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The in6uence of the higher-conduction-band set 1 is on the strength, linear/circular dichroism,
and anisotropy of the ultrafast nonlinear refractive index coeKcient (n2) is calculated across the
transparent spectral region below the fundamental absorption edge for the zinc-blende semiconduc-
tors GaAs and InSb. The anisotropy is due entirely to the effects of the higher bands. For GaAs,
at the two-photon band edge, and for linearly polarized light, n2 is predicted to vary by 55'PD as
the crystal orientation is altered relative to the polarization direction. Even larger variations are
expected at longer wavelengths. The far lower predicted anisotropy of InSb is consistent with the
approximate formula for the strength of the anisotropy coefBcient in terms of the ratio of the fun-
damental to the higher band gap discussed previously for two-photon absorption. The influence
of such n2 anisotropy on propagation in both one-beam and two-beam configurations is discussed.
The anisotropy of the optical-switching figure of merit is also evaluated. At frequencies just be-
low the band edge the figure is found to be greatest for radiation linearly polarized parallel to the
[001] crystallographic direction; just above the half-band gap and at lower frequencies [ill] linear
polarization or any circular polarization is favored.

I. INTRODUCTION

Semiconductor waveguide devices show great promise
for integrated, compact, high-bandwidth all-optical
switches, the switching mechanism being mediated by the
ultrafast nonlinear re&action of the semiconductor. The
presence of two-photon absorption (2PA) can be detri-
mental to switching. One therefore selects a material that
has a band gap greater than twice the radiation photon
energy in order to avoid 2PA (Al Gai As in the cases
of the optical communication wavelengths 1.3 pm and
1.55 pm ' ). Alternatively the material switching figure
of merit, which is proportional to the ratio of the coef-
6cients of nonlinear re&action and two-photon absorp-
tion, must exceed a given critical value. It is therefore
important to understand the dependence of these two pa-
rameters on the choice of material, their &equency and
polarization dependence, and their dependence on the
orientation of the crystal with respect to the radiation
polarization. To this end, the detailed calculations of
the two-photon absorption coefIicient, reported in Ref. 5,
are extended here to the determination of the nonlinear
re&action, using the same band-structure model.

A simple, two-band model, has proved extremely useful
as a 6rst prediction for the material scaling and the &e-
quency dependence of the nonlinear refractive index (n2)
over a wide range of crystalline solids, &om narrow-gap
semiconductors through to insulating materials. Re-
cently the zinc-blende semiconductors have been treated
in more detail, employing the valence-conduction-band-

structure model in which there are four doubly degener-
ate, nonparabolic bands. This model contains within it
the linearicircular dichroism of n2, that is, it produces
difFerent values of n2 for linear and circular radiation
polarizations.

The above models have also been employed to calculate
the two-photon absorption coefficient (again with success
in the two-band model in 6tting to experimental results
across a wide range of crystalss) and its dichroisxn (in
the four-band modelio ii). In the two-photon absorption
case a third model has been used, incorporating the next
higher conduction bands in order to include the dominant
contributions to the crystal anisotropy of the 2PA coefIi-
cient (P).s It is this seven-band model that is used herein
to make the 6rst detailed calculations of the anisotropy
of the coefficient of nonlinear re&action.

The zinc-blende semiconductors have cubic symmetry
and as such do not exhibit linear bire&ingence; in the
linear regime they behave as isotropic materials, with
a 6rst-order optical susceptibility tensor proportional to
the unit matrix. By contrast, the third-order optical sus-
ceptibility tensor, to which n2 and P are related, con-
tains some nonzero ofF-diagonal elements. As a result
complicated polarization behaviors are possible in the
nonlinear regime. These are manifested in two ways.
First, the state of optical polarization (linear, elliptical,
or circular) inffuences the values of n2 and P. Second,
the orientation of the polarization with respect to the
crystal axes infIuences them. The former efFect, in so
far as n2 is concerned, produces in single-beam experi-
ments a difFerence in the self-phase modulation experi-
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enced for linearly and circularly polarized light. For two-
beam con6gurations there are, for example, differences
in the cross-phase modulation seen by beams of identical
or orthogonal polarizations. These differences can occur
even for isotropic media. The crystal anisotropy leads
in addition to polarization rotation in both single-beam
(irradiance-dependent polarization-plane self-rotation~~)
and two-beam con6gurations as well as to an orientation
dependence of the self- and cross-phase modulations. For
nonlinear re&action, both aspects above can be thought
of as a nonlinear (induced) bire&ingence; but in the for-
mer case, the optic axis is determined solely by the radia-
tion polarization orientation and in the latter case incor-
porates the crystalline axes orientation. This crystalline-
orientation dependence can occur in cubic crystals but
does not exist for isotropic media.

Similar polarization-state and crystal-orientation de-
pendencies are displayed in two-photon absorption, and
in third-harmonic generation. The 2PA anisotropy can
lead to a polarization distortion similar to the rotation
produced by anisotropy in n2. In the third-harmonic
case the anisotropy is observable both as an orientation
dependence of the magnitude of the generation efIiciency
and as a possibility of generating third-harmonic light of
polarization orthogonal to the fundamental.

There are few papers reporting direct observation of
the variation of the magnitude of either nonlinear ab-
sorption or nonlinear re&action with crystalline orien-
tation in zinc-blende semiconductors. In 1975, Bepko
demonstrated that the two-photon absorption coeKcient
in GaAs is anisotropic. Two years later Van der Ziel
used band-edge luminescence to determine accurately the
anisotropy of the GaAs two-photon absorption coefBcient
at 1.55 pm. More recently, picosecond measurements
have been used to determine the anisotropy of the two-
photon absorption coefficient in GaAs at 1.06 pm~ and
in GaAs and CdTe at 0.95 pm. There have been a
number of reports on the crystalline-orientation depen-
dence of nonlinear re&action in alkali metal salts and
oxides (cubic symmetry). ~s ~s 2~ However, in semicon-
ductors the only direct measurement of the anisotropy
of n2 to date has been in. wurtzite (hexagonal) struc-
tures, which exhibit anisotropy even in the 6rst-order
susceptibility (uniaxial bire&ingence). 22 Resonant non-
linearities in semiconductors have been shown to exhibit
orientational effects. ' These phenomena can only be
observed on picosecond time scales as momentum and
spin relaxation causes 'the initial anisotropic (in k space)
carrier excitation to develop into a thermalized, isotropic
distribution. However, there is currently a lack of direct
measurements of the anisotropy of nonresonant nonlinear
re&action in zinc-blende (cubic) semiconductors.

The change of the optical polarization state due
to third-order optical nonlinearities has been referred
to as self-induced optical activity or nonlinear opti-
cal activity. This phenomenon has been observed in
GaAs at wavelengths for which it can largely be at-
tributed to the anisotropy of the two-photon absorp-
tion coefBcient. 2 A simple explanation of this phe-
nomenon is that the difference between nonlinear absorp-
tion coefficients for different crystalline directions results

in a net rotation of the polarization vector towards the di-
rection for which the absorption coefIicient is a minimum.
The change in the optical polarization state has also been
utilized in recent two-beam Kerr ellipsometry measure-
ments on GaAs, CdTe, and ZnSe. Here measurements
with and without a quarter-wave plate enabled the non-
linear absorption and refraction effects to be quanti6ed
separately. An excite-probe configuration in which the
two-beams were linear polarized at a relative angle of
45 was employed in this experiment. Although there is
an isotropic contribution to the change in polarization, 2

the anisotropic contribution was isolated by repeating the
measurement for different crystalline orientations.

Following a unified description of the macroscopic po-
larizations that produce the phenomena originating &om
the anisotropy of the nonlinear susceptibility, both for
single-beam and two-beam configurations (Sec. II), the
microscopic theory for the real part of the third-order
susceptibility and the results of calculations for GaAs
and InSb are presented in Sec. III. These results are dis-
cussed in the context of available experimental evidence
and with regard to the optical-switching figure of merit
in Sec. IV.

II. MACROSCOPIC THEORY'

The general form of the contribution to the third-order
polarization in the &equency domain is given by3

(4/) = EO f d&l / d&2 f 8~3

x ) G~ blckdlg~ I ( (&1&~2& ~3)(3)

ijI 1

X Eb(Ctrl )Ec(&2)Zd (&3)b (& —Ml —A2 —&3)

(~)
A A A

where a;=a-i, b~ =b j, cA, ——c.k, and d~ ——8 1 are
the direction cosines for the projections of P', Eb, E,

A A A

and E'd onto the directions i, j, k, and j., respectively.
The unit vectors and direction cosines are allowed to be
complex, in general, to allow, for example, for circular
polarizations.

A. Single-beam con6guration

In the case of a single monochromatic wave of &e-
quency vo,

Z((u) = —[eEpb ((u —(up) + e'Ep b' ((u + urp)],
2

the contribution to the third-order polarization in a cubic
crystal at &equency uo is

'P ((u) = —spy, ~(a; e', e, e) ~Ep~ Epb(ur —(up) . (3)
ccpp 8

In Eq. (3),
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Rey, a (a; e', e, e) = (a' e') (e e) y'

+2 (a' e) g'„„
+cr'y' ) a,'. e;le,

l

Imp, s(a;e', e, e) = (a' e') (e e) y" „„
+2 (a' e) g"„„
+~"x."...).a;e'Ie'I' (4)

Second, there is, in general, an additional nonlinear in-
duced polarization, which changes the polarization state
of the propagating wave. It is appropriate to examine the
contribution to the nonlinear polarization with a polar-
ization vector orthogonal to the input, a = q. For linear
polarization, q e = 0 and q* ~ e = 0, while for circular
polarization q. e = 1, q* - e = e e = 0. In either case
the effective nonlinear contribution is

Rey, s(q; e', e, e) = cr'y' ) q,'e;le;l

0 f
f f 2 f

+mean +e~yy ~ay~y
f

XKRRR
fi ff 2 ff

~emma ~mxyy ~ayxy
fl

X~aee

The nonlinear absorptive anisotropy a" arising Rom two-
photon absorption has been considered previously, in Ref.
5.

There are two aspects of Eq. (3) that require consid-
eration. First, there is a contribution to the nonlinear
polarization with the same polarization state as the in-
put wave, a = e, for which the effective nonlinearity is

Rey ~(e;e', e, e) = le el y' „„+2y'„„
+ 'x'....).l .l',

with the equivalent form for the imaginary part.

where we have used, for example, y' y„and y" „as
a shorthand form for the real and imaginary parts of

&& (—wp wp wp) respectively. With this notation, the
anisotropy parameters o' and 0" are defined by the ra-
tios,

This result exhibits the fact that the third-order suscep-
tibility can only cause the polarization state to change
through the anisotropy of the crystal.

It is of interest to consider those polarization orienta-
tions for which this orthogonal contribution is zero and
the polarization state is preserved even in the presence of
anisotropy. Consider a propagation direction defined in
spherical coordinates with respect to the crystal axes by
the unit vector, k = (sin 8 cos P, sin 8 sin P, cos 8) . Con-
struct a unit vector perpendicular to this and lying in
the xy plane, eq ——(sing, —cosg, 0) and a third unit
vector perpendicular to both k and e~, e2 ——k x eq ——

(cos 8 cos P, cos 8 sing, —sin 8). The general form of the
unit polarization vector in the case of linearly polarized
light for this propagation direction is given by the lin-
ear combination, e = eicos@ + e2sin@, where @ de-
fines the polarization vector orientation with respect to
the xy plane. This allows the perpendicular unit vector
q to be written as q = eq sin@ —e2cosg. The condi-
tion P, q,'e, le;l2 = 0, for which the polarization state is
preserved, then forms a transcendental equation for the
polarization orientation vP in terms of the propagation
direction (8, P),

(sin/sin@ —cos8cosgcosg) (sinPcos@+ cos8cosgsinvP) + (cosPsinQ+ cos8singcosvP)

x (cos P cos @ —cos 8 sin P sin @) —sin 8 cos @sin @ = 0 . (9)

This transcendental equation provides eight roots for @
in the range 0 ( vP ( 2z, except when the propagation
direction is parallel to one of the eight directions equiva-
lent to [111]when Eq. (9) is satisfied for any value of vP.

The linear polarization orientations, which solve Eq. (9)
and hence preserve the polarization state, are shown in
Table I for the three propagation directions [100], [110],
and [111].

A similar analysis can be performed in the case of cir-
cularly polarized light where e = (eq + ie2)/~2 and q =

(eq —iez)/v 2. In this case the condition g,. q, e;le;l2 =
0 represents a constraint on the propagation direction
(8, P). It can be shown that this condition is only satis-
fied if the propagation direction is parallel either to one
of the six directions equivalent to [100] or to one of the
eight directions equivalent to [111].

In the cases where the polarization state of the input
wave is preserved, one can describe the effect of the real
part of y ~ through a nonlinear refractive index nz(u),
defined through the first-order change in the refractive

TABLE I. Single-beam configurations under which the linear polarization is preserved.

[100]
[110]
[111]

[010]
[110]

[011]
[111]

[001]
[001]

[0111
[111]

[010]
[110]

any polarization orientation

[01 1]
[111]

[001]
[001]

[011]
[111]
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index n with irradiance I, (n = no + n2I),

3
n2(u) =

2 ReX s (e; e', e, e),
46pcAp

Xeeyy X y y4E'pcAp

Eqs. (3) and (8) allow the determination of the evolu-
tion of the generated orthogonally polarized wave. If a
low conversion efficiency is assumed (such that the ex-
cite irradiance can be treated as constant) and if there
is initially no orthogonal component, the real part of the
third. -order susceptibility generates in a crystal of length
L an irradiance,

+~'X'....):Ie;I' (io)
I~ = a'nz [001]) q,'e;~e;~ I

It is convenient to translate the three independent
third-order susceptibility tensor elements into three pa-
rameters that describe the strength, anisotropy, and
dichroisxn of the nonlinear re&action in the same man-
ner as has been done for two-photon absorption. For
the strength it is appropriate to use the n2 coefficient for
light linearly polarized parallel to a principal crystal axis.
For the anisotropy, the re&active anisotropy parameter
cr' defined in Eq. (S) is used. For the third practical
parameter, an incremental dichroism (8') has previously
been introduced. in Ref. 8; this relates the difFerent n2
values for linear and circular polarizations. The same
parameter, modi6ed for anisotropic systems, will be em-
ployed here. These parameters can be deterxnined by
three measurements of n2 (two for linear and one for cir-
cular polarization) for light propagating along a principal
cLXls)

n~[OO1] =,ReX'....,
46pcAp

/ I 2 I
~axe~ ~eayy ~ayay

I
X~K~R

=2 2n+& [001]—n2 [011]
nL [OO1]

bi Xaeee + Xeeyy Xeyey
2X'

n~~[001] —n2 (k ~~ [100])
ni [001]

I

n2 (8», $p) = n2 [001] 1 ——(sin 20„
2

+ sin 8» sin 2$»)

n2 (8, P) = n2 [001] 1 —b' ——(sin 28
8

+sin Hsin 2P) (14)

where (e», Pp) refers to the optical polarization orienta-
tion with respect to the crystal axes and (8, P) refers to
the propagation direction.

For the case where the polarization state can change,

Using these parameters, Eq. (10) can be rewritten, for
linear and circular polarizations, respectively, in the form

The phase of this generated orthogonal component is m/2
difFerent &om the input, resulting in a net elliptical po-
larized output &om a linearly polarized input. In the case
of the imaginary part of the third-order susceptibility, a
similar result is obtained except the generated orthogo-
nal component is in phase with respect to the input and
hence a net polarization rotation results &om a linearly
polarized input.

B. Two-beam con6guration

In addition to the self-phase modulation considered
above, it is of interest to consider the cross-phase mod-
ulation between two waves. Consider an input consist-
ing of an excite wave and probe wave, where the ampli-
tude of the probe is much smaller than that of the excite
E„&&R.,

Z(u)) = —[eE,b (~ —ur, ) + e'E; b ((u + (u )]

+— pEpb ((u —urp) + p'E„'b (ur + ~p)

For cross-phase modulation &om the excite wave onto
the probe, the nonlinear polarization contributions are

g(s) (~) — e ~E ~2E $(~ —~ )4
(&)x a;e eI,P)X, q(( —~„(u„u)p)

ijkl

'P~ l((u) = — eo„E' Eb((u —2~, + ~p)8
(3)X ) a, Pzeke~X;z&& ( up~~e&~e)

ijkl

(18)

The polarization described by Eq. (17) is a source for
radiation at the probe &equency and propagating in the
probe direction. (It is automatically phase matched with
the probe wave. ) In contrast, Eq. (18) describes the gen-
eration of a field at frequency (2u, —urp) and propagating
in the direction (2k —k„). We have in mind the situ-
ation in which the &equencies are degenerate but the
two beams are distinguished either by propagation di-
rection (k g k„) or by polarization direction (p g e).
The inBuence on the probe beam will be small, due to
the lack of phase matching, if the sample length is large
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compared to the coherence length, L = n/(2lk„—k, l).
The contribution &om Eq. (18) can then be neglected
for noncollinear propagation or for collinear propagation
of orthogonally polarized modes in a waveguide con6gu-
ration where the difFerent propagation constants lead to
a phase mis-match. The remaining case, in which dif-
ferently polarized but collinear beams are input, can be
treated as a single-beam experiment (with amplitude and
polarization given by the resultants of those for the two
beams) if the two beams are coherent with each other.
In the case of incoherent beams, the time average of Eq.
(18) is zero and hence can also be neglected. We shall
therefore discuss here only the efFect of the polarization
contribution of Eq. (17). Keeping just those tensor ele-
ments that contribute for zinc-blende symmetry, results
in a nonlinear polarization contribution

&( l(~) = —&ox e(a e e p) I&
I

Ep~(~ —~p), (19)4

where

Reg, s (a; e', e, p) = (a' e') (p e) g'

+ (a ' e) (p ' e ) &

+(a' p)X'.„„.
+o'y' ) a,'. p;Ie;I', (20)

with an equivalent expression for Imp ~(a; e', e, p), which
could correspond. to, for example, nondegenerate two-
photon absorption. In the nondegenerate case, the &e-
quency ordering referred to by the shorthand form is

„„=Rey( zz( —u„u„uz). Note that an additional
factor of 2 is obtained for cross-phase modulation by com-
parison to the equivalent expression for self-phase modu-
lation in Eq. (3). It is appropriate to consider the contri-
butions with polarization vectors equal to and orthogonal
to the probe polarization. In the former case a = p and

The contribution to the nonlinear polarization with po-
larization vector g orthogonal to the probe polarization
vector is given by

Reg, z(q; e*,e, p) = (q* e') (p e) y'

+ (q' . e) (p . e') y' „„
+~'x'....).q,'p'Ie'I' . (22)

Rey,~(p;e', e, p) = Ip. el y' „„+Ip e'I x'„„
+x'.„„.+ ~'x'....) .IJ 'I'le'I' (»)

ization vector defining the optic axis. ' If the probe
polarization is such that it initially has both ordinary
ray and extraordinary ray components, the vector sum
will change on propagation. Speci6cally, from a linear
polarized input, Rey, ~(q; e', e, p) will induce a degree of
ellipticity into the polarization and Imp, &(q; e, e, p) will
cause a net rotation of the polarization vector. The 6nal
term in Eq. (22) is a crystalline-orientational dependence
term proportional to the anisotropy. This orientation
dependent term can be isolated experimentally by com-
paring Kerr ellipsometry measurements for two difFerent
crystalline orientations.

The contribution given by Eq. (22) can be eliminated
by a suitable choice of experimental geometry, just as
the single-beam polarization rotation term could be elim-
inated. Hence, under a number of speci6c con6gurations
there will be no change in the state of the polarization
vector. Example configurations are (a) for linear po-
larizations in the parallel polarized case p II e II [001],
j011],or [111],or in the perpendicular polarized case for
the (p, e) pairs parallel to ([001],[110]), ([110],[110]),or
([111],[110])and (b) for circular polarizations propagat-
ing along a principal axis with either circular polariza-
tion for the probe compared to the excite beam. In these
cases, the real part of the third-order nonlinearity gives
rise only to a nonlinear phase shift in the probe beam
that is proportional to the irradiance of the excite beam,

3
An((up) =

2 Rey, ~(p; e', e, p) I, ,
2EOCfl 0

Ip ' eI x~mayy + Ip ' e
I xayay

2EOCfl 0

(23)

There are four special cases of this cross-phase mod-
ulation where both beams have the same frequency:
probe and excite polarization vectors parallel and or-
thogonal in the cases of linear polarizations and circu-
lar polarizations. For these cases, the ratio y,'&/y'
An„/(2n2+[001]I, ) is related to the parameters a' and 8'
as shown in Table II. Note that the use of two-beam
experiments provides an alternative means of measuring
the practical parameters and hence the nonlinear tensor
elements. In particular in waveguide geometries where
only linearly polarized guided modes are supported, the
incremental dichroism parameter can be determined by
measuring the cross-phase modulation between TE and
TM modes. 3~

Two contributions to this orthogonal polarization can be
identi6ed in the excite-probe case. The 6rst two terms in
Eq. (22) depend only on the relative orientation of excite
and probe polarizations. In the case of linear polariza-
tions, this contribution is zero if the excite and probe
polarization vectors are either parallel or perpendicular.
In fact this contribution can be thought of as an induced
bire&ingence for the probe beam with the excite polar-

Linear

Circular

i lie
pJ e
p=e
p=e

TABLE IE. y,'&/y' for four degenerate-frequency, uon-
collinear excite-probe configurations.
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III. MICROSCOPIC THEORY'
(a)

The expressions for the third-order susceptibility ten-
sor elements are detailed in Ref. 8, in which the four-
band Kane model was employed. However, this model
is isotropic and hence it is insuKcient to account for the
anisotropy of the nonlinear re&action. The approach
taken here is to include additionally the contribution
&om the next higher-conduction-band set I &5 as has
previously been employed to determine the anisotropy
of the two-photon absorption coeKcient. 5 Essentially the
band energies and wave functions are obtained by diago-
nalization of a 14x14 matrix. This is performed numeri-
cally and so automatically includes higher-order terms in
k, which give rise to such efFects as nonparabolicity. The
sum over electronic states is performed using the Pauli-
allowed approach ' in order to avoid spuriously diverg-
ing terms associated with intervalence virtual transitions.

In the determination of n2 using the Kane model '

it was possible to perform the integration over the elec-
tronic wave vector k out to infinity. However, while this
band-structure model gives a good approximation to the
electronic states near zone center, it is inaccurate for the
states in the vicinity of the Brillioun zone boundary. As
a result of this inaccuracy, the calculated susceptibility
tensor elements have unphysical contributions that be-
have as u and u and hence apparently diverge at
zero &equency. As in the four-band calculations, n2 is
obtained by expanding the calculated susceptibility ten-
sor element as a Laurent series and simply subtracting
these diverging terms. However, with the inclusion of
the upper-conduction-band set it is found that the inte-
gral over k does not converge even for finite &equencies.
The reason behind this is that while in the Kane band
model the asymptotic behavior of the conduction-band
energy at high k is proportional to k, with the inclusion
of the higher conduction bands, the conduction-band en-
ergy asymptotes to a constant (maximum) value instead.
Hence the energy denominators in the y( ) expression
tend to constants at high k values and the resulting con-
tributions to y( ) do not tend to zero. To avoid the re-
sulting divergence, here the integration over k is taken to
a large but finite value. The results shown below are cal-
culated for hk //2mp —0.6 (eV) ~~2, which corresponds
to approximately half the Brillouin zone boundary. It
was found that by changing this cutofF value that the
calculated susceptibility varied but only in the unphysi-
cal terms that diverge at zero &equency and not in the
underlying contribution.

The calculated dispersion of the real part of the third-
order susceptibility is shown in Fig. 1 for GaAs and InSb,
based on low-temperature data. For GaAs, the ef-
fect of the additional upper-conduction-band set is to
reduce somewhat the diagonal tensor element Rey (3)

and to enhance the ofF-diagonal elements Reyy~y and(3)

Rey~~yy As in the case of two-photon absorption,
the largest change occurs for the xxyy tensor element.
The same anisotropic eKects occur for InSb, but to a
very much reduced extent because the higher conduction
bands are relatively well displaced with respect to the

4x10

0 a

-4x10

0.0 0.5 1.0
Fico (eV)

1.5

(b)

5x10

0

-5x) 0

0.0 0.1

Fico (eV)
0.2

FIG. 1. Calculated dispersion of the three nonzero, in-
dependent third-order susceptibility tensor elements for (a)
GaAs and (b) InSb.

valence-conduction-band set.
The calculated third-order susceptibilities are used to

obtain the dispersion of the anisotropy and dichroism pa-
rameters, which are shown in Fig. 2 for GaAs and in Fig.
3 for InSb. Note that these ratios diverge at the &equency
for which y' = 0, but that the anisotropic contribu-
tion to the nonlinear polarization is proportional to the
product o'y', which remains finite. To illustrate this,
the products o'y' and b' y' are also shown. Note
that for GaAs the product o'y' is shown on a simi-
lar scale to y' in Fig. 1(a) but for InSb it is shown
on a scale that is approximately an order of magnitude
less than in Fig. 1(b). In the case of the dichroism pa-
rameter, a comparison is made with the results of the
four-band model. Because the incremental dichroism is
defined with respect to the index for e

~] [001], which is
the minimum value, the extreme of the difference between
the two models is plotted here; the change in dichro-
ism, brought about by introducing the higher conduc-
tion bands, is smaller for other polarization directions.
To demonstrate this, the ratio (nz —nz )/nz is shown
for the propagation direction k

~] [111],for which there is
no angular variation of nz . It can be seen that for both
GaAs and InSb this value is close to the four-band model
incremental dichroism; an equivalent similarity was also



8156 D. C. HUTCHINGS AND B.S. WHERREl j.' 52

1.0

Q.5 - (~)

QP~ ~

-0.5

-1.0

-1.5

1.0

Q.5 '- (a)

QQ

-0.5

-1.0

-1.5

~ l ~ $ \

p 4 - (b)

0.2
~4

\/ ~

-0.2

~ ~ . ~ I
I g'i' ' ' I

p 4 (b)

0.2

Q P

-0.2

~ ~
~ a ~ I a ~

~ '
~ I

-0.4

~ ~ ~ ~ ~ ~ . s. . . s . It. s

-0.4
I ~

~ ~ I ~ ~
I ~

y
v ~ r

4x10 (c)
1x10

2x10

-2x10

-4x10-19

0

0.0 0.2
I I I s ~

0.4 0.6 0.8 1.0
Flm/E,

0

-16-1x10

0.0
~ a ~ I ~ ~ I ~ ~ ~ I a ~ ~ I ~ ~ ~

0.2 0.4 0.6 0.8
Fim/E,

1.0

FIG. 2. Dispersion of the nonlinear refractive ratios for
GaAs: (a) shows the refractive anisotropy parameter with
the arrow indicating the value of the ratio 2E~/(Es + E„—)
(see text); (b) shows the refractive incremental dichroism
parameter, for the seven-band model (solid), the four-band
model (dashed), and the incremental dichroism for k

~~ [111]
(chain) (see text); (c) shows the products cr'y' (solid) and
b' y' (dashed), indicating that although the ratios have di-
vergences, the contribution to the effective susceptibility re-
mains 6nite.

FIG. 3. Dispersion of the nonlinear refractive ratios for
InSb: (a) shows the refractive anisotropy parameter with the
arrow indicating the value of the ratio 2Es/(Es + E—„) (see
text); (b) shows the refractive incremental dichroism param-
eter, for the seven-band model (solid), the four-band model
(dashed), and the incremental dichroism for k [[ [ill] (chain)
(see text); (c) shows the prod. ucts n'y' (solid) and b' y'
(dashed).

found to be the case for two-photon absorption.
To illustrate more clearly the magnitude of the

anisotropy, the orientation variation of nq [Eq. (14)] is
shown plotted for both linear and circular polarized light
in Fig. 4, for the case of GaAs at a frequency u such
that hew = Eg/2, where cr' = —0.82 and b' = 0.075.
For this example, nq is 55% larger for light polarized
linearly along [111]compared to [100]; the anisotropy is
illustrated clearly by the fact that the upper 30 plot; in
nowhere near to that of a sphere. Figure 5 shows the cal-
culated dispersion of nq [Eq. (14)], including empirically
the dispersion of the linear refractive index n0. 6 The
results are for the speci6c degenerate geometries under
which there is no polarization rotation or induced ellip-
ticity: linear polarization with e ~][100], [110], or [111]
and circular polarization with k ~~[100] or [111].

IV. DISCUSSION

The reported measurements that are the closest to pro-
viding a comparison with the present calculations are

b,nq [100] = —~nil —AnI ) elf [100]

= n~[001] (1+b'+ —,'~'),
n, [110]= —~nil ~nI e)[ [Zzo]

= n~z[001] (1+b' —
—,'~') .

(24)

Unfortunately a third measurement is necessary in order
to determine all three parameters independently. Never-
theless, the ratio gives a simple combination of b' and o'

those of Ref. 28. The quoted measurements are of the in-
duced birefringence experienced by a noncollinear probe
beam Anq —— (An~~ —An+) /I„where An~~ and An+
are the refractive index changes induced by the excite
beam for probe polarizations parallel and perpendicular
to the excite polarization, respectively. The induced bire-
fringence was measured for excite polarization parallel
to [100] and [110],for propagation in the [001] direction.
The results of Table II can be used to write the nonlinear
index difference in terms of the three nonlinear refraction
parameters,
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FIG. 6. Figure of merit for all-optical switching for
low-temperature GaAs for light linearly polarized parallel to
[001] (solid) and [ill] (dashed) and for circularly polarized
light propagating parallel to [001] (chain). Also shown are the
limits that must be exceeded to obtain all-optical switching
in a nonlinear directional coupler (NLDC) and a Fabry-Perot
interferometer.

1.0

ever, for GaAs, the parameters are of the same order
of magnitude and in the long-wavelength limit the non-
linear re&action and third-harmonic generation coefIi-
cients are negative, as is the 2PA anisotropy in the range
Es/2 & Ru & Es. In Ref. 17, the contribution to the scal-
ing of the two-photon absorption anisotropy parameter
from allowed-forbidden transitions due to the mixing of
the higher-conduction-band set was estimated as approx-
imately equal to 2Es—/(Es+E„), where (Es+E„)is the
valence to higher-conduction-band. gap. This ratio takes
the values of —0.68 for GaAs and —0.14 for InSb. For
most of the &equency regime of the present calculations,
the nonlinear re&action associated with two-photon reso-
nant transitions dominates the strength of n2. It is there-
fore not surprising that the same approximation gives a
good xneasure for o' as indicated by the arrows on Figs.
2(a) and 3(a). Using the simple formula to scale be-
tween materials, the anisotropy of GaAs is predicted to
be around five times that of InSb. This has been verified
in the case of two-photon absorption, and proves here
to be valid for the more detailed calculations over most
of the transparency region.

It can be seen &om Fig. 1 that Kleinmann symmetry
is valid in the low frequency lixnit, i.e., y~~yy p~y~y Ixl
this limit the dichroism parameter can be written solely
in terms of the anisotropy parameter, h' = (1+a'/2)/3.
For an isotropic medium this takes the value of 1/3.s The
baxid-structure calculations for GaAs and InSb indicate
that o' is generally negative in the low &equency regime,
and hence the dichroism parameter will have a smaller
value than the isotropic results. This is a consequence of
the use of y in the definitions of 0' and b' in Eqs.
(12) and (13). It may be noted that for propagation in

the [ill] direction, for which the material behaves as if it
were isotropic, the incremental dichroism does take the
isotropic Kleinmann value of 1/3 in the low frequency
limit.

One of the applications of ultrafast nonlinear refrac-
tion is in the role of all-optical switching. In order to
obtain switching, the required nonlinear phase shift must
be achieved before losses reduce the irradiance. For the
transparent spectral region beneath the one-photon band
gap in semiconductors and for the high irradiances re-
quired for ultrafast nonlinear re&action, the dominant
loss mechanism is usually two-photon absorption. In or-
der to obtain all-optical switching, the figure of merit
~n2~/PA must exceed some critical value; this value de-
pends on the device geometry but is always of the order
of unity. 4 Over the spectral range Es/2 ( Ru ( Es the
all-optical switching condition is only satisfied for narrow
ranges just above the half gap and just below the one-
photon band edge. The question to be addressed here
is what effect does the anisotropy have on the all-optical
switching figure of merit. In order to answer this, Fig. 6
shows the ratio ~Rey(&) ~/Imp, &

——4vr~nq]/PA calculated
for light linearly polarized parallel to the crystallographic
directions [001] and [111]and for circularly polarized light
propagating parallel to [001] (a similar plot is obtained
for any circular polarization). In can be seen that al-
though the figure of merit is modified by the anisotropy,
it does not significantly alter the usable frequency range
for all-optical switching.

V. CONCLUSIONS

In this paper the anisotropy of ultrafast nonlinear re-
&action ixi the zinc-blende semiconductors GaAs and
InSb has been determined using the anisotropic band-
structure model obtained with the inclusion of the I'z5
conduction-band set. It is found that the resulting orien-
tational dependence of n2 for &equencies below the two-
photon band edge is substantial in GaAs but almost in-
significant for InSb. This simply relates the different fun-
damental band gaps, which alters the relative mixing of
the upper-conduction-baud set with the lower-conduction
band and valence bands. There is also predicted to be a
significant dispersion in this anisotropy. The magnitude
of the anisotropy is large in the long-wavelength limit;
hence it is not too surprising that wide-gap cubic solids
also seem to exhibit significantly anisotropic nonlinear
re&active coefIicients. ' At &equencies above the
two-photon band edge the dispersion of the anisotropy
(and the dichroism) has a complex behavior. This is a
manifestation of the change in sign of n2, &om positive
at low &equencies to negative at high &equencies.

The anisotropy in the nonlinear re&action can mani-
fest itself in two ways. First there is the obvious varia-
tion in magnitude for diR'erent crystalline orientations.
Second, the anisotropy can produce an effective bire-
&ingence which, for appropriate polarization geometries,
leads to a polarization state that changes upon prop-
agation. For a purely re&active efI'ect, a linearly po-
larized input can develop a degree of ellipticity. Such
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a Kerr ellipticity has been used to measure the effect
of anisotropy experimentally. The present calculations
are consistent with the few experimental measurements
of anisotropy eKects in zinc-blende semiconductors that
have been made.

The forinula 2E—s/(Es + E„) proves to be useful first
approximation for scaling the re&active index anisotropy
parameter 0' between materials, as it was for the 2PA
anisotropy parameter 0".
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