /cm?, respectively. With increasing Wp, we
also find that more subbands are populated as shown
in Fig. 1(b). In this case, however, the total electron
density is fixed. Wide doped layers lead to a broad and
shallow confinement potential.

III. SCATTERING POTENTIAL
AND SCREENING

In the following, we will consider only the ionized donor
scattering because it is the most important scattering
mechanism for the considered system. The ionized im-
purities scattering potential is given by

ez 1

|4 = — — = 8
0 =-3 R ®)

where R; is the position of the impurity, the sum runs
over all the impurities in the system which are distributed
randomly in the doped layer. The two-dimensional
Fourier transform of the scattering potential is given by

2me? —anlz—z:| id R
v(g),2) = - €0g)| Ze alz==letdi-F (9)

i
where R'Z = (R|Ii,zi).

In the calculation of the electron transport properties,
we assume a parabolic conduction band. Using the Fermi
golden rule, the electron transition probability from state

In, E”) to |n/, Efl) for electron-impurity scattering is given
by
W (B, 1) = 28 )26
’n,n’( I ”) = Elun,n' (QH)l E"I_.]_é“’q"“
X8[En (kij) — En(ky)); (10)
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where wn n(g)) is the transition matrix element due to
the scattering.

The present system has a rather high electron density
and consequently the screening of the scattering potential
due to the electron gas will be significant. The screened
ionized impurity potential can be obtained in terms of
the static dielectric response function within RPA. Be-
cause of the occupation of several subbands, the dielec-
tric function has a tensor character given by €a,g(q)) =
€nn',;mm' (§)|), where a = (n,n’), 8 = (m,m’). If we as-
sume that the impurities are uniformly distributed in the
doped layer and are uncorrelated, the square of the tran-
sition matrix element due to the screened Coulomb scat-
tering potential is given by

2me?\> Np [Wr/?
Iunn’(ﬁl)lz = ( )
i) WD

€0q| —Wp/2
2
xdzi |3 e h(@)Gala2)|  (11a)
B
and
s(q), ) =/ dzwm(z)¢m,(z)[e—quIz—zil

0

(—1ymm e, (11b)

with the change in electron momentum due to scattering

2m*
q = [(En En) g2
2 1/2
+2k} — 2k cosH\/(En —E,) ;; + kf (11c)

and 6 is the angle between E“ and l::"

In the above equations, € (q”) is the element of the
inverse matrix of the dlelectrlc response function, and the
sum 8 = (m,m') runs over all the subbands of the sys-
tem. In actual calculations, however, we have to limit the
B sum. In most previous works, only the matrix elements
of the dielectric function associated with the occupied
subbands were considered. Consequently for a system of
N occupied subbands, the dielectric function ey g(gj) is
approximated by a N? x N2 matrix. Following this ap-
proach, the subband mobilities in heterojunctions with
two occupied subbands were studied in Refs. 23-25. And
those in a §-doped system with three occupied subbands
were calculated in Ref. 16.

The dielectric function within the RPA is given by

€a,5(q)) = ba,p + a—Fa,ﬂ(qu)Xg(qmy (12a)
where
Fopla) = [ detn(2)bu(2)
X /°° d2' P (2" )t (2')eN12=%'1 (12b)
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is the Coulomb form factor and xg(gj) is the static
electron density-density correlation function?3,24,26-28
without the electron-electron interaction. Notice that
X% m: (@) = 0 only when both the subbands m and m'
are empty, and x2,,./(g)) # 0 as long as one of the them is
populated. It means that the unoccupied subbands have
contributions to the intersubband interaction of the Q2D
electron gases.?® They could also influence the intrasub-
band interaction of the occupied subbands through the
mode coupling between the intrasubband and intersub-
band excitations. Such an effect in the collective excita-
tions of the Q1D electron system with a three-band model
(one of them was empty), was investigated in Ref. 30.

IV. TRANSPORT EQUATIONS

Considering only the ionized impurity scattering, we
calculate the electron subband quantum and transport
mobilities. These are determined from the different scat-
tering times connected to the average time between the
scattering events. The quantum lifetime or the single
particle relaxation time is the averaged elastic scattering
time. On the other hand, in the transport lifetime or the
momentum relaxation time, every scattering event is av-
eraged over its projection of the outgoing wave vector on
the incident direction.'® The Boltzmann equation of the
é-doped system for steady-state transport can be written
as

°_hk) - E“af" ”)
m* Oe(ky

= > Won(ky, E))

n' k’

X[fn'(k”) - fn(k”)], (13)

(10), and f, (k)
Notice that

where W, (l;:'”,l—c']") is given by Eq.
1s the _electron dxstrlbutlon function.
W n(k kll) =Wnn (k“, “)
Wlthm the relaxation time approximation, the distri-
bution function can be written as2%1°

af\" (k)

- - e .-
fulky) = £ ky) + — Tk, - E| =
() (k) + 2Pk - By = (%,

72 (e),

P

where fr () js the Fermi-Dirac distribution function and

7} (€) is the so-called subband transport lifetime (momen-
tum relaxation time). The Boltzmann equation can be
reduced to a coupled linear equation about 7t(¢).2° At
T = 0, only the electrons on the Fermi surface contribute
to electric transport and we have 7} = 7%(EF,), where
Epn, = Ep — E,. For a system of N subbands populated,
the electron subband transport lifetime is determined by
the equations

N
Y Kpwrhi=1 forn=1,2,..,N

n'=1

(14a)

with
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Ko = W{/o dBltun (g [(1 — cos 0)

Py / doiunn(q“)lz} (14b)

n'#n

and, for n' # n,

Eppn ,
- 7rfi3\/—/ d6|un (‘1||)| cos 0, (l4c)
where

2m* 1/2
Q|I[ = _'}‘i'z—‘ [EFn + Epn — 2 \% EpnEpy cos 0]

The quantum mobility or the single-particle mobility 72
is determined by the average scattering time. Within the
linear response theory, the subband quantum lifetime is
given by?*

. (14d)

1
p 7rfz3 / B n (q))1?- (15)

T,

n'=1

From the transport and quantum lifetime, the electron
subband transport mobility and quantum mobility can
be obtained easily,

€
t ’Tt

[
Bn =Ty Mo = ST (16)

m* "

Notice that the empty subbands n > N do not appear in
the transport equations (14) and (15) which determine
the electron mobilities. They are not involved in the
scattering processes directly. However, the empty sub-
bands influence the impurity scattering potential through
screening effects, which is taken into account by the di-
electric function.

V. NUMERICAL RESULTS AND DISCUSSION

Using the previous results for the transport proper-
ties, we calculated the electron transport mobility and
the quantum mobility in the § layer. In Fig. 2, the elec-
tron subband (a) quantum mobility and (b) transport
mobility for the Si §-doped GaAs structures of Wp = 20

are plotted as a function of the total electron den-
sity. The solid curves indicate the results considering
only the NV occupied subbands in the dielectric function,
which is approximated by a N2 x N2 matrix. The dashed
and dotted curves present the results including one and
two empty subbands, respectively, in the dielectric func-
tion, which is given by a (N + 1)2 x (N + 1)2 and a
(N + 2)2 x (N + 2)% matrix. It is seen that the empty
subbands above the Fermi level indeed influence the elec-
tron mobility through the effect of the screening on the
Coulomb scattering in the present multisubband system.
Such an influence on the mobility of the electrons in the
higher subband is stronger than in the lower ones. Both
the quantum and transport mobilities coming from the
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FIG. 2. The subband (a) quantum mobility and (b) trans-
port mobility as a function of the total electron density for
Wp = 20 A. The solid, dashed, and dotted curves present the
results including 0, 1, and 2 empty subbands in the dielectric
matrix, respectively.

highest occupied subband are depressed due to the ef-
fects related to the empty subbands. However, such an
influence on the mobilities from the lower subbands is
not pronounced.

We found that the quantum mobility, as shown in Fig
2(a), increases with increasing subband index and de-
creases with increasing total electron density (or donor
concentration). At the onset of occupation of a new
subband, the theoretical subband mobility exhibits an
abrupt jump. Such a discontinuity is due to the inter-
subband scattering and has been discussed in Refs. 186,
23, and 24 for the multisubband transport in Q2D sys-
tems. However, for the transport mobility, as shown in
Fig. 2(b), ub > pf when only three subbands are pop-
ulated, which is qualitatively in agreement with the re-
sults in Ref. 16. This is mainly due to the fact that the
wave function ¥,(z) is antisymmetric and has a node at z
= 0. For a narrow doped layer, electrons in this subband
have a smaller overlap with the impurities than those in
the third subband and, consequently, the scattering is
weaker. After the onset of occupation of the n = 4 sub-
band, p} becomes smaller than pf. This is because 2(2)
and v4(z) have the same parity, and the intersubband



8368

scattering between them is strong. We also observe that
the transport mobilities due to the n = 2 and n = 3 sub-
bands are close to each other and much higher than those
of the lowest subband. When we compare the present re-
sults of the transport mobilities obtained by considering
only the occupied subbands in the screening [solid curves
in Fig. 2(b)] with those of Ref. 16, we observe that the
Fig. 4 in Ref. 16 shows (i) at the onset of the occupation
of the third subband, the transport mobility of the low-
est subband decreases abruptly by about a factor of 4,
while the mobility of the second subband has an increas-
ing jump; (ii) when three subbands are occupied, the
mobility of the lowest subband increases with increasing
the doping concentration (electron density); and (iii) the
mobility of the second subband is about a factor of 6
larger than that of the third subband. In contrast, our
calculation shows that at the onset of the occupation of
the third subband, the mobility of the two lower subband
decrease about 6% and 15%, respectively. The mobility
of the lowest subband decreases with increasing the dop-
ing concentration, and the mobilities of the second and
the third subband are close to each other, which are in
agreement with experimental results.5 7911

Figure 3 shows the electron transport mobility as a
function of the width of the doping layer for fixed dop-
ing concentration (a) Np = 2 x 10*2/cm? and (b) Np =

~ @

Np=2x10"/cm’
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FIG. 3. The transport mobility as a function of the width
of the doped layer for (a) Np = 2 x 10'?/cm? and (b)
Np = 8 x 10'%/cm®. The solid, dashed, dotted, and dot-

ted-dashed curves present the results of the subbands n =1,
2, 3, and 4, respectively.
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8 x 10'2/cm?. The mobilities corresponding to n =1, 2,
3, and 4 subbands are indicated by solid, dashed, dot-
ted, and dotted-dash curves, respectively. In Fig. 3 and
hereafter, the mobilities are obtained by including all the
occupied subbands and two empty subbands above Er
in the dielectric matrix. It is seen that by increasing
the width of the doping layer, the mobility of electrons
in the lowest subband u{ increases slowly, while those
corresponding to higher subbands have a stronger width
dependence than in the case of occupation of the lowest
subband. For narrow layers, the higher subbands show
a much larger mobility than the lowest one, which is a
consequence of the fact that the electrons in the higher
subbands are mainly situated away from the z = 0 plane.
By increasing Wp, pb and p} decrease rapidly and uf
becomes very close to p} for wider layers. uf increases
slowly till a maximum is reached at Wp ~ 100 A for
Np = 2 x 10*?/cm? [Fig. 3(a)] and at Wp =~ 50 A for
Np =8 x 102 /cm? [Fig. 3(b)] and then decreases. The
position of this maximum shifts to smaller Wp as one
increases the doping concentration. The abrupt decrease
of the mobility at Wp = 105 A in Fig. 3(b) is due to
the onset of the occupation of the n = 5 subband. For
small Wp, pb and pf are close to each other. In Fig.
3(a), ub > pb when Wp < 65 A because the overlap
of |¢3(2)|? with the doped layer is stronger than that of
|12(2)|? in this case. However, by increasing Wp, such
an overlap increases much faster for the n = 2 than for
n = 3 subband. Notice that with increasing Wp, the
transport mobilities of the subbands with antisymmetric
wave function (n =2, 4) decrease monotonously. How-
ever, for those subbands with symmetric wave function
(n =1, 3), p! increases monotonously and a maximum
mobility in u} appears.

In Fig. 4, the electron quantum mobility is plotted
as a function of the width of the doped layer for (a)
Np = 2 x 10**/cm? and (b) 8 x 10'2/cm?. We found
that the Wp dependence of the quantum mobility has a
similar behavior as the transport mobility. However, at
small Wp, the quantum mobilities due to the different
subbands are well separated and increase with the order
of the subband index. By increasing Wp, ud increases
slowly and p? decreases and they approach each other at
large Wp. In Fig. 4(b), u? ~ ud for Wp > 100 A. In
contrast to transport mobility, u? is much larger than pl
in the whole calculated range of Wp.

We have compared our calculation with available ex-
perimental results of subband transport and quantum
mobilities.! 113475 Experimentally, the quantum mobil-
ity is obtained by the SdH measurements*'3 and the
transport mobility is obtained by the so-called mobil-
ity spectrum technique31:¢:13 or by the Hall measure-
ments combining with the subband electron density from
the SdH measurements.** The experimental results used
here were obtained at liquid helium temperature (4.2
K) or lower. The uncertainties of the quantum mobil-
ities of the lowest two subbands are about 10%. For the
higher subbands with subband electron density less than
3 x 10! cm~2, the relative error of the experimental re-
sults is much larger. The electron density dependence of
the transport and quantum mobilities is shown in Figs.
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FIG. 4. The same as Fig.
mobility.

3 but now for the quantum

5(a) and 5(b), respectively. In this figure, the calculated
mobilities of the first two subbands for Wp = 20 A are
given by the solid (n = 1) and dashed (n = 2) curves.
The experimental results of a Si §-doped GaAs are in-
dicated by solid circles (n = 1) and squares (n = 2).
For the transport mobility in Fig. 5(a), our calculation
shows the correct qualitative behavior as found experi-
mentally. Quantitatively, the calculated transport mo-
bility of n = 1 subband has a better agreement with
experimental measurements than that of n = 2 subband,
which is about a factor of 2 larger than observed exper-
imentally for N. > 3.0 x 10'?/cm?. At the onset of the
population of a new subband, the theoretical subband
mobility exhibits an abrupt decrease, which is not seen
experimentally. This is probably due to the fact that
in real systems there exist thickness fluctuations in the
doped layer, which lead to fluctuations in E,,. However,
in Fig. 5(b), the calculated quantum mobility shows a
quite good agreement with the experimental results.

In Fig. 6, the quantum mobility is given as a function
of the width of doped layer Wp for Si §-doped GaAs of
Np = 5.5 x 10'2/cm?. The theoretical (experimental)
quantum mobilities are presented by solid curve (circles)
for n = 1, dashed curve (squares) for n = 2, and dotted
curve (triangles) for n = 3. We found that for the first
two subbands, the calculated mobility is in good agree-
ment with the experimental results. By increasing Wp,

pi increases slowly and p? tends to pf at Wp > 120
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A. For the higher subband n =3, the calculated mobil-
ity shows qualitatively similar Wp dependence as found
experimentally.

We also found that the ratio of the transport mobility
to the quantum mobility from our calculation increases
with increasing the doping concentration. But it is al-
most not influenced by the thickness of the doped layer.
In the range of the doping concentration considered, it
increases from three to six for the lowest two subbands
and from one to three for the third one. Experimentally,
this ratio was found to be in the range 1.3 — 2.9 for the
§-layer structure'®>!3 and it is about two for the §-doped
quantum wells.® The ratio of the transport to the quan-
tum mobility reflects the nature of the scattering mecha-
nism, i.e., long-range versus short-range scattering. It is
seen that the present calculation yields a higher transport
mobility than the experimental result. It seems that the
model of the screened Coulomb scattering potential with
static RPA describes the short-range scattering more ex-
actly than the long-range scattering.

In the present calculation, only the scattering of ion-
ized donors is considered. Even though ionized impurity
scattering dominates the electron mobility in §-doped
systems, there are several unknown factors, which can
modify the electron transport properties. For instance,
from an experimental point of view, the profile of the im-
purity layer and the effective thickness of the doping layer
are not always exactly known. In heavily doped semicon-
ductor systems, the random distribution of the impurities
induces a band tail and creates localized states. Then
the density of states of the §-doped system is no longer a
steplike function. Because of the localized states and the
deep level centers, the electron density becomes much
lower than the intended doping concentration at high
doping level. For the present system, this is expected
to be relevant for Np > 6 x 102 cm~2. Other scat-
tering mechanisms will also influence the electron mo-
bility slightly, such as scattering with ionized acceptors,
neutral impurities, and the electron-electron interaction.
Deep level centers and the presence of possible impurity
clusters may also play a role. Because of the high impu-
rity concentration, the correlation among the impurities
becomes important and should be considered. Besides,
the screening is an important factor that influences the
electron-impurity scattering. In the theoretical study of
the electron transport properties in Q2D systems, the
static RPA screening is often used. In principle, all the
energy states in the system, including the screening ef-
fects, and the full energy spectrum should be considered
in the dielectric function within RPA for a multisubband
system. In the present calculation, we included all the
occupied subbands and two empty subbands above Ep
in the dielectric function. In such a case, the numeri-
cal calculation was already very difficult for four or five
populated subbands.

In our calculation, we assumed a steplike electron den-
sity of states for each subband of the Q2D systems. This
is justified when the subbands are well separated in en-
ergy and are much larger than the band tail of localiza-
tion states. This is the case for the first few subbands.
When there is a band tail at the onset of subband occu-
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pation, the Fermi level will cross the mobility edge of the
subband leading to a different scattering rate.

VI. CONCLUSIONS

In summary, the electron transport properties in §-
doped semiconductor systems have been studied. Our
mobility calculations were based on the self-consistent so-
lution of the subband electronic structure and wave func-
tions. The influences of the doping concentration and
the thickness of the doped layer on the electron subband
transport and quantum mobilities were investigated. The
ionized donor scattering was considered and the screening
was included within the static RPA for the multisubband
2D system. To the best of our knowledge, this is the first
work where the self-consistent electronic structure of §-
layers has been used to investigate the subband quantum
and transport mobilities. The effects due to the thickness
of the doped layer on the subband mobility and due to
use of empty subbands in the screening of 2D electron
gas were also studied.

Our calculation shows that the electrons in the lowest
subband have a low mobility, which is not much influ-
enced by the doping concentration and the thickness of
the doped layer. The mobilities due to the occupation of
higher subbands are much bigger than those of the lowest
one for small Wp, and they are strongly dependent on
the different parameters. We demonstrated that inter-
subband scattering is also important, as we have seen at
the onset of the occupation of a new subband. Although
the empty subbands are not involved in the solution of
the Boltzmann transport equation at zero temperature,
they affect the electron mobility through screening effects
on the scattering potential. The result of our calculation
shows that the empty subbands modify the subband mo-
bility, especially for the highest occupied subband. So, in
this way our calculation includes the important effect of
the mode coupling between the intrasubband and inter-
subband excitations that has been shown to be relevant
in multisubband models of plasmon excitations. We also
observed that is very important to obtain an accurate
electronic structure for the mobility calculations. For in-
stance, the position of the onset of the population of a
new subband determines where a new scattering channel
is introduced, which leads to the discontinuity in mobil-
ity.

Our calculated quantum mobilities of the lowest two
subbands, both for N, dependence and Wp dependence,
are in quite good agreement with experimental results
from Shubnikov—de Haas measurements.!?*'3 The trans-
port mobilities and the quantum mobilities of higher sub-
bands have the same behavior as observed experimentally
but, quantitatively, they are larger than experimental re-
sults.
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