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The intraband light absorption between conduction-band states in symmetric semiconductor quantum
wells in the presence of a perpendicular magnetic field is discussed. By theoretical analysis three types of
transitions are found: bound bound, bound free, and free free. Numerical calculations are given for a
rectangular GaAs quantum well in bulk Al,Ga,_, As. The absorption in this structure strongly depends
on structure parameters (well thickness, mole fraction, and effective masses), and also on temperature
and external magnetic field. Analysis and numerical results such as those presented here may be impor-

tant for the design of infrared detectors.

I. INTRODUCTION

It is well known that in a semiconductor quantum well
two types of optical transitions, interband and intraband,
may occur. If the quantum-well structure is subjected to
a magnetic field, these transitions become very interest-
ing. The magnetic field is an important additional pa-
rameter, since it can be applied experimentally in a well-
controlled way and modifies fundamentally the electronic
structure. Interband transitions have been studied both
theoretically and experimentally, giving considerable ab-
sorption of light with photon energies above the value of
the energy gap"? (for GaAs quantum well it is about 1.5
eV).

Three types of intraband transitions are allowed:
bound bound, bound free, and free free (classified accord-
ing to the nature of initial and final electron states).
These transitions are significant for the photon energies
of the order of tens or hundreds of meV, i.e., an order of
magnitude lower than those inducing interband transi-
tions.

In this paper we consider the intraband absorption in
semiconductor quantum wells subjected to perpendicular
magnetic field (Fig. 1). Parallel field has a small quantita-
tive impact on the quantum well’s energy spectrum and
thus the absorption -may also be expected to remain
essentially unaffected.® If a field perpendicular to the
quantum-well plane is applied, however, the energy spec-
trum is changed considerably, corresponding to the
effective appearance of a large number of quantum wells
displaced in energy according to the Landau-level index.
This fact directly influences the nature of intraband tran-
sitions in these structures, as we discuss below.

II. ELECTRONIC STRUCTURE OF A QUANTUM WELL
IN A PERPENDICULAR MAGNETIC FIELD

If a quantum well is placed in a perpendicular, spatial-
ly homogeneous and static magnetic field Blle, (Fig. 1),
the envelope function Schrodinger equation describing
electron states in the structure reads
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where ﬁo, E, and ¥(r) are the Hamiltonian, electron en-
ergy, and envelope function, while U(z), m (z), and g *(z)
denote the spatially dependent potential (conduction-
band edge), effective mass, and Landé g factor. The spin
quantum number is s (s =11), up=efi/2m, is the Bohr
magneton, and A,, is the magnetic vector potential. It
was shown in Ref. 2 that spin splitting may be neglected
because it is usually small; in GaAs, for instance, the
effective Landé factor is g* = —0.445, leading to a split-
ting g*up B of only 0.26 meV at 10 T.

It is well known that the magnetic vector potential A,,
is not uniquely determined by the magnetic induction B.
The choice of gauge, however, has no effect on physical
quantities such as electron concentration and absorption.
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FIG. 1. Schematic representation of the quantum well in per-
pendicular magnetic field B. Dimensions of the full sample are
2L,,2L,,2L,— + .
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We choose the vector potential as A,,= —Bye,, and the
envelope wave functions may then be written in the prod-
uct form

ik x

x

\/ 2L,

satisfying the normalization condition, where k, is the x
component of the wave vector, ®;(y —y,) is the harmon-
ic oscillator eigenfunction, with y, =%k, /eB, and 7(z) is
the solution of

W(x,y,2)=—F—=P;(y —yo)n(z), (2)

#d| 1 dnz B
2 dz |m(z) dz [ ( RAR L
=En(z). (3)

If the electron effective mass is constant throughout
the structure, 7(z) would be independent of the Landau
index j, and the total electron energy would be the sum of
E;(j=0) and E;=#eB(j+})/m, where E; if the ith
eigenenergy of Eq. (3). In other words, the Schrodinger
equation (3) might then be solved for just a single value of
J» j =0, say. However, with variable m (z), as it is in real-
ity, Eq. (3) has to be solved separately for each j value,
the wave function 7, ;(z) becomes dependent on j, and
the total energy E; ; is no more representable as a sum of
two separate terms

III. THE INTERACTION HAMILTONIAN
AND TRANSITION-MATRIX ELEMENTS

Consider a monochromatic light wave, characterized
by the magnetic vector potential Az = Aza, (|a,|=1)
incident on a quantum well. The electromagnetic field of
input light represents the perturbation, which can cause
the absorption of light. We will analyze the general case
when all three components of the vector Ay are nonzero.
The polarization unit vector a, has components
cosg sinf, sing sinf, and cosf, where 6 is the angle be-
tween Ay and the z axis, and @ is the angle between the
x axis and x-y projection of Ag.

If the well is subjected to both the static magnetic field
and the light wave, then A, in the Schréodinger equation
is replaced with A, + Ag. Denoting the Hamiltonian
with both A,, and Ay by A, the interaction Hamiltoni-
an is A'=H—HA,. We can choose the gauge such that
the vector potential satisfies div Az =0. The interaction
Hamiltonian then has the form

1

A'=eA, ’;3+ P~ i(AR+2AM) . (4)

1
2

The velocity operator for the nonilluminated system is

";o=é[ﬁo,f]=é(ﬁo?_?ﬁo)
1l 1.1 €Ay
_mp+2pm m 5)

Now, we can rewrite the interaction Hamiltonian using
Eq. (5) and neglecting the term proportional to A%.
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A=A—-0,=cAp |9+ Ag

m ~e AR/V\O . (6)

The use of the velocity operator is appropriate, because
the effective mass is the function of the coordinate z.
From the relation defining the transition-matrix element
P, we have

Pif=fn\P,?‘ﬁ’\I/fd3r=eARf Wia, 9¥,dr . (D)

Due to the position de endence of the effective mass the
potential appearing in and A o is nonlocal,* the velocity
cannot be written as [p+e( Ay + Ag)]/m, and the ex-
pression (7) for P, is the only possible form. To calculate
the transition-matrix element P;s =e Ag-M,,, we use Eq.
(2) for the wave function, and with A, = —Bye, we find
that components of M, are

. ]1+1 + n’ ,J,nlf,]f
Mifx—lMify ‘/eBﬁ - ] f m(z) N
]f=Jx+17 kzx kfx ’ (8)
172 *
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jf=ji_1’ kix:kfx H 9)
Mg AMisj
. + irJi tesdg
M, =—ifi f_o° — Sz
+
+%f—mnz’jinif’jfgz——r;dz ’
Jr=iis kiy=kg , (10

where j; and j, are quantum numbers of the initial and
final state, respectively. One should notice that M,,, and
M;;, are zero if the electron effective mass is independent
of z, while M,/, in that case is nonzero for j,=j;. Also,
M,s, and M., are nonzero only for transitions where
quantum number j changes by 1, while M., is nonzero
for j=j;. Of course, the x component of the wave vec-
tor must be conserved (k;, =k, ). Since the quantum
well is symmetric, i.e., U(z) and m (z) are even functions,
from Egs. (8)—(10) we can conclude that for the j;=j,
transitions the initial and final wave functions should
have opposite parity, otherwise they should have the
same parity. Finally,

M,fxstGeZA,%, Jr=iit1Vj=j—1,

[P |?= (11)

Ml cos’0e* Ag, jr=j; .

One should notice that for the j,=j;—1 transitions
Eq. (9) is similar to Eq. (8) for the j,=j;+1 transitions,
provided j; +1 in Eq. (8) is replaced by j;.
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IV. INTRABAND ABSORPTION

We first discuss transitions between two bound states
with energies E; and E;. The absorption coefficient in
this case is given by?

= L 2 —
a—mw,ﬂ S(E;—E;,—fiw)d;s ,
12
4= ’ _ 1 (12)
if = T E= - ,
T EER/KT (B —Ep)/RT

where V' =2L,2L,2L, is the sample volume, ¢, is the
difference between the Fermi-Dirac functions of final and
initial states, and fiw is the photon energy. This expres-
sion holds for any specified k, value. However, states
with different k., are degenerate, and, proceeding in the
usual way, we find that the fractional absorption
A ;=2L,ais

__ 2mPeB
Alf__;l_a)—lpl}lza(Ef_El“ﬁm)¢lf ’
(13)
1 e? 1 o Lir
i eAR

Within bound-bound transitions there exist three types:
Ji=ip jr=Jji—1,and j,=j;+ 1.

The absorption for bound-free transitions is found by
integrating Eq. (13) over all k, values, k, €(0, + « ):

_2BeB ™My

L, P*(k,z0)|%p;(E; +#w,E;) ,
nw ﬁ2szo| 2P ( Zfo)l bir @ i

if
(14)
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where
172

2m, o
sz0= —%2—[El+ﬁ(0_ﬁwc(]f+7)] ’

(15)
__#ieB
0,=—.
my
Within bound-free transitions there also exist three types:
Ji=is jr=Jji—1, and j,=j;+1. In Egs. (14) and (15) m,
is the bulk (barrier) effective mass.
To obtain the absorption for free-free transitions, we
must integrate Eq. (13) over the z component of the wave
vector of both initial and final states:

_2BeB p+=

Aif_ nTo fo |L2Pi;(k2f0’kzi)lz
my
X¢lf(Ef(sz0)’E1(kz|))T_dkzl )
L
(16)

where

Ef(sz0)=E,(kz,)+ﬁa) N 17

172
_ 2 2wmb
K, 0= k,,.+—ﬁ-—]

For free-free j,=j; +1 transitions, it can be shown that
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the absorption coefficient is equal to the absorption
coefficient of barrier material. The presence of the quan-
tum well contributes to the additional fractional absorp-
tion, the analysis of which will be given in another paper.
Free-free transitions with j,=j; —1 turn out to be forbid-
den.

V. THE CASE OF THE RECTANGULAR
QUANTUM WELL

We apply the above theory to the case of the rectangu-
lar quantum well [U(z)=—U, in the well and U(z)=0
in the barrier (Fig. 2)]. The effective mass here is piece-
wise constant, being m,, in the well and m, in the barrier.
In a homogeneous magnetic field B the effective potential
in the Schrodinger equation (3) is Ugglz)=U(z)
+eB#(j +41)/m(z) (Fig. 3). Due to the spatially depen-
dent effective mass (m, <m, ), the conduction-band edge
will be raised more in the well then in the barrier result-
ing in the restriction for the Landau index j. Thus, j can
take values between zero and j,,, for which the potential
profile is still of the quantum well, not barrier, type.

In accordance with the symmetry of the quantum well,
the wave functions are either even or odd. Applying the
continuity of the wave function and of

1 dn,(2) _ 1 dn(2)

- 4 - ’
dz 2=d+

| (18)

w

we get transcendental equations for the discrete energy
spectrum of electrons in the quantum well in the magnet-
ic field. Even states:

k' my
kd=——
tan % m, ,
odd states:
m
tankd = — % 0 (19)
k' m,

where k and k' are the z components of the wave vector
in the well and barrier, respectively. The electron wave
functions 7(z) for discrete energy states are as follows.

N
B
—
quantum well in
E magnetic field
-d 0 d z
quantum well out
of magnetic field
S E T

FIG. 2. The potential structure of the quantum well in and
out of the magnetic field.
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FIG. 3. Transition between discrete energy level E; and con-
tinuous energy level E; (j,=j; +1).

A,coskz, |z|<d
ne(2)= lAecoskde_k'(’_‘”, |z| >d ,
1 1
"~ Vd V1+sin(2kd)/2kd +cos’(kd) /k'd

for the even solution,

(20)

A

e

A,sinkz, |z| <d

A,sinkde "K'z=4) |z|>4"

_ 1 1

~ Vd V1—sin(2kd)/2kd +sinXkd)/k'd

for the odd solution,

M,(2)=

(21)
A

o

k(E)=

v
2

w

2 172
k’(E)=[ b l—E+EBﬁ(j+§)” .
# my,

172
B, .
UO+E—‘;n (;+%)” ,
(22)

If the electron energy exceeds the barrier height (Fig.
2), i.e., E >eB#(j +1)/m,;, we deal with the continuous
part of energy spectrum. The wave functions 7(z) of
these states may also be even wave functions:
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A,.coskz)/V'L,, |z|<d

T,e(2)= cos(k'z+¢,)/V'L,, lz|>d’,
2 _ 1+tan%(kd)
ec 2 (23)
1+[(k/k’)m; /m tan(kd)]
@, =arctan Lﬂb—tan(kd) —k'd ,
€ k' m,
or odd wave functions:
A, sin(kz)/V'L,, |zI<d
Mo D= o'z + @) VT lzl>d
(k/k"Ymy, /m,,)1*[1+tan®(kd)
3 = L6k m /my P11 o)) o4
1+[k/k'm, /mtan(kd)]
- k™ tan(kd) | —k'd
@, =arctan Kk m, an s
where k(E) have the same form as in Eq. (2),

while [k'(E)]*=[E —(eB#/m,)(j +1)]12m,/#. From
the boundary condition at z =d, we get the following
equation for the even solution, say

kmytan(kd)=k'm tan(k’'d +¢,) (25)

from which the phase ¢, may be found to within an in-
teger multiple of 7. This in turn may be found from
Levinson’s theorem,” but it is not necessary if the
transition-matrix element squared is the quantity of in-
terest; Eq. (25) alone is enough for this purpose.

We proceed with the expressions for matrix elements in
the case of the rectangular quantum well. First, for
bound-bound transitions (j,=j;), the component M,
for the even initial state and the odd final state reads

M" _ M /ﬁ— AeiAofkf Sln(k,+kf)d Sln(k,_kf)d
ife = M AT T ki +k; ki —k;
2AeiAofkj," . 1 .
———————cosk;dsink,d + A4, A,; | ——— cosk;d sink,d . (26)
my(k;+kf) m, m,

The corresponding expression for the other possibility (odd initial state and even final state) is similar to Eq. (26). In the
case of bound-bound transitions (j,=j;+1), only M. and M, are nonzero [Eq. (8)]. If the wave functions of both

the initial and final states are even, M, is given by

Sin(k,' +kf)d

Sln(k, _kf yd

24, Ay

Mifx =—V'eB#

. 172
Ji +1 Aei Aef
2 my,

k;+k,

cosk;d cosksd | . (27)

ki—ks my (k! +k})

When the initial and final wave functions are both odd, the expression for M, can be obtained analogously. Finally,
for bound-bound transitions with j,=j; —1 Eq. (27) also applies upon the substitution of j; +1 by j;.
For bound-free j, = j; transitions, in the case of even initial state and odd final state, we have
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\/Z_M* — Aei Aocfkf Sin(k,+kf)d Sin(k,-l—kf)d
z iz m,, ki+ks ki—kgs
Ak cosk.d 1 .
m, '2+k S Lkicos(kpd +@,p)—kpsin(kid +@,p) ]+ A, Ayey m—b E cosk;d sinkd . (28)

For bound-free jf Ji +1 transitions (Fig. 3), as derived above, M;,, and M, are nonzero [Eq. (8)]. For the sake of
simplicity, we write k; instead of k,s, in Egs. (14) and (15). If the wave functions of the initial and final state are both

even, we find

VIM,,.——VeBF ], +1 Ay Apey | sin(k;+kp)d | sin(k;—kg)d
2 ifx m,, kl+kf kl——_kf
24, cosk;d
™, ‘m‘[k cos(kfd T @er)— kaIH(kfd +@.)] (29)

while the case of odd initial and final states is solved simi-
larly.

For bound-free transitions (j,=j;—1) the same equa-
tions can be used upon substitution of j; + 1 by j;. Within
this kind of transition we distinguish two different possi-
bilities depending on the position of the initial energy E;
with respect to the effective barrier level of the final
state. If the discrete energy level E; satisfies
E; <#w(j;—1+1),i.e., E; is below the j; —1 barrier lev-
el, then the only possible transitions are those from initial
bound state to final free state with j,=j; —1 [Fig. 4(a)], if
the photon energy is large enough.

The energy structure for E; > #iw,(j;—1+1) is shown
at Fig. 4(b). This is a particularly interesting situation,
because two different types of transitions are recognized:
(1) The transitions from the initial bound state (j;) to the
final free state (j;,—1) are allowed for all photon energies.
(2) The transition from an initial free state (j; —1) to the
final bound state (j;) is possible in a restricted range of
photon energies. This is a type of optical transition that,
to our knowledge, does not appear in other quantum sys-
tems.

VI. NUMERICAL RESULTS AND DISCUSSION

The bound-state energies are determined by the well
width, Al mole fraction x in the Al ,Ga,_,As barrier
(with the corresponding values of the electron effective
mass and the well depth), and the magnetic field B. With

E, 2

y j y e
@) (b)

FIG. 4. Bound-free transitions j,=j;—1: (a) Energy level E;
is below the barrier level (j;—1); energy level E; is above the
barrier level (j;—1) and initial-free-to-final-bound transitions
are possible too.

increasing Landau index j the overall effective potential
in the structure gets higher, and so do the total energies
of bound states. There is an additional effect: due to the
difference of the well and barrier effective masses, the one
in GaAs being lower makes the well bottom increase fas-
ter than the barrier top. The well therefore becomes
more and more shallow as j increases, setting a maximum
value of j (j ., ) that bound states may acquire.

Numerical calculations were performed for GaAs
quantum wells in the Al,Ga,_,As bulk. The electron
effective mass dependence on the Al mole fraction x is
taken as m;,=(0.067+0.083x)m, and the refractive in-
dex as n =(3.6-0.7)x, after Ref. 6. The conduction-
band edge discontinuity at the GaAs/Al,Ga,_, As inter-
face, i.e., the well depth, is given by Uy=0.65X1.247x
[eV].

The structure with the quantum well is taken to be uni-
formly doped, so that the doping level determines the
Fermi level E, which in turn establishes electron distri-
bution over the available quantum states. The value of
E; is found from the transcendental equation

+ o0 o dF ( )
=3 n;= s 2\/2m,,kT2 S VALTIE ,
e o A (30)
_Er—E,
N

where N, is the donor-type impurity concentration and
F, ,, the Fermi integral.

The Fermi level, found from Eq. (30), depends not only
on doping and temperature, but on the magnetic field B
as well. It increases with increasing B, although this is
not very pronounced for B <20 T.

In calculating the absorption we introduce the phe-
nomenological transition linewidth I' by replacing the
Dirac 8 function by a Lorentzian’

1 1
7T 1+[(E;,—E,~#w0)/T]*’

8(E; — E; — i)~ (31)
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The results of numerical calculations are presented in
Fig. 5, where the absorption versus photon energy depen-
dences for both x and z polarization are shown. In case
of z polarization the absorption stems from transitions
with the Landau index conserved, j =i while in case of
x polarization the transitions with j,=j;+1 both contrib-
ute. However, in the specific cases studied here, the tran-
sitions with j,=j,+1 give a negligible contribution.
Also, among the bound-free transitions, those with j,=j,
are comparatively unimportant, the absorption on them
never exceeding 1%.

The bound-free absorption has maximum photon ener-
gies (~ 150 meV) not very much exceeding the threshold
(“ionization’’) value, which steadily decrease afterwards.
The linewidth of these transitions is much larger then for
bound-bound ones. Transitions with j,=j; +1 are found
to give very low absorption.

As one can see from Fig. 5, the absorption maxima for
x-polarized light exceed those for z-polarized light, al-
though the absorption arising on transitions between in-
dividual pairs of states is larger for the case of z polariza-
tion. This is because photon energies corresponding to
absorption maxima are well away from each other for z
polarization, and quite close for x polarization. There-
fore, when contributions of all the transitions are added
together, this results in a higher, but more narrow, peak
of total absorption for the x polarization. At elevated
temperatures [ ~300 K, Fig. 5(b)] the absorption of the
z-polarized light acquires additional peaks, due to in-
creased population of higher levels. In not very wide
wells, e.g., 2d =10 nm [Fig. 5(b)], these peaks are quite
distinct, but in wide ones (2d =25 nm) they tend to
merge, making it difficult to tell one from another (as the
well width increases the intensities of individual peaks be-
come about equal). It is interesting to note that the ab-
sorption of x-polarized (e.g., normally incident) light gets
smaller as the magnetic field decreases. However, even at
B =0 there remains a small residual absorption which, in
the case of symmetric structures, appears only on even-
even and odd-odd transitions, and is due to the z-
dependent effective-mass—induced coupling of electron
motion in the x-y plane to the z coordinate. This effect
has been predicted in a couple of papers,®!° using vari-
ous approaches (all of them taking B =0 throughout the
derivation). It can also be obtained, in a somewhat more
difficult manner, by considering the limit B —0 in Eq. (9).
Calculations!® of this type of absorption indicate that
rather small values (~0.1% at peak) may be expected in
real structures. This is very much smaller than what one
gets in p-doped wells, or in n-doped wells in higher fields
(Fig. 5), and is a probable reason that, to our knowledge,
there lacks any experimental confirmation of absorption
at normal incidence for B =0. At larger fields, however,
the wave functions in Eq. (9) correspond to “different”
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FIG. 5. The fractional absorption vs the photon energy
dependence for a GaAs QW embedded in Al,Ga,_,As bulk, in
a perpendicular magnetic field B.

wells due to the quantum number j nonconservation, as
discussed above, and are therefore less orthogonal, result-
ing in the enhancement of normal incidence absorption.

Free-free transitions play only a minor role in the total
absorption. Their intensity generally decreases as the
photon energy increases, with no pronounced peaks.

Generally, the absorption profiles of quantum wells in
the magnetic field considerably depend on the structure
parameters (well width, doping level, temperature, mag-
netic field). The sensitivity to all these is more pro-
nounced than in the zero magnetic field case, which is
due to a more complex energy spectrum when a finite
magnetic field is present.

The cyclotron resonance may be important for photon
energies close to fiw_, e.g., in the range 1.15-23 meV for
B =1-20 T, which is out of the interval where transitions
between quantized states in the structures considered
here occur.

VII. CONCLUSION

Intraband transitions between quantized states of a
semiconductor quantum well in a perpendicular magnetic
field are analyzed and classified. Numerical calculation
of absorption arising on various transitions was per-
formed, and those giving the largest contributions indi-
cated.
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