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Bound-free intersubband absorption in p-type doped semiconductor quantum wells
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A procedure is proposed for calculating the light absorption due to transitions from bound- to free-
hole states in semiconductor quantum wells. The continuum spectrum is described via the scattering
states approach. In calculating the transition-matrix elements, account is taken of the position depen-
dence of Luttinger parameters. Example calculations in GaAs/Al Ga& „Asquantum wells indicate
that bound-free absorption may dominate over bound-bound absorption in the wavelength range of in-

terest for practical applications. It is also found that the position of the absorption peak is essentially
influenced by states with nonzero transverse wave vector, due to the high nonparabolicity of the
valence-band dispersion. This implies that energies of virtual states in the continuum cannot be simply
deduced from the absorption profile. Transitions from the heavy-hole ground state to continuum give
the principal contribution to absorption, the light-hole contribution being an order of magnitude lower.
Calculated results show very good agreement with experimental measurements [K. M. S. V. Bandara
et al. , Phys. Rev. B 48, 7999 (1993)].

I. INTRODUCTION

Intersubband optical transitions between the
conduction-band states, or between the valence-band
states in semiconductor quantum wells, have recently at-
tracted considerable attention, mostly in view of perspec-
tive application of these structures for infrared detection,
or in nonlinear optical devices. The intersubband absorp-
tion in n-type doped quantum wells based on direct-
band-gap semiconductors may occur only for light polar-
ized perpendicularly to the quantum-well plane. In p-
type doped wells this restriction is lifted, and the in-plane
polarized (i.e., normally incident) light is also absorbed,
which is considered their significant technical advantage
over n-type doped wells. This was first achieved with a
multiple GaAs/Al„Gat As quantum-well structure in-
frared detector. ' Single-quantum-well detectors have also
recently been proposed, with somewhat different charac-
teristics from those of multiple-quantum-well detectors,
but with a similar spectral range of responsivity. Unlike
their n-type doped counterparts, p-type doped struc-
tures do not require waveguide or grating couplers, and
absorb light of any polarization or angle of incidence.
However, their responsivities as infrared detectors are
still an order of magnitude behind those obtained in n-

type doped structures. The responsivity vs bias depen-
dence in the two types of structures are also quite
different, the linear dependence found in the p-type doped
structure of Ref. 2 indicating that bound-free transitions
make the largest contribution to absorption and infrared
detection. The photoconductive gain in p-type doped
structures is not as large as in n-type doped ones, but this
results in reduced noise, enabling the detectivity in excess
of 10' cm &Hz/W.

Although normal-incidence absorption is also possible
in n-type doped quantum-well structures made of
indirect-band-gap semiconductors ' or narrow direct-

band-gap semiconductors, "the p-type doped wells are no
less important for applications, as demonstrated by prac-
tically realized detectors based upon them. ' The inter-
subband absorption in p-type doped structures was
theoretically considered by Chang and James' for
GaAs/Al Ga, „Asquantum wells. A structure based
on GaSb/Al„Ga, Sb has also been proposed' in order
to increase the absorption due to the reduced heavy-hole
effective mass (heavy-hole states make the dominant con-
tribution to absorption). Another interesting system is
the one based on Ino53Gao 47As/InP, ' offering shorter
wavelengths ( -2.7 LMm) due to a large valence-band
discontinuity of the interface. The theory of Chang and
James has also been applied to strained structures
based on In„Ga, „As/In Al

& „As,' In„Ga
&

As/
Al„Ga, As, ' and In„Ga& „As/InP, ' where modified
bound-state ordering leads to different spectral charac-
teristics than in lattice-matched cases. Almost all
theoretical considerations deal explicitly with the top-
most four valence bands (i.e., with heavy and light holes),
which is justified due to the fact that the conduction band
and the hole split-off band are usually remote enough.
Indeed, the GaAs/Al„Ga, „As system has also been
considered within the 8 X 8 Hamiltonian model, ' with re-
sults very similar to those obtained by the 4X4 Hamil-
tonian model, not surprising in view of a rather large
band gap (Es = 1.4 eV) and the spin-orbit splitting
(b, =0.34 eV). Most considerations were devoted to tran-
sitions between bound states, although bound-free transi-
tions are no less important. A simplified treatment of
bound-free transitions, based upon the concept of reso-
nant states in the continuum, and therefore similar to the
case of bound-bound transitions, has been given in Ref.
16. In another paper on this topic' the method was not
discussed in any detail. Very recently, upon the com-
pletion of this work, a report appeared' on the calcula-
tion of bound-free absorption in superlattices. Periodic
boundary conditions for envelope wave functions were
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used, as appropriate, making this approach essentially
different from the one employed in our work.

In this paper we present a procedure for calculating
the bound-free absorption in p-type doped quantum wells.
For simplicity, but with essentially no loss of accuracy,
we work within the axial approximation in the block-
diagonalized Hamiltonian for the electronic structure cal-
culation, and use appropriate results for the transition-
rnatrix elements. Free-hole states are described in
terms of scattering states (after Ref. 21 but adapted to the
more complex case of the valence band), and bound states
are calculated as described in Ref. 22. The self-
consistency effects are neglected here, although the
method allows for straightforward modifications to take
them into account, where necessary. In Sec. II we de-
scribe the calculation of free-hole states (the case of
bound states is extensively covered in the literature, and
needs not be repeated here), and in Sec. III the appropri-
ate expression for the absorption is derived. Numerical
calculations on a specific example of GaAs/Al Ga, „As
quantum-well structure, grown along the [001] direction,
are presented and discussed in Sec. IV.

where mp is the free-electron mass, y& 23 are Luttinger
parameters describing the inhuence of higher and lower
bands not included in the basis, k~, are the wave-vector
components along the corresponding crystal axes, and
k, =Qk„+k is the transverse (in-plane) wave number.
The energy is measured from the valence-band top down-
wards. With the structure composition, and hence the
potential, modulated along the z axis (the [001] growth
direction for the quantum well is assumed here}, k, in Eq.
(1) is replaced by the operator —iBIBz, and the terms of
the form w (z}k, by their Hermitian operator are
equivalent ( i 8/—dz)w (z)( —iB/Bz), where m (z) is a cor-
responding combination of Luttinger parameters which
are material, and hence position dependent. Further-
more, the potential V(z}, representing the valence-band
edge, is added to the diagonal terms in Eq. (1). The basis
functions of the Hamiltonian (1) are

~(x+iI )1 &,

II. FREE-HOLE STATES WAVE FUNCTIONS

We start from the Luttinger-Kohn Hamiltonian with
the four topmost I 8 valence bands of the zinc-blende
crystal, written in the representation whose basis states
are the projections of the total angular momentum J=

—,':

~(x+u) g &+Q-,' ~z1 &,
6

—,l(x —iI)1&+Q-', lzl&,

with

P+Q —S
—S P —Q
Rf 0
0 RT

R 0
0 R

P —Q S
S P+Q

g2
S= y32i/3(k» ik» )k,—,

2mp

P= y, (k, +k, ), Q= y2(k, —2k, ),
2mp 2mp

R = — y2&3(k k)+i — y32&3k„k

—I(x—iI') S &,
1

where X, F, and Z denote the crystal unit-cell periodic
parts of Bloch wave functions, with the same symmetry
as atomic x, y, and z functions, and arrows denote the
spin-up ( 1 ) or spin-down ( l) functions. This is the con-
ventional choice of basis, although some others are also
occasionally used.

Hamiltonian (1) may be simplified by applying a uni-
tary transform, and using at the same time the axial ap-
proximation (neglecting the difference of yz and y3 in the
off-diagonal term R) to obtain

HU
b-d HL

P+Q+ V(z)

R P —Q+ V(z)

0 P —Q+ V(z)

R P+Q+ V(z)

(2)

fiisi=
2mp

, (y, +y )k,',
2mp

with two uncoupled 2 X 2 blocks HU and HL, where

I

The state vector corresponding to Hamiltonian (2) is of
length 4, i.e., F=[F,F2F3F4], where F, 4 are the en-
velope functions. In the general case of an asymmetric
structure the upper and lower blocks of (2) deliver quan-
tized states with mutually unequal energies, and the cor-
responding state vectors [F&Fz] and [F3F4] are fully
independent of each other. However, in the syrnrnetric
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and

(y, —2y~)d /dz &3k,y, F,
(y, +2y~)d/dz Fq

(4)

for the upper block, and analogous expressions for the
lower block, are continuous across the structure composi-
tion discontinuities, i.e., the well/barrier interfaces. '-

Using Eq. (2) and the continuity of (3) and (4), the
bound-state eigenenergies in a quantum well are calculat-
ed by the transfer-matrix method algorithm, described in
Ref. 22. Here we discuss in more detail the calculations
of free-state wave functions. We should first note that in
the free part of energy spectrum 8b dF=EF has solu-
tions for any energy, and furthermore there is a degenera-
cy present. In calculation of the optical properties, or
hole density, the objective is to find a complete set of
orthonormalized states, so that all states are counted just
once, and none is omitted. A suitable set of wave func-
tions for this purpose are scattering states. In the field of
semiconductor microstructures these were used by Kri-
man, Kluksdahl, and Ferry for the conduction-band
states within the e6'ective-mass approximation. However,
the conduction-band states are comparatively simple, be-
cause at any energy there is a single pair of bulk states, ei-
ther both evanescent or both propagating, and continu-
um states in a microstructure may equally easily be
counted by imposing distant box boundary condi-
tions. ' On the other hand, the valence-band states in a
microstructure generally involve two pairs of coupled
bulk states, and, depending on energy, both pairs may be
evanescent or both propagating, or one of each kind may
occur. The second possibility, which is realized in a large
part of the free spectrum, makes it quite difficult to apply
the box boundary conditions, and scattering states are a
natural choice.

Consider a one-dimensional (1D) localized binding
scattering potential, hereafter called the well, present in
the bulk, which is, sufficiently away from the well, unper-
turbed, having (asymptotically, at least) Sat bands. A
scattering state in this system would comprise an incident
wave and the set of transmitted and rejected waves it
generates, all of them being plane waves in the 1D case.
A hole incident wave from the left, say, is written as
tF, Fz] multiplied by a normalization constant 1/+2~,
where the envelope wave-function state vector [F,Fz] is
the bulk solution of Eq. (2), subject to the condition
~F~( —~ )

~
+ ~Fz( —~ )~ =1. The phase factor which

describes the plane wave with the wave vector k=(k„k)
is contained in the envelope functions E& z, their ampli-
tudes themselves being calculated for this particular

structures that we deal with in this paper, the two blocks
of (2) will give two degenerate sets of states (Kramers de-
generacy), and their state vectors, although different, are
related by symmetry transformations. Due to the con-
tinuity of the full wave function and current conserva-
tion, it follows that the envelope function state vectors

Fi
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FIG. 1. The z component of the free-hole-state wave vector
vs the energy dependence, calculated for the transverse wave-
vector component k, =0.25 nm ' (a), k, =0.5 nm ' (b), k& and
k& corresponding to heavy-hole-like and light-hole-like states,
respectively. The real parts of k& z are represented by solid
lines, and imaginary parts by broken lines (only kz may have the
imaginary component, while k& is real throughout the free spec-
trum). The energy where k, becomes real is denoted as Eo&,
while Eop and E» denotes energies between which only kz is
imaginary.

value of k. With a total of four wave-vector branches,
i.e., solutions of hole dispersion relation in bulk, there
may be up to four independent scattering states for every
block with the same energy, their incident wave com-
ponents being given as described. To make proper
scattering states one should first classify the bulk states,
with their corresponding k vectors, according to the fol-
lowing criterium. Bulk states with real k (propagating)
should be tested for the current they carry, and if it is
found positive the state is classified as forward; otherwise
it is backward. We should note that current direction is
not uniquely related to the sign of k, and the current eval-
uation is necessary for proper classification. If k is com-
plex, however, such a (evanescent) state carries no
current, and is forward if Im(k) )0 (i.e., decays to the
right), and backward if Im(k) (0. Since states appear in
+k pairs, there will be an equal number of each type.
In a proper scattering state of the structure, the incident
wave can be only a current-carrying state incoming to the
well (i.e., bringing the current inside). Thus the current-
carrying forward states on the left-hand side, and
current-carrying backward states on the right-hand side,
are the incident waves. These generate outgoing
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Cr1

Cr2

Cr1

CI1

C12

r2 12

where, e.g., 1, the second subscript to the amplitude,
denotes that this corresponds to k = —k

&
(since states ap-

pear in pairs, k3 = —k, and k4 = —k~ ). The transfer ma-
trix may be found, element by element, by shooting each

I

(transmitted and refiected) states, which either carry
current or their wave functions decay outwards from the
well. Thus backward states on the left-hand side and for-
ward states on the right-hand side constitute the
transmitted and rejected waves in scattering states.

According to this, three parts of the free-energy spec-
trum may be distinguished for any nonzero value of the
transverse wave number k, . Just above the range of low
energies, where all four k vectors are complex and thus
allow for the existence of bound states, lies the first part
of free-energy spectrum [E» &E &Eo, in Figs. 1(a) and
1(b)] where all k vectors are real. Consequently, four
scattering states, two left- and two right-incident, exist in
this part. In the second part, Eo~ &E &EO3 in Figs. 1(a)
and 1(b), two k vectors are real and the other two com-
plex (the former are heavy-hole-like, the latter are light-
hole-like), so just two scattering states exist here. We
should note that the signs of k2 and the signs of the
current for propagating states are related in the opposite
manner for E & Eo2 and E & E02. As the transverse wave
number k, increases, the width of this part also increases,
but at k, =0 it does not exist, due to heavy- and light-hole
degeneracy at the valence-band top. Above this second
part, once all the wave vectors have become real, lies the
third part (E & EO3 ) of the free spectrum which, as far as
intersubband transitions are concerned, may be taken to
extend to infinity. All this is illustrated in Figs. 1(a) and
1(b) for two values of k„on the example of a
Alp 3Gao 7As bulk, the characteristic energies being
denoted by E01, Eo2, and E03. With the incident wave
amplitude given as above, all the others (transmitted and
refiected waves) are found by analytical or numerical
solution of the Schrodinger equation once the potential
and other structure parameters are specified. This is ac-
tually done by constructing the transfer T matrix of the
system, as an intermediate step. This relates the ampli-
tudes of the waves on the right-hand side of the well (c„)
to those on the left-hand side (c& ), i.e.,

single wave, evanescent or propagating (one at a time),
with unity amplitude toward the well from the left-hand
side. The first column of T, for example, simply equals
the amplitudes of plane waves on the right-hand side of

ik)z
the well when excited by e ' on the left. To calculate
these amplitudes, therefore, we solve the system of
differential equations

T

d F1 2mo
(y, —2y ) = (y, +y )k, + [V(z) E] —F, .

dz2

V'3 dF2
(yq+y3)k, Fz —2&3y k,

2 ' dz

(6)

with the initial conditions on the left-hand side,

FI,

FI2

A
e

where [ A 8] (with
~

A
~

+ ~8
~

= 1) is the bulk-state vec-
tor corresponding to the wave vector k1, and ZOI is the in-
itial coordinate (in the bulk, where bands are fiat). The
integration proceeds up to a point zo on the right-hand
side, and also in the bulk where the potential is again Bat.
In the special case of a rectangular quantum well 2d
wide, and with the self-consistency effects neglected, i.e.,
with V(z) =0 for ~z

~
& d, it is enough (and best for the nu-

merical error minimization) to set zo&
= —d and zo=d.

In the inner region (the well), the differential equations (6)
and (7) are integrated numerically, as in Ref. 22, observ-
ing the continuity of vectors (3) and (4). While the spe-
cial case of a rectangular well also allows for an analytic
solution, numerical integration was actually used here in
order to enable the inclusion of self-consistency effects at
a latter stage. Having obtained the envelope function
amplitudes F1 2, together with their derivatives on the
right-hand side (at zo), one now has to represent them as
a linear combination of plane waves which are bulk solu-
tions in this region. This is done by solving the system of
linear equations

d2F2 2mo
(y, +2y,), = (y, —y, )k,'+, [V(z) E] I', —

dZ

V'3 dF1+ (yq+y3)k, E)+2~3y3k,
2 dz

ik)zp
r1e

Ik2zo
Ar2e

—iklzp
r1

—ik2zo
r2 (i)

Crl
ik)zp

Br1e
tk2zo

2e
—ik)zpB -e

r1

ik&zp . ik2zo . —ik&zo
ik1 Ar1e ik2 Ar2e ik1 Ari

ik
&
zp ik2zp . —ik

&
zpik1B,1e ik2B,2e —ik1Br1e

—ik2zoB-e
r2

2 0
r2

ik B e 2 0
r2

(i)
Cr2

c(-')
r1

C
(i)
r2

Fr2

F„'1
FI

The above procedure is repeated four times, the superscript i in Eq. (9) taking values from the set (1,1,2, 2), and the ob-
tained solutions for the amplitudes c make the corresponding columns of the transfer matrix.
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The next step is to recast the transfer matrix into the scattering (S) matrix, that relates the incoming to outgoing
waves in the system

Crl

Cr2

c—
11

cI2

C11

CI2=[S],
r1

C—
r2

(10)

where obviously the forward waves on the left and backward waves on the right are incoming states, and the rest are
outgoing ones.

The transfer and scattering matrices (both are 4 X 4) are related by

S11 11 T12 T22 21 ~ 12 T12 22 ~ 21 T22 21 ~ 22 22
—1 —1 —1 —1

where T; and S; (i = 1,2; j= 1,2) are their 2 X 2 blocks, i.e.,

T11 T12

21 22
[S]= S11 S12

S21 S22
(12)

The individual elements of the S matrix are in fact the amplitudes of various transmitted and rejected waves excited by
the corresponding unity amplitude incident waves, and this essentially completes the construction of the scattering
states set. With at most four incident waves possible, the same is the number of scattering states, and they are given by

I'U'!'( }= '

e ' +s(3, i) & e
21T ! 1

s(l, i) ~ e ' +s(2, i) ~ e
1 2

' +s(4, i)
B2

z&d, i=1,2,

—ik2z
e ', z( —d, i=12

(13)

y (i —2)( )Ur

A-,

s(3 i) ~ e ' +s(4 i)
1

A-.
1 —ik,.z

e ' +s(l, i)
217 !

z& —d, i=3,4

z&d, i =3,4,

A- —ik z2e
2.

A1 . A2
e ' +s(2 i) & e

1 2

(14)

where the subscripts I and r denote the states incident
from the left or from the right. In the case of just two
bulk states being propagating [i.e., in the energy range be-
tween Eoz and Eo3 in Figs. 1(a) and 1(b}] the scattering
states in the structure are also given by Eqs. (13}and (14),
but with i =1 and 3 only. The scattering states' wave
functions inside the well are found by numerical integra-
tion, as described above, with the initial conditions con-
tained in Eqs. (13) and (14). The procedure for finding
the lower block scattering states is completely analogous.

Finally, we may note that the special case of a rec-
tangular well allows for direct (not via the T matrix) and
analytical evaluation of the S-matrix elements. However,
with each scattering state demanding the solutions of
four systems of (8 X 8 ) linear equations, this analytic solu-
tion is too cumbersome to be reproduced here.

III. THE ABSORPTION

We start from the expression giving the absorption
coefBcient within the dipole approximation,

X [f„(E,) f„(Ef)], — (15)

where q is the electron charge, n the refractive index, E'p

the dielectric permittivity of vacuum, c the speed of light,
Q the volume of the structure, and a the unit vector of
light polarization. The initial and final hole state energies
are E; and Ef, fico is the photon energy, and f„is the
Fermi-Dirac distribution function for holes.

Expression (15) is applicable to n-dimensional electron
or hole gas (n =0, 1, 2, and 3). In the two-dimensional
case (confinement along one direction) the physically
meaningful quantity is the fractional absorption per
well, and the absorption coefficient of a sample with a
number of quantum wells may then be straightforwardly
deduced.

The transition-matrix element in Eq. (15) should in-
clude the full (detailed) wave functions of the two states
involved, while only the envelope functions are normally

2

cc( co ) = g ~ (f ~
av

~
i }~ 5(Ef E; fico)— —

n E'pccoQ
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obtained in the electronic structure calculation. An ap-
propriate expression for the transition-matrix element
that requires only the envelope functions has been previ-
ously derived' for the case of position-independent I ut-
tinger y parameters and within the 4 X4 (not block-
diagonalized) Hamiltonian. It was subsequently used for
the absorption calculations in conventional and strained
structures as wel1. ' ' We have recently given a
simplified derivation for the transition-matrix elements
that allows for the position-dependent y parameters, and
which uses the wave functions of the block-diagonalized
2X2 Hamiltonian, and these results are employed here.
We may note that the position-dependent Luttinger pa-
rameters were taken in the intersubband absorption cal-
culations in Ref. 17, but the final results were not correct,
because the unitary transform that block diagonalizes the
basic Hamiltonian does not block diagonalize the interac-
tion Hamiltonian. ' ' The transition-matrix element for
inter-valence-subband transitions can be written as

appropriate subscripts denote the weighted momentum
matrix elements and weighted overlap integrals, respec-
tively, both being calculated with the envelope functions
only:

11,, =(S'f~ll~z ),
y, , =(z/'[y~z, '& .

(21)

(22)

y' '=y, (z)+3 z(z), (23)

yz(z)+ y3(z)y= (24)

Here the superscripts i and f denote the initial and final
states, and subscripts denote the corresponding envelope
function component of the state vector. More
specifically, the matrix elements of operators

IM.ff I'= IMvU I'+ IMUL, I'+ IMI.U I'+ IM I, I', (16)
II'*'= (y ) +2y2)k, +k, (y i+2y2), (25)

—iV 3(II,z —112, )~ a,

+
~

II', i
'+ Ilz2 ' —i2+3k, ( y iz

—y2, ) ~ a, ,

I'=-', I113,—II +i2k, (y, —y4z)l a,',
IMU~ I'=-,'IIIi, —IIz4 —i2k, (y, 3 yz4)l a,',
IM«l'= ,'I2(y~+y-33 '+&3y34+&3y43)k,

—i&3(II34 II43)~ a,

(17)

(18)

+ II14'4 '+11~3~+'—i2&3k, (y34 —y43)l'a.',
where a, and a, denote the in-plane and perpendicular
components of the light polarization unit vector (e.g., for
normal incidence a, =1 and a, =0), while II and y with

I

where the overbar simply denotes that averaging over the
angles between the light polarization vector and the in-
plane wave vector of hole states has been performed in
each term in Eq. (16). The first and fourth terms ~MUU~

and ~M«~ describe transitions between states of the
upper and lower block of the Hamiltonian (2), respective-
ly, and the second and third terms ~MUL ~

and ~MLU~ to
transitions between states of the upper and states of the
lower block, the first (second) subscript denoting the
block to which the final (initial) state belongs. The four
terms are given by

IMUUI =—,'12(yi] '+y22 '+ 3yi2+ 3y2i)kt

H=yk, +k,y,
where k, = —i 8/Bz, should be calculated.

The absorption due to bound-bound transitions is given

2f3
A (A'o)) =

8n eoCPl Off@)

X ", , W~' „E,—„Ef
i,f

I /2n
(E/ E; —A'co) +I /4—

(27)

where the 5 function of Eq. (15) is replaced by a l.orentzi-
an with the full width parameter I, to model various
broadening mechanisms.

The absorption on bound-free transitions is given by a
similar expression in which the summation over discrete
final states turns into the integral over the final-state
wave vector k, (it is important here that final states
should be properly normalized). ' However, due to the
nonparabolicity of the dispersion, it is convenient to
change from integration over k, to integration over the
final-state energy Ef, to obtain

2fg3
00

A(A'ro)= J k, dk, g f Mgff[f„(E,) —f„(Ef)] z z dEf . (28)
8nffocmofuu o; ~oi ' " ' " (Ef E; %co) +I /4——

Here Eo, denotes the energy where the wave vector k, becomes real (as depicted in Fig. 1). The quantity M, ff in (26) is
a sum of the form

dk, dk~
2IM.ff, il' +2IMeff,21, Eoi&Ef&Eo2 ~ Ef+Eo3

dEf ' dEf
Mg~= '

dkq
2~M, ff i~, Eo2 &Ef &Eoi,

dEf

(29)
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applications (8—14 IMm), the main contribution to absorp-
tion in this quantum well stems from bound-free transi-
tions. To discuss them in some more detail, in Figs.
3(a)—3(c) we give the S-matrix elements sii and s2,
squared, as they depend on the final-state energy for
different values of the transverse wave vector k, : k, =0
[Fig. 3(a); heavy and light holes are decoupled and
~sz&~ =0 in this case], k, =0.25 nin ' [Fig. 3(b)], and
k, =0.5 nm ' [Fig. 3(c)]. ~sii ~

and ~s21~ are the proba-
bilities for the Left-incident heavy-hole state to come out
as heavy- and light-hole states, respectively, on the right-
hand side (due to state mixing for k, +0, the state charac-
ters should be understood as predominantly heavy- and

120

~ 100-
E

80-

40-

20—

light-hole-like). For k, =0, absent the state mixing, ~s» ~

depends on energy in the classical textbook manner, nev-
er exceeding unity. The other coefficient ~szi ~, however,
may exceed unity for k, %0 at low enough energies [Figs.
3(b) and 3(c)] which is not unusual in view of the fact that
state 2 is evanescent, carrying no current. For k, =0.5
nm ', ~sii ~

is about constant as energy varies, except for
a dip at E =60 meV, where ~s2, ~

has a sharp peak.
Considering the case of normal light incidence, the two

components of the density-of-states-weighted effective
matrix element Ms, ,=M$U +MAL and Ms&;fr =M pz

+MgU for transitions between the ground heavy-hole
state (HH1) and the continuum, are given in Figs.
4(a) —4(c), as they depend on final-state energy for
different k, values. For k, =0, due to the fact that only II
terms in (17)—(20) contribute, and due to symmetries of
the wave functions and the S-matrix elements, the two
components are equal [Fig. 4(a)]. For not too large k,
values, y terms in (17)—(20) are less important than II
terms, and thus M»me and Md;z do not differ much, but
Ms, , is somewhat larger [Fig. 4(b)]. As k, increases fur-
ther, however, the ratio Msd;z/Ms, exceeds unity: at
k, =0.5 nm ', Mgd;z is about four times greater than
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FIG. 4. The dependence of the two components of g-matrix
elements, Mg, , and Md;z (defined in the text) on free-state ener-

gy, calculated for k, =0 (a) (Mgs I, =Mg~;~ in this case), k, =0.25
nm ' (b), and k, =0.5 nm ' (c).

FIG. 5. The bound-free-absorption profile in the case of
normal-light incidence (a) and parallel incidence (b) for the
stru l;.'. .= with the same parameters as in Fig. 2. The largest ab-

sorption occurs on HHl~continuum transitions, and a much
smaller one on LH1 —+continuum ones. The two separate con-
tributions are given by broken lines, and the full absorption by
the solid line. The HH2~continuum transitions are negligible,
and are not displayed.
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Mg, , [Fig. 4(c)]. Therefore, for larger k, values the
block-Rip transitions are more probable than block-
conserving transitions between hole states. This is in
complete contrast to the case of conduction-band states,
where the spin-Hip transitions are only slightly allowed,
and are neghgible under most circumstances. Certainly,
although very large values of transition-matrix elements
are obtainable, their contribution to absorption may still
be limited, which is controlled by the di6'erence of distri-
bution functions for the states involved. It is also in-
teresting to note that the positions of matrix element
peak values cannot be simply deduced from the energy
structure itself (energies of bound states and resonances
in continuum), even at k, =0. At the intermediate k,
value of 0.25 nm ', for instance, the matrix elements
have rather smooth peaks at low energies, where the
transmission coefficient ~si, ~

reaches a maximuin [Fig.
4(b)]. For larger k„like k, =0.5 nm ', the transition-
matrix elements may have very sharp peaks, the result of
a large amplitude of the slowly varying evanescent com-
ponent of the wave function and rapidly changing density
of states for energies close to EQ3 [Fig. 4(c)].

All lines given in Figs. 4(b) and 4(c) have something in
common. In the energy range below E0z the matrix ele-
ments are small, but show sharp peaks between Eaz and
Eas (Fig. 1) followed by a slow decrease far E)E03
(where all the k vectors are real). The energy range most
useful for overall absorption is that where propagating
and evanescent states in the bulk coexist. To obtain
larger responsivities of infrared detectors, one should
design the structure to favor a fast variation of the
transition-matrix elements in this energy range. This
could be achieved by tailoring the well shape (by grading
composition); however, this constitutes a problem of its
own, and will not be considered here.

The full bound-free absorption is mostly due to
HH1 —+continuum transitions, as depicted in Fig. 5, for
normally incident [Fig. 5(a)) and parallely incident [Fig.
5(b)] light. Transitions from LH1 to continuum make a
comparatively small contribution, the peak being at lower
energies than the main absorption peak. Finally, the ab-
sorption on HH2~continuum transitions is very small,
mostly due to the high energy of the HH2 state which is
close to the top of the well. Note also that the full ab-
sorption profile is more smeared than that for bound-
bound transitions, where multiple peaks may be observed
(Fig. 2). We find the absorption peak to be positioned at
154.5 meV, which divers substantially from the transition
energy from the HH1 bound state to the heavy-hole
quasibound (resonant) state in continuum calculated as in
Ref. 16. The absorption amounts to 0.89%%uo (peak value),
with the full width at half maximum equal to 6.3 pm. A
slow decrease of ~s» ~

and ~s~, ~
for energies higher than

E03 [Fig. 3(b)] results in asymmetric transition-matrix
elements [Fig. 4(b)], which in turn gives a very wide ab-
sorption line shape. The positions of the peak absorption
and peak value of Mgs at k, =0 do not coincide (the
former being blueshifted), which means that finite k,

states make a very considerable contribution to the full
absorption profile. Indeed, the maximum of Mgz shifts
toward higher energies as k, increases, due to the coxn-
bined inAuence of density of states and evanescent wave-
function amplitude, as discussed above, and so do contri-
butions of these states to the absorption profile.

Our results agree very well with the experimentally
measured absorption line shape in quantum-we11-based
infrared detector structures by Bandara, Levine, and
Kuo where a single peak of the responsivity spe~ (rum
has been observed (according to the simple theory o:. An-
drews and Miller, it corresponds to the peak absorp-
tion). The relative error between the measured and cal-
culated results amount to —10%%uo, the latter being red-
shifted by 0.8 pm from the measured peak absorption at
7.2 pm.

However, there are at least four reasons that this
disagreement might have been expected. The experimen-
tally realized structure had very limited width and a spe-
cial type of doping, with the equilibrium Fermi level
determined by acceptor density in its contacts. Further-
more, the spectral responsivity was measured under bias,
not under asymptotically Bat-band conditions, as were as-
sumed in this work. Finally, as noted in Ref. 2, there is a
significant charge redistribution and self-consistency
e6'ects appear. Although the estimated self-consistent po-
tential is about 15 meV, not as large as is typical in n-
type doped structures, it still may shift the absorption
peak by roughly this amount. The proximity of the spin
split-o6' band is an additional factor that may efFect ab-
sorption to some extent, especially for photon energies
close to h.

Further improvement and generalization of the model
we used would include the efFects of self-consistency (due
to filling of both bound- and free-hole states), in a way
similar to that employed for n-type doped wells. Fur-
thermore, the spin-split-ofF band states might also be in-
cluded for better accuracy, e.g., using the Hamiltonian
given in Ref. 33.

V. CONCI. USION

A method for calculation of intersubband absorption
on bound-free transitions in p-type doped semiconductor
quantum wells was presented. Numerical calculations
were performed for a GaAsjA1 Gai „As-based struc-
ture. In the specific example studied we found a fraction-
al absorption of 0.89% (peak value) at a wavelength of 8
pm, which makes the structure perspective for infrared
detection. The calculated results agree very well with ex-
perimental measurements, with errors of about 10%%uo.

Smaller values of absorption were found on bound-bound
heavy-hole transitions as well. %e have shown that a
simple model that considers only bound states and reso-
nant states in the continuum cannot give an accurate
description of the absorption profile, because all relevant
quantities on which the absorption depends vary strongly
with the transverse wave number.
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