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We present a numerical study of the dc transport properties of dissipative disordered chains which are
described by linear ensembles of interconnected scatterers. The elastic-scattering amplitudes are derived
from an Anderson Hamiltonian with diagonal (site) disorder. Inelastic scattering is accounted for by
connecting the sites of the Anderson chain to separate external electron reservoirs. The calculated
wave-vector-dependent transmission probabilities are discussed for chains with different lengths and for
different degrees of dissipation. Using the Landauer-Buttiker approach we obtain the dc resistance of
the considered samples. Our results demonstrate the rather intricate competition between elastic and in-
elastic scattering.

I. INTRODUCTION

Electronic transport in mesoscopic samples is dominat-
ed by quantum interference effects. ' A transparent
description of the underlying physics is given by the ap-
proach of Landauer, who relates the conductance of a
quantum wire to its scattering properties at the Fermi en-
ergy. Such a quantum wire can be described by a chain
of single scatterers, where each scatterer represents a lat-
tice site of the chain. Mathematically, such single
scatterers can be represented by the respective scattering
matrices. The scattering matrix of the whole chain can
then be calculated from the scattering matrices of the sin-
gle scatterers. In this way, it is possible to take into ac-
count the multiple reflections between the single scatter-
ers, which lead to quantum interference effects.

This model was used by Buttiker, who introduced dis-
sipative scattering in a phenomenological way by con-
necting the lattice sites of the chain to respective local
external electron reservoirs via additional scattering
channels. The coupling to these reservoirs is controlled
by a parameter. Assuming that electrons scattered into
the reservoirs will be thermalized before being reemitted
into the chain, and imposing current conservation within
the chain, it follows that each electron entering the reser-
voir is replaced by another electron which is injected
from the reservoir back into the chain. The assumed
thermalization in the reservoirs implies that the phases of
the electrons reinjected from the reservoirs into the chain
are not correlated with those of the entering electrons.
Furthermore, their energies ate determined by the statist-
ical (equilibrium) energy distribution in the local reser-
voirs. Consequently, the coupling of the chain to the
reservoirs provides a possibility to characterize the
strength of inelastic scattering for the electron through
the system. This approach enabled Buttiker to discuss

the transport properties of linear chains consisting of
elastic and inelastic scatterers.

Following these ideas, this model was recently extend-
ed to the case of generalized scatterers, which allow for
elastic as well as inelastic scattering according to parama-
trized scattering probabilities. With this approach, trans-
port properties of ordered systems have been extensively
studied. ' Disorder has also been introduced into these
investigations by randomly varying the intersite separa-
tion (spatial disorder). ' This is the most straightforward
way to destroy the constructive or (possibly) destructive
interference between the coherently multiply scattered
waves. It was shown in the regime of destructive interfer-
ence, i.e., small transmission probability, that the conduc-
tance can be enhanced by the introduction of spatial dis-
order, whereas in the regime of high transmission proba-
bility the conductance of disordered samples is always
smaller than in the ordered system. This result can be
translated into band-structure terminology: introduction
of disorder leads to localized states in these band tails.
We will show in this paper that this effect can also be
achieved by introduction of inelastic scattering into an
energetically disordered system: the conductance of a sys-
tem with site-energy disorder can be enhanced or
suppressed by inelastic scattering, depending on the
choice of the electron wave vector q. A similar observa-
tion has recently been reported for the spatially disor-
dered chain.

D'Amato and Pastawski have presented an extension
of the Landauer approach, which enabled them to calcu-
late the conductance of ordered and Anderson-disordered
chains in the presence of inelastic scattering by means of
a Green's function method. In their approach, the chain
and the perfect leads, which couple the chain to the reser-
voirs, are characterized by a nearest-neighbor tight-
binding Hamiltonian H. In this picture, the tight-binding
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parameters in the lateral perfect wires control the cou-
pling between chain and reservoirs. As pointed out by
Datta, such reservoirs can be represented by an ensem-
ble of continuously distributed independent harmonic os-
cillators.

Recently, the Landauer approach has also been used to
study the resistance of finite repeated structures' and the
conductance of random dimer chains. " Random dimer
models can be used to describe the structure of polymer
chains such as polyaniline. Therefore it should be possi-
ble to describe elastic and inelastic electron transport in
polymers within the Landauer-Buttiker approach using a
nearest-neighbor tight-binding Hamiltonian and extend
recent studies, ' *' a subject on which we will focus in a
forthcoming paper.

In the present paper we apply the Landauer-Buttiker
theory to a disordered linear chain and present numerical
studies on the transmission probabilities, resistance, and
respective decay lengths of this system. In contrast to the
above-mentioned spatial disorder, we introduce disorder
by randomly choosing the site energies in the Hamiltoni-
an from a uniform distribution (site disorder). Restrict-
ing ourselves for simplicity to nearest-neighbor transfer
matrix elements, the elastic-scattering part of this model
corresponds to the well-known Anderson model of locali-
zation. ' The re6ection and transmission coefficients at
each lattice site can be derived in an elementary way' for
this tight-binding linear chain. Following Ref. 4 we build
up a scattering matrix for each lattice site including the
inelastic scattering by means of a parametrized scattering
strength. In this approach, the derivation of the elastic-
scattering coefficients from the Anderson Hamiltonian
avoids the necessity of a second phenomenological pa-
rameter.

From the single scattering matrices we calculate the to-
tal scattering matrix of the chain using an iterative algo-
rithm. The local chemical potential for the electron
reservoir at each lattice site is determined from the
current conservation conditions. The resistance can then
be evaluated in terms of the chemical potentials and the
transmission probabilities between the channels, which
are obtained from the total scattering matrix.

II. THE MODEL

We consider a supramolecular system as a linear chain
of sites. (The generalization to topologically more com-
plex systems has been discussed elsewhere. '

) The sites of
the chain could be single atoms but could also comprise
complicated molecules of, e.g. , a polymer chain. The
atomic and intramolecular vibrations as well as possible
interactions with the surroundings (e.g., a solvent) consti-
tute the heat bath at each site. Between the sites, the
electrons are allowed to travel as freely moving particles,
i.e., they are described by plane waves. Scattering of
these waves takes place at the sites. In order to apply the
scattering matrix technique to such a system, in which
the electrons are also allowed to interact with the local
environment, we consider a general scatterer, which
comprises elastic as well as inelastic scattering. Such a
scatterer is symbolically depicted in Fig. l.

Coherent transport takes place via the tra'nsport chan-
nels 1 and 2, governed by the reAection and transmission
coefficients r and t of the single scatterers. Depending on
the phases of incoming and outgoing waves, multiple
elastic scattering at the sites can lead to either construc-
tive or destructive interference of the plane waves. In ad-
dition, inelastic-scattering processes occur. If the elec-
tron is scattered inelastically at some lattice site n, it
enters the electron reservoir via the side channels.
Current conservation requires reinjection of the electron
into the transport channel, but, as incoming and outgoing
waves are not related to each other, this corresponds to
an irreversible phase-breaking process.

Mathematically, we can describe such a scatterer by its
scattering matrix

r

ur at

s'= at ar
0 P —ar' at—
P 0 at' ar— —

with i,j =1,2, 3,4 for the first scatterer (n =1) and
i,j=1,2, 2n+1, 2n+2 for the general case in Fig. 1. The
parameters a and P determine the relative strength of
elastic and inelastic scattering:

a=&1—s,
P=vs. (3)

In the limit of c.=O, one obtains a completely elastic
scatterer with no contribution of the side channels to the
electron transport. On the other hand, if c, =1, transport
occurs only via the side channels, leading to completely
incoherent behavior.

We note that the zero matrix elements s&3 and s24 de-
pend on our particular choice of connecting the transport
channels and the heat bath channels. A generalization is
possible' but of no relevance in the present context. The
choice of the matrix elements s," for i,j=3,4, on the oth-
er hand, is not arbitrary, but is determined by the re-
quirement that the scattering matrix has to be unitary;-

In principle, the scattering matrix elements s» and s22
could differ by a phase, but this would mean an asym-
metric scatterer, which can of course be introduced in a
parametrized way. It cannot, however, be derived from a
microscopic model for a (symmetric) point scatterer.

2n+ t 2n+2
FIG. 1. Channels of a single scatterer at position n. Cou-

pling with the heat bath takes place via the channels 2n + 1 and
2n +2. Channels 1 and 2 are the transport channels.
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Such a microscopic description is our intention in the fol-
lowing.

To determine the reflection and transmission
coefficients in the elastic part of the scattering matrix, we
consider a plane wave with wave vector q (in units of
m /a, where a is the nearest-neighbor spacing between the
sites), which constitutes the Bloch wave that solves a sim-
ple tight-binding model with identical site energies Ep
and constant nearest-neighbor interaction V. (In the fol-
lowing we have chosen V:—1 to define the energy scale
and Eo =0 to fix the origin of the energy axis. ) Introduc-
ing a single impurity into such an ordered system leads to
elastic scattering. The respective reflection and transmis-
sion coefficients are given' by

(a)

(b)
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/ /
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2I & Ii iI (6a)

where F is the deviation of the corresponding site energy
from Ep ~ This can be generalized to a chain consisting
only of such impurities. Then Eqs. (4) and (5) describe
the elastic scattering at each site, depending on the
respective site energy F(n ) which we choose randomly
from a uniform distribution of width 8' in correspon-
dence with the Anderson model of localization
F(n)H[ —W/2, W/2]. Returning to the special case
F(n)=0, we obtain r=0 and t=1 and thus ballistic
transport across the scatterers. Consequently, a chain
consisting of identical lattice sites with F=O and c=O
corresponds to the ideal lead through which electrons are
injected in form of Bloch waves from the contacts into
the considered disordered chain segment.

In order to obtain the scattering matrix of the total
chain of N scatterers from the scattering matrix of the
single scatterers, we use an iterative algorithm, which
provides for a better numerical stability and efficiency
than the previously employed transfer-matrix technique.
We assume that the scattering matrix S ' of a chain of
X—1 scatterers is known, and simply append the Nth
scatterer described by s . The essential matrix elements
of s are again given by Eq. (l) with
i,j= 1,2, 2%+1,2%+2.

The matrix elements of the total scattering matrix S
are obtained by adding all possible paths between each
pair of channels, which leads to a geometric series that
can be easily summed yielding

3 4 2N-12N 2N+1 2N+2

3 4 2N-12N

/
/

/

/

/
i'

I
/ 1 /
/ I

I
l

Ii
Yt

2N+1 2N+2

FIG. 2. Scattering processes between external channels of the
chain. The long broken lines reflect the direct scattering be-
tween the external channels. The short broken lines indicate
the indirect way between the external channels. The dotted line
denotes the multiple reflections between the scatterers. (a)
External channels 1 and 2 as an example of Eq. (6a) with I= 1

and i =2. (b) External channels 1 and 4 as an example of Eq.
(6b) with J=1 and I=4. (c) External channels 2 and 21V+1 as
an example of Eq. (6c) with j=2 andi =2N+1.

acquires before entering channel 1 of s and vice versa.
Examples for Eqs. (6a)—(6c) are depicted in Figs.
2(a) -2(c).

In the following we analyze the transport properties of
the chain in terms of the scattering probabilities

SN SN —1+SN —1 sN X SN —1
IJ IJ I2 X$11

1
(6b) p

,N+, N X SN '
ij ij i1

1
22 1j (6c)

Here, I,J=1,3,4, . . . , 2% denote the external channels
of S ' on the left-hand side of Figs. 2(a) —2(c), and
i,j=2,2N+1, 2N+2 label the respective channels of s
z=gS 2 'ys11 accounts for the multiple reflections be-
tween the two scatterers, and y=exp(iqa ) describes the
phase that the outgoing wave out of channel 2 of S

of the chain. These properties depend essentially on the
inelastic-scattering strength c,, the disorder strength 8'
and the chain length X.

III.ELASTIC TRANSMISSION PROBABILITY

An important quantity to describe transport in the
coherent regime is the elastic transmission probability
T=p21, reflecting the direct transmission through the en-
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length g(N), which measures the influence of disorder on
To

T(e,N, W) = T( e, N, O)exp { N—/g(N) } .

T(s,N, W) is the elastic transmission probability of a
disordered chain of N scatterers with inelastic-scattering
strength E and disorder strength W; T(e,,N, O) is the value
for the corresponding ordered chain. In the limit of large
N, g can be interpreted (if it converges) as the localization
length of the electron in accordance with the Anderson
model (a =0). Figure 6(a) shows the convergence of g(N)
for two values of q, namely inside the transmission win-
dow at q =0.75 [~/a ] and near the band edge at q =0. 1

[m./a ]. It can clearly be seen that g is much larger inside
the transmission window than near the band edges, be-
cause the probability for elastic scattering is smaller in
the band center.

To study the inhuence of the inelastic-scattering
strength E on T, we define the decay length g(N) by

T(e, N, W) = T(0,N, W)exp( N /g(N—) ) .

Here T(O, N, W) is the purely elastic (s=O) transmis-
sion probability of a chain of X scatterers with disorder
strength W, and T(e, ,N, W) the transmission probability
of the same disordered chain with inelastic-scattering
strength e.. Again, in the case of convergence for large N,
g can be interpreted as a mean free path of the electron

T(e,N, W) =T(O, N, O)exp{ —N/A(N ) ) . (10)

It follows that A, '(N)=g '(N)+g '(N). Figure 6(a)
shows that the overall decay of T is more pronounced if
both effects are taken into account. For electrons inside
the transmission window, this behavior can clearly be
seen. In contrast, the inhuence of inelastic scattering on
electrons near the band edges is very small, because in
this case localization is strong anyway. Accordingly the
difFerence between g and A, is very small for q=0. 1

[m/a ], cf. Fig. 6(a).

V. RESISTANCE

The electrical resistance of a disordered chain is fully
determined by its scattering probabilities. For the two-
point resistance, the following equation holds:

between two inelastic-scattering processes. Figure 6(b)
shows that, for disordered chains up to 1000 scatterers,
convergence for g cannot be observed for small values of
c.. The reason for this behavior are multiple elastic-
scattering processes in the transport channel, which lo-
cally increase the probability for inelastic scattering
within short segments of the chain. We will elucidate on
this point in the forthcoming discussion.

The behavior of the transmission probability in disor-
dered systems may be described by combining these two
decay lengths to an effective decay length A, :

40

h
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2e N
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Flax. 6. Decay lengths g and A, (a) and g (b) vs chain length N
for q=0. 75 [n/a] (full lines) and q=0. 1 [m/a] (dotted lines),
S'=1.0 and c, =0.01.

where g„ is given by

N

WnOXn + X Wn (Xmn Xrn ) P1,2n+1 +$1,2n+2
m=1

(12)

with ~nm P2n +1,2m +1 +P2n +1,2m +2 +P2n +2,2m +1
+p2„+2 2 +2. The denominator of Eq. (11) can be inter-
preted as an effective transmission probability, consisting
of two parts: the elastic transmission probability p2, and
the incoherent contribution of electrons, which suffer at
least one inelastic-scattering process on their way along
the chain. This part, namely the sum in Eq. (11), is called
D(N) in the following discussion. Figure 7 shows the
dependence of T(N) and D(N) on the chain length. In
the limit of short chains and c &(1,D grows as the chain
length is increased. By attaching additional scatterers at
the end of a chain with high elastic transmission proba-
bility, one obtains additional coherent backscattering,
and thus the probability for the electron of being inelasti-
cally scattered before reaching the end of the chain is in-
creased. This effect vanishes as the length of the chain
becomes larger, because the elastic transmission probabil-
ity becomes very small. Consequently one cannot obtain
significant coherent backscattering by attaching addition-
al scatterers. Therefore D decreases as the chain length is
increased, because additional scatterers hinder the trans-
port along the chain. In other words, even electrons
which have passed through the electron reservoirs do not
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is decreasing with increasing c, leading to an increasing
resistance. As the chain becomes sufficiently large, p2&
becomes relatively small and the behavior of the resis-
tance will be determined mostly by the inelastic transmis-
sion probability D. As D increases with c, the behavior
of R in this region is exactly inverted, at least for small c.

values. With the further increase of c., the system again
tends to Ohmic behavior. For chain lengths between 110
and 160 scatterers, the behavior of the resistance cannot
be described distinctly. It is very interesting to note that
the decay length g, which describes the influence of in-
elastic scattering on T, decays very strongly in the region
between the 100th and 110th scatterers (not shown here).
This means that inelastic coupling affects the behavior of
the electrons very strongly in this region, as they can
travel only short distances between two inelastic col-
lisions. This behavior can also be seen in Fig. 7, where D
begins to grow at the 100th scatterer for small values of c..
In a region of small T this leads to a decrease of R, be-
cause the electron can only pass the chain by using side
channels. The reasons for this behavior are multiple
rejections in the transport channel, which locally in-
crease inelastic scattering, as mentioned above in the dis-
cussion of Fig. 6(b). Therefore it is understandable that
this effect vanishes with increasing c, or alternatively
with decreasing disorder strength 8' because multiple
reflections become less important in both cases.

Disorder effects are suppressed as q approaches the
center of the transmission window. For q =0.5 [ala ],
T(tI) has a maximum. Consequently, multiple elastic
reQections are not that likely anymore, and the inhuence
of disorder on the transport properties of the system

shrinks. This corresponds to the well-known fact that
electron states near the band center are less localized.

VI. CONCLUMNG REMARKS

In this paper, we have studied the essential transport
properties of a linear site-disordered chain by means of a
scattering matrix technique. We wish to point out that
all results in this paper refer to the same disordered mi-
crostructure. Different configurations show different
fluctuation patterns, and configurational averages lead to
vanishing fluctuations. The calculation of the coherent
reAection and transmission coefficients are based on a
nearest-neighbor tight-binding model. Inelastic processes
are introduced by means of a parameter c, which controls
the scattering probability into the electron reservoirs. In
the limit of coherent transport, we obtain strong Auctua-
tions as a result of multiple rejections between the single
scatterers. As we increase the inelastic-scattering
strength c., these oscillations are suppressed; in the case of
v=1, all oscillations vanish and Ohmic behavior shows
up. Thus we are able to describe the extreme cases of
coherent and incoherent transport as well as the inter-
mediate behavior. In the latter case we have shown that
the transport properties of the system depend strongly on
the energy of the electron and the interplay between in-
terference and dephasing effects.

We conclude that our calculations reproduce well-
known results, but in contrast to previous works which
use parametrized scattering coefficients our calculations
are based on a well-defined tight-binding Hamiltonian for
elastic scattering. Currently, this Hamiltonian is being
extended to include inelastic scattering as well.
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