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Numerical analysis of ballistic-electron transport in magnetic fields
by using a quantum point contact and a quantum wire

T. Usuki, * M. Saito, M. Takatsu, R. A. Kiehl, and N. Yokoyama
Quantum Electron Deuices Laboratory, Fujitsu Laboratories Ltd. , 10-1 Morinosato Wa-kamiya, Atsugi 243-01, Japan

(Received 10 January 1995)

We report the numerical analysis of our experimental results for electron-wave propagation from a

quantum point contact to a quantum wire. Our numerical method solves the boundary problem of a lat-
tice model, and determines wave functions at an arbitrary site. This method also includes a recursive
Careen s-function method. Our study found oscillations in the conductance, and magnetic suppression of
those oscillations. For a simple model, we simulate the oscillations directly related to the channel num-
ber in the quantum wire. To understand the magnetic suppression, we investigate the dependence of the
electron-wave propagation on the magnetic field using a realistic model. Numerical results show that a
realistic rounded corner at the point-contact and a magnetic field could suppress the oscillations. We
also discuss the transition from a classical skipping orbit with clear circular segments and focusing to a
quantum edge state along a potential wall.

I. INTRODUCTION

Mesoscopic systems have interesting electrical trans-
port characteristics due to their coherent ballistic elec-
trons. For example, we can give the following: conduc-
tance quantization (in a point contact), ' magnetic focus-
ing, and Hall effect for a one-dimensional (1D)
crosswire. ' These mesoscopic phenomena have been
measured in an artificial system with a variable confining
potential. Many systems have been fabricated using
submicron lithography and high-mobility two-
dimensional (2D) electron gas structures. In these sys-
tems, the dimensions are significantly smaller than both
the mean-free path and the coherent length at low tem-
peratures. There have also been many theoretical studies
of the mesoscopic phenomena of electron-wave interfer-
ence and ballistic trajectories. Conductance quantization
has already been explained clearly, ' and numerical cal-
culations have shown the ideal skipping orbit for magnet-

ic focusing. ' Numerical analysis has pointed out that
the shape of the device strongly afFects its transport
characteristics. For example, the Hall effect in a 1D
crosswire is defined by the shape of the crossing. ' '"
Other examples have predicted the chaotic resistance
Auctuations due to scattering from a geometric
feature. ' '

In this paper, we present a numerical analysis of our
experimental data for the mesoscopic system. We detail
the dependence of the transport characteristics on the
subject's shape. We measured the transport characteris-
tics of a device with a point contact and a reflector. ' Fig-
ure 1(a) shows our device and circuit when we measured
the point-contact resistance. The device was fabricated
on a modulation-doped Al Ga& „As/GaAs heterostruc-
ture epilayer. The mean-free-path length was 4.5 pm and
the Fermi wavelength was 44 nm at 0.34 K. This device's
dimensions are less than the mean-free-path length; the
electrons are expected to move in this device nearly bal-
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FICi. 1. (a) A scanning elec-
tron microscope micrograph of
our device with control and
measurement circuits for point-
contact resistance. (b) Diagram
of a confinement structure with
a point contact and a reflector.
The shaded region indicates a
quantum wire with 1D channels,
where the 1D channel number is
controlled by changing the volt-
age V&.
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listically. The measurement temperature and applied
current were low; therefore, the phase coherence length is
expected to be comparable to the device's dimensions. '

Figure 1(b) shows both gate structures and the depletion
regions. The electron gas system confined by these de-
pletion regions has a T-shaped configuration that consists
of a point contact and a quantum wire along the reAector.
The point-contact opening was fixed, as it has a max-
imum of two channels. That is, we fixed the voltage ap-
plied to the split gate. The shaded region in Fig. 1(b) is
the quantum wire, and its width was controHed by chang-
ing the voltage V~ applied to the reAector gate. Accord-
ingly, our devices have only two geometrical parameters;
the width of the point contact, and the separation be-
tween the point contact and the reflector. These parame-
ters could be evident from measuring the conductance
quantization. This advantage allows us to carry out a
more detailed analysis of the experimental results than in
other device structures. ' ' We measured the point-
contact resistance with changing Vz by using the circuit
in Fig. 1(a). For monitoring the channel number in the
wire, we also measured the four-terminal quantum wire
conductance, where we coated two terminals at the left
side in Fig. 1(a). The point-contact resistance in Fig. 2(a)

18

is periodic where there is no magnetic field, and the
periodicity relates to the channel number in the wire, as
evident from the quantum wire conductance in Fig. 2(b).
The magnetic field completely suppressed the oscillation
at 0.2 T. The oscillation was suppressed, but the conduc-
tance quantization of the wire remained, even in a mag-
netic field. '

To analyze these properties, we numerically investigat-
ed electron-wave transport of a T-shaped structure in a
magnetic field. A detailed analysis required a calculation
method that could obtain both conductance and spatial
information of a 2D electron system with complex poten-
tial profile. Our numerical analysis used a method for
solving the boundary problem of a lattice model, and for
obtaining wave functions at an arbitrary site. A method
has already been developed to study mesoscopic phenom-
ena for a line-shaped, point-contact injector and a
wedge-shaped, point-contact detector. ' We apply this
method to the lattice model in our paper. This method
includes the recursion using the Green's function. '

Details of the calculation method are given in Sec. II. In
Sec. III, we apply this method to our geometry with an
ideal abrupt configuration, and we discuss the clear con-
ductance oscillation. Section IV gives numerical results
for a realistic structure, and the numerical results show
the magnetic suppression of the oscillations. Numerical
calculations also show an interesting magnetic property,
a transition from a classical skipping orbit to a quantum
edge state with changing magnetic fields. A summary is
given in Sec. V.

15
II. CONDUCTANCE CALCULATION

IN 2D LATTICE MODEL

10
0.2 T

We can investigate the transport phenomena in mesos-
copic systems by using the Landauer-Biittiker formu-
la. ' To obtain the conductance, we have studied a nu-
merical method for calculating stably transmission
coe%cients. ' We now explain how the method expands
to a 2D square lattice model by considering a quantum
wire.

The quantum-wire lattice model consists of a scattering
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FIG. 2. Experimental results at 0.31 K with changing V&. (a)
Point-contact resistance with osci11ations. (b) Conductance of
the quantum wire, where we floated two terminals at the left
side in Fig. 1(a). The conductance quantization means monitor-
ing the 1D channel number in the wire. The oscillations are
completely suppressed by a magnetic field. Nevertheless, the
conductance quantization remains while in the magnetic field.
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FIG. 3. Configuration of a lattice model for a quantum wire.
Integer coordinates (I,m) mean lattice points, and the lattice
constant is taken as a unit of length. This model consists of a
scattering region and two ideal wires of width M+ 1.
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region and two ideal wires with a width of M+1, as
shown in Fig. 3. The coordinates (I,m) are the lattice
points. The lattice constant is taken as being a unit of
length. The Hamiltonian of this model is given by

g al (Hl EF)al+al Hl, l+ial+1
I

(2.1)

where al is the column vector of annihilation operators
al for a site state al= (ai„.. . , aiM). Here, Hl, Hl I

=T
and 8& I + &

are M XM matrices defined by

y(0)

y(1) 0 L( —)
=T

y( I) y( I —1)

y( I + 1) I y( I)

R.(+ )
T—1

R( ) 0 y(N+1)

The matrix Tp is given by

for 1 ~ l ~ X,

(2.8)

(2.9)

(2.10)

Vii+4t

0

V„+4t
0

VI3+4t

Vav+ 4t

(2.2)

U(+ ) U( —)
T =

0 U(+ )g(+ ) U( —)g( —)

with

and

U(+) = [u, (+), . . . , uM(+)],

A,(+)=diag(A, ,(+), . . . , &M(+)) .

(2.11)

(2.12)

(2.13)

and

Hl I,=diag[ t ex—p(2niB), . . . , —t exp(2niBM)],

(2.3)

(2.4)

u is a column vector describing the amplitude of the
mth channel for M sites along the m axis, and A, is a
phase factor of a plane wave along the l axis for the mth
channel. The column vector and the phase factor are
given by solving the eigenvalue equation below:

B=1/XFR, . (2.5)

In the following numerical calculation, we set A,F to 10,
since this is long enough for a lattice constant. The Fer-
mi energy E„andkF follow

In Eqs. (2.2) and (2.3), the nearest-neighboring integral
and site energy are given by —t and V&, respectively.
The magnetic field B is included in terms of a Peirls phase
factor. B can be specified by a Fermi wavelength A.F and
a cyclotron radius R, :

0 (+)
—H(),'H(), H0,'(EF H() ) & (+ )u (+ )

(+)
=A~(+) ~ (+) (+) . (2 14)

In the following discussion, the column vector u is nor-
malized as ~~u ~~=1. The matrix Tl for 1~I ~%is given
by

0
2'E =2t 1 —cos (2.6)

—Hl I'+,Hl I, HI I'+, (EF HI)—(2.15)

The wave function 4 in the system is defined by the
above Hamiltonian as H ~%') =0. In particular, 2M chan-
nels are formed in the ideal wires since the site potential
VI in the region of the ideal wires is not dependent on
position /. Then, to study the scattering problem of the
wave function, we consider the channel coefficient L(+)
in the ideal wire on the left and R(+ ) in the ideal wire on
the right, where + ( —) refer to waves moving to the
right (left). These coefficients are represented by a
column vector with M elements, and satisfy the following
equation:

2 2

m, n m

The matrix t of the transmission wave is defined by

(2.16)

The whole wave function from one outer region to
another is simply solved by using Eqs. (2.8)—(2.10). We
can also obtain the transmission probability (t„)from
the incident channel m with velocity v to the outgoing
channel n with velocity v„.In terms of the transmission
probability, the conductance 6 of the system is obtained
from a multichannel version of the Landauer-Buttiker
formula below

R(+ ) L(+ )

R( —
) L( —)

(2.7)
0 =TP TN

I
Tp ~ (2.17)

We define f(I) as a column vector describing the wave
function of the lth cell consisting of M sites. The
(2M X 2M) matrix Tl satisfies the following:

Note that the above equation is extremely unstable in
general. We stabilize it by using the following iteration
technique:
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C(l +1) C(1+1)
1 2

C(l) C(1)
1 2

Tl 0 1 Pl for 0(l(%+1
(2.18)

with

and

TN+ 1

,
0 [U(+ )A,(+ )]
1 —U(+ )[U(+ )A(+ ) ]

(2.19)

1 0
ll 12

(2.20)

An initial condition of the iteration is C', '=1, C2 '=0,
and T&+1 is added to Tl. Matrix Pl is a linear operator
to satisfy the form. that is assigned to the matrix on the
left of Eq. (2.18). Then we treat this linear operator for
each connecting step in the computation. The detailed
expressions are given by

P11 P12T121C1
(1) (2.21)

l2 [ l2)C2 +T)22]

where

(2.22)

111 112

T121 T122
(2.23)

This iteration continues from 1'=0 to N+ I, and it finally
gives t=Cl '. A similar iteration gives the matrix r of
the reAection wave as

the well-known Green's-function method' ' (see Ap-
pendix). The advantage over the Green's-function
method is that the transmission matrix, reQection matrix,
and wave function at any point can be obtained simul-
taneously by the linear operator Pl. Calculating the posi-
tion probability density is important in understanding
both electron wave propagation and mesoscopic device
design. The numerical calculation of Pl spends the same
size as obtaining the Green's function in our case.

We would normally investigate the electron-wave
propagation in our experimental results using this
feature. However, the lattice model of the simple
quantum-wire structure has to be extended to a structure
suitable for our device. As shown in Fig. 4, we use a T-
shaped structure consisting of a wire A of width L+1
and a wire B of width M+1, so that the lattice size is
defined by two parameters, L, and M. Wire 3 and wire B
are related to our device's point contact and quantum
wire along the reflector in Fig. 1(b), respectively. The T-
shaped structure is a kind of three-terminal device. To
analyze the transport of this structure, we should use the
three-terminal Landauer-Butiker formula in general.
However, for the point-contact conductance by our cir-
cuit in Fig. 1(a), the three-terminal formula can be re-
duced to the two-terminal formula, because the chemical
potential of a terminal in wire B is equal to that of anoth-
er terminal in wire 8 (see Fig. 4). Then we use Eq. (2.16)
where the outgoing channels are defined by channels to-
ward two terminals in wire B. The iteration method can
also be applicable to the T-shaped structure by extending
all matrices and changing suitable gauge when /= 1.. In
the following section, we show numerical results from
our method.

( D( I + 1)D()+ 1 }
—

( D( l)D(1) )P and r —D(N +2)
1 2 1 2 I 1 (2.24)

where the initial condition is 0',"'=0, D~z"'=1. In order
to obtain the electron density at a point, we define a row
vector and calculate as follows:

(y(,"(l,m), . . . , y(" (l, m))—= (0, . . . , O, S „.. . , 6

(2.25)
Wire A

mls g(+) g(-)

I I I

---. )IIIIIIIIIIIIIIIIII II I I IIIIIIII I+IIIII - - - --

and

(1l', "(l,m ), . . . , 1l'J+"(l,m ))

=(gI~'(1, m ), . . . , g'z~~(l, m ))P~ for l ~j«N+1 .

(2.26)

Then the position probability density is obtained by

I I

'M.::
I
I

~ ~

1~

4
~ ~
~ ~

-e---'
'I ~

~ ~L::;::oaf'l- eat'&
--II- I

~ ~ v
\ ~ I

0 1
1 p

Wire 8 'll III)IIIIAIIIIIIIIII)IIIIAIIIII----
I I

n (l, m }=
~

f' + '(l, m )
~

(2.27)

where the parameter i refers to the left channel number,
the injected channel.

The iterative technique is useful for obtaining stable
calculations, because it cancels divergence factors that
occur due to the rounding errors of each step. When the
method is slightly modified, it becomes as applicable as

Wllllllllll)Ill llll IIllllll)llllklllll - ----
I

I

I

J

g(+) g(-)

FIG. 4. Configuration of a T-shaped structure lattice model
for our experimental device. This structure consists of a wire A

with width M+ 1 and a wire B with width L+ 1. Wire A is the
point contact in Fig. 1 and wire B is the quantum wire in Fig. 1.



8248 USUKI, SAITO, TAKATSU, KIEHL, AND YOKOYAMA 52

III. T-SHAPED STRUCTURE
WITH ABRUPT CONFIGURATION

We measured the oscillations of conductance for a
point contact with a reflector as shown in Fig. 1.' To un-
derstand a property of the oscillation, we initially try cal-
culating the conductance of a T-shaped structure with a
hard-well potential and an abrupt configuration initially.
It seems that the complex multiscattering of electron
waves rarely occurs in this structure, compared to a real-
istic structure. Therefore, we can easily derive a simple
picture of the oscillation in the simple T-shaped struc-
ture.

As shown in Fig. 4, the T-shaped structure has two
basic parameters, L and M. Wire 3 of width M+ 1 is re-
garded as the injector of a point contact in Fig. 1. Pa-
rameter M is set M=20 with A,+=10. Wire B of width
L + 1 is the quantum wire made by the split gate and the
reflector gate in Fig. 1. Changing parameter L refers to
changing the applied voltage of our reflector. Figure 5
shows the relationship between the conductance, from
the injector to the infinite wire, with changing L. When
an electron wave is injected through the first channel in
wire A, in Fig. 5(a), the conductance oscillation corre-
sponds well with a period of forming channels below the
Fermi level in wire 8, as shown in Fig. 5(c). The angular
distribution of the injected wave through the second
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second channel in wire 3, the conductance, of which the
oscillation becomes smaller, is higher than through the
first channel [see Figs. 5(a) and 5(b)]. We think that the
oscillation is caused by a matching between the channels
in the infinite wire and a wave function consisting of in-
jecting and rejecting waves. Figure 6 shows the conduc-
tance contributing to each channel in wire B, related to
Fig. 5(a). As is evident from Fig. 6, the total conductance
and the oscillations are mainly defined by matching the
injected-wave function with a channel just below the Fer-
mi level. ' The conductance oscillates for a period of half
a Fermi wavelength. The distribution of electron waves
in real space helps in understanding the ballistic trans-
port of a mesoscopic system. Figure 7 shows the position
probability density L =50 (matching case) and L =53
(not matching case). This figure shows that maximum
conductance occurs at matching channels in wire B, and
the mode formed by injecting and rejecting waves.

R A, =1
We calculate the conductance in a magnetic fi ld 'th

, / z=l0. This corresponds to 0.2 T in our experi-
ment. In Fig. 8(a), the oscillations become slightly small-
er than in no magnetic field. When an electron wave is
injected through the second channel in wire 3, the oscil-
lations become larger than in no magnetic field in Fig.
8(b). Obviously, these results are different from the mag-

netic suppression in our experiment [Fig. 2(a)].
e obtain a simple picture of the oscillation in the

matching electron waves. However, the simple T-shaped
structure with an abrupt configuration cannot explain all
the properties of our experimental results.

IV. PROPAGATION IN REALISTIC STRUCTURE

Previous numerical studies obtained the propagation of
electron waves for only a simple abrupt structure, com-
posed of wires with hard walls. ' The propagation in real-
istic structures has not been investigated thoroughly, al-
though we know it is sensitive to the shape. The follow-
ing numerical results clearly show that the interpretation
of an actual experimental ballistic transport needs calcu-
lation that account for complex multiscattering. We ex-
amined a T-shaped structure with a realistic potential
profile.

A. Conductance oscillations with rounded shape

It has been reported that the confinement potential of
the quantum wire caused by a split gate has a parabolic
s ape. Based on our previous report, ' we assume that

(a) 1F
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FIG. 8. Conductance from wire A with M=20 to wire B by
changing L for an ideal abrupt structure in a magnetic field with
cyclotron radius R, /A, F = 10. (a) Injecting electron wave
through the first channel and (b) through the second channel. (c)
The channel number in wire B. The oscillations remain in the
magnetic field, which is difFerent from our experimental results
[see Fig. 2(a)].
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FIG. 9. (a) Schematic picture of Eqs. (4.1)—(4.4). (b) Top
view of a realistic structure potential with 8'=141, R =62

p

L =100, and M=80. The potential energy is taken as a unit of
Fermi energy EF. Note that we did not draw higher potential
lines than V=2, since these lines would make the figure com-
plex.
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V =A. ~(m —R )(m+R —M —1)+1, (4.1)

when l, m are in region I in Fig. 9(a),

V =1—A,
W —(2m —M —1) r —R (r —R),W+(2m —M —1) ~

(4.2)

wire A (for a point contact) and wire B (along a retlector)
have a lateral potential profile composed of a parabola.
We also assume that the connection between wire 2 and
wire B has a rounded corner. As shown in Fig. 9(a), we
divide the T-shaped structure into several regions, and
the potential configuration has symmetry along
m =(M+1)/2. A detailed potential profile to the four
regions is given by the following expressions, for which
potential energy is normalized by Fermi energy:
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FICr. 10. Conductance from wire A to wire B by changing L.
We set the Fermi wavelength A,F =10 and assumed a realistic
structure with W=141, A~=62, and M=SO [see Fig. 9(b)]. (a)
Injecting electron wave through the first channel and (b)
through the second channel. (c) The channel number in wire B.
The conductance clearly shows oscillations for a period of form-
ing channels below the Fermi level in wire B, when the parame-
ter L = 100—140 (115—140) for case (a) [case (b)].

when l, m are in region IV, where
r =Q(l —I ) +(m —m ), and I =m = —(W —M—1)/2. In other regions, V& =0. The potential of a
point contact has two main parameters, R and O'. In
fig. 9(a), R~ is the radius of the rounded corner, and
R, 8' relate to both the metal gate structure and thep7
width of the depletion region in the 2D electron gas. In
this paper, we assume 8'=141, R =62, with A,F=10.
These values are suitable for a device with about a 0.2-pm
gate length, 0.4-pm gate opening, 40-nm Fermi wave-
length, and two channels in the injector below the Fermi
level. ' These dimensions are reasonable for most mesos-
copic experiments. Figure 9(b) shows a top view of a
point-contact potential with the above parameters. the
potential profile along the m axis for the injector is com-
pletely parabolic. In the following, we use a specific
value, R~/A, ~ =6.2, as a typical case of a second conduc-
tance plateau for the injector. '

Figure 10(a) shows the conductance as a function of L.
It is more complex than Fig. 5. When the opening
around a connection of quantum wires is sma11
(L =80—100), the conductance oscillation is random.
This might be similar to random transport of the so-
called "chaotic cavity. "' ' ' When L ) 100, the oscilla-
tions are clearly periodic. We then investigate the con-
ductance contributing to each channel in wire B when
L =115—130. As shown in Fig. 11, a channel just below
the Fermi level contributes to the total conductance. The
conductance also distributes other channels under Fermi
energy more widely than in the case of Fig. 6. In Fig. 12,
we show the position probability for the realistic struc-
ture. These figures show the differences between L =116
(matching case) in Fig. 12(a) and L =119 (not matching
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FIG. 12. Position probability density for the
ideal abrupt structure. (a) L =116; matching
case. (b) L = 119;not matching case. Distribu-
tions of the densities have complex patterns
due to multiscattering, but we clearly distin-
guish between cases (a) and (b). The shaded re-
gions indicate an electron density greater than
0.05, since the contours would make the figure
complex.
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case) in Fig. 12(b). They also show the complex scatter-
ing phenomena. The realistic geometry leads to
difhculties in the physical interpretation of the oscilla-
tions. Note that the complex scattering cannot suppress
the periodic oscillation.

Contrary to the properties in no magnetic field, the
realistic structure can show a simple picture for the mag-
netic suppression. Figure 13 shows the conductance un-
der a magnetic field with R, /A, ~=10. The magnetic field
eliminates the conductance oscillation when
L =115—130. This result is quite different from that of
the abrupt structure, but it agrees with our experimental
results. The complete suppression is caused by the
rounded corner at the connection between two wires. In
order to clearly show the effects of the rounded corner,
we show the position probability density in Fig. 14. Fig-
ure 14(a) shows rejections at the reIlector still dominate
electron-wave propagation in the ideal abrupt structure
with R, IA,F = 10. ReIIections of the realistic structure in
Fig. 14(b) reduce in comparison with the abrupt struc-
ture, because the magnetic field guides the electron wave
along the rounded corner of the realistic structure. This
guiding effect becomes clear in higher fields, and causes
the suppression of classical skipping orbits. The
difference between the abrupt and realistic cases is also
important to analyze other experiments. ' ' '"

12
C

4

10— B. Suppression of classical skipping orbit
and formation of quantum edge state

0 I

80 100 120 140 160

FIG. 13. Conductance from wire 2 to wire 8 by changing L
for a realistic structure in a magnetic field with cyclotron radius
R, /A. F=10. (a) Injecting electron wave through the first chan-
nel and (b) through the second channel. (c) The channel number
in wire B. The oscillations are completely suppressed by the
magnetic field for L & 110. This can explain our experimental
results [see Fig. 2(ai]. However, random oscillations remain for
L (110.

Under relatively higher magnetic fields, the ballistic
transport has several interesting properties. The classical
skipping orbit with clear circular segments and focusing,
and the transport by the quantum edge states, which
mean channels in a quantum wire under magnetic fields
here are both well-known phenomena. The magnetic
focusing experiment showed the existence of a classical
skipping orbit, and interesting results of numerical calcu-

8, 9lations. ' There have been no numerical studies of the
transition form a classical skipping orbit to quantum edge
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FICx. 14. Position probability
density for applying magnetic
field with R, /A, F = 10. (a)
L =140; the actual structure. (b)
L=73; the ideal abrupt struc-
ture. These cases have seven
channels under Fermi level for
wire B.
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state within changing magnetic fields. Our results clearly
show that the transition in the realistic case is different
from the abrupt case.

Figure 15 shows abrupt structure conductance for vari-
ous channels while subjected to magnetic fields. Due to
deflection by magnetic fields, the rising current in wire B
is larger than the sinking current, even in the weak-field

case with E., /A, F=20. The contribution of the channel
just under the Fermi level remains large under a weak
magnetic field with R, /A, z = 10,20. The conductance (see
Fig. 8) maintains oscillations, because the wire s width is
smaller than the cyclotron radius. Under stronger fields,

10

(a)
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FICx. 15. Distributions of conductance at each channel in a
magnetic field for an ideal abrupt structure. The broken line
refers to the sinking current (see inset), and a bold line is the no
magnetic field case. For a higher field R, /XF = 1,2, the distribu-
tions have peak structures, which indicates the formation of a
classical skipping orbit.

0
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4 0

Injection through
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I I I

2

FIG. 16. Position probability density for an ideal abrupt
structure in a magnetic field with R, /A, F =2. (a) Injecting elec-
tron wave through the first channel when L =50,M=20 and (b)
through the second channel. These densities reveal skipping or-
bits with half circles and periodic magnetic focusing. The shad-
ed regions indicate an electron density greater than 0.2, since
the contours would make the figure complex.
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R, /A, F =1,2, the distributions of the conductance contri-
butions clearly have peak structure. This implies the for-
mation of a classical skipping orbit. It is represented by
the plane waves of several channels, in terms of the wave
mechanics. In order to support this explanation, we
show the position probability density in Fig. 16. The nu-
merical results for R, /A, F =2 show obvious half circles,
concerned with the cyclotron radius and the periodic
magnetic focusing. In the case of the abrupt structure,
the classical skipping orbit could be formed when an
infinite wire's width is larger than the cyclotron radius.
The conductance oscillation does not occur under this
condition. Orbit skipping has been well investigated for
an abrupt structure. ' However, the propagation of elec-8, 9

tron waves through magnetic fields in a realistic structure
with a rounded corner is different from the propagation
in an abrupt structure.

Figure 17 shows the conductance contribution at each
channel in magnetic fields for the realistic structure. In
spite of deAection by magnetic fields, the rising current in
the infinite wire is smaller than the sinking current when
R, /kF =20. This is that multiscattering for both round-
ed corners and refIector makes rebounding of electrons. "
Under stronger fields, R, /A, ~=2,4, the distributions of
the conductance contributions have a maximum at the
first (second) channels in wire 8, when electron waves are
injected through the first (second) channel in wire A.

20

18—

R lk —4

injection through
1st channel

Inj
2n

12—

This channel selectivity means the formation of an edge
state. The position probability density in Fig. 18 clearly
shows a transition from a classical skipping orbit to a
quantum edge state with changing magnetic fields. For
R, /A, F=4 in Figs. 18(a) and 18(b), the magnetic field al-
most guides the injected electron wave along the wall.
The propagation, however, leaves both an incomplete
skipping orbit and obvious magnetic focusing, ( specially
for injection through the second channel in Fig. 18(b).
For R, /AF =2 in Figs. 18(c) and 18(d), the position prob-
ability densities show formation of magnetic edge states
with smaller undulations. The magnetic field with
R, /A, F=2 achieves a strong channel selectivity for the
rounded corner configuration. The propagation results of
the realistic structures are therefore quite different from
the abrupt structure.
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FIG. 17. Distributions of conductance at each channel in a
magnetic field for a realistic structure. Broken lines refer to the
sinking current (see the inset in Fig. 15), and the bold line is the
no magnetic field case. For a higher field, R, /A, +=1,2,4, the
distributions show channel selectivity, which indicates the for-
mation of a quantum edge state.
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FIG. 18. Position probability density for the ideal abrupt
structure in a magnetic field at L =100. (a) Injecting electron
wave through the first channel when R, /A, F =4; (b) through the
second channel when R, /A, F=4; (c) through the first channel
when R, /A, F=2; and (d) through the second channel when
R, /kF =2. These numerical results show the transition from a
classical skipping orbit to a quantum edge state with changing
magnetic fields.
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V. SUMMARY

We have described calculations based on a 2D lattice
model for electron-wave propagation. Our method is a
generalized technique based on the recursive Careen's-
function method and allows the determination of both
transmission/reflection coefficients and the wave func-
tions at an arbitrary position. It provides stable numeri-
cal results for both hard and soft confinement potentials
and for both sharp and rounded geometries.

We used this method to examine ballistic electron
transport in a magnetic field. The structures examined
were a quantum point contact and a rejecting boundary
with both realistic soft confinement potentials and round-
ed corners. We compared these results to those calculat-
ed for the simple case of a hard confinement potential
and sharp corners.

With no magnetic field and large L, the conductance
for the realistic model is clearly periodic. For small L the
transport exhibited random fluctuations similar to the
chaotic cavity. This is related to the strong lateral
confinement between the point contact and the refiector
in this regime. This effect has not been observed experi-
mentally, probably as a result of a smearing of the com-
plex multiscattering by inelastic scattering.

The results showed in detail the transition from a clas-
sical skipping orbit with magnetic focusing, to a quantum
edge state with magnetic guiding. The trajectory of the
electron wave may be determined by the competition be-
tween the magnetic effect and the collimation effect of a
point contact. It is difficult to predict the trajectory in
detail without a numerical calculation. Our results for
soft confinement and rounded corners show both magnet-
ic focusing and clear channel selectivity for R, /A, ~ near
4. In the case of hard confinement and sharp corners, we
only found ideal skipping orbits with half circles. There-
fore, there is a clear contrast between the results for
rounded and sharp corners. This effect for the rounded
corners shows that the experiment (especially near 1 T)
for magnetic focusing and edge state requires detailed
analysis.

The major results of our study relate to the magnetic-
field dependence of the conductance oscillations. For the
soft confinement and rounded corner model, the oscilla-
tions were found to be strongly suppressed at small mag-
netic fields, consistent with experimental observations.
Although both the simple and realistic models show a
similar oscillatory behavior with no magnetic field, the
simple model cannot simulate experimental magnetic

properties. Consequently, rounded boundaries are essen-
tial for the interpretation of the magnetic field depen-
dence observed in this structure.
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APPENDIX

(oIG"'IO) =(E,—H, )-',

(j I

G"'Ij ) = I
E —H, —H. .

and

&&(j—1IG" "Ij—1)H, j

(J IG'"lo) =(J IG"'lj)H,;, -g(j —1IG" "Io) .

Then, this iteration method is a generalized calculation
technique including the recursive Green's-function
method and the method in Ref. 18.

The following shows that iteration based on Eqs.
(2.28)—(2.32) is also applicable to the recursive Green's-
function method. By using the expressions in Ref. 21, we
change HJ to HJ, and the matrix in Eq. (2.13) is applied
to a wider region as

0
—

H~ J~+,HJ 1, HJ J'+, (E~ —
H~ )

for 0~j +%+1 .

Furthermore, when an initial condition is given as

CP'=(F '(+)—F '( —))U(+) and C' )=0

the matrices C'&
+",C2 +"obtained by iteration relate to

the recursive Green's function

cIJ+' =(j G J Io)HO, (F '(+)—F '( —))U(+)
and

C21+"=(jlG'1' j)HJ,J+1

Here, Green's function 6 is defined by the following
well-known relations: '
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