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First-principles calculations of efFective-mass parameters of A1N and GaN
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The electronic band structures of the wurtzite-type A1N and GaN are calculated by using a self-
consistent full-potential linearized augmented plane-wave method within the local-density-functional ap-
proximation. In order to clarify the electronic properties near the Brillouin-zone (BZ) center and to give
an important guideline on the material designs for short-wavelength optical devices, we link the first-
principles band calculations with the effective-mass approximation. The electronic properties are analyt-
ically studied on the basis of the effective-mass Hamiltonian, where we consider the hexagonal symmetry
of the wurtzite structure. The effective-mass parameters, such as electron effective mass, hole effective
masses, or, equivalently, the Luttinger-like parameters, crystal-field splitting and spin-orbit splitting, are
determined by reproducing the calculated band structures near the BZ center. The obtained results
show that the cubic approximation is fairly successful in the analysis for the valence-band structures of
the wurtzite-type nitrides. Further, the calculated parameters for GaN are consistent with the observed
ones.

I. INTRODUCTION

The group-III nitrides AIN, GaN, and InN usually
crystallize in the wurtzite (WR)-type crystal structure.
These materials have attracted much attention as candi-
dates for optical devices in visible and ultraviolet (UV) re-
gions, since they have direct transition-type band struc-
tures with band gaps widely ranging from 1.9 eV for InN
(Ref. 1) through 3.4 eV for GaN (Ref. 2) to 6.2 eV for
AIN (Ref. 3) at room temperature. In particular most of
the recent interest has focused on the fabrication of
short-wavelength devices, such as light-emitting diodes
(LED's), and laser diodes (LD's) in blue and/or UV re-
gions.

However, technological applications have never been
achieved owing to two significant problems. One is that
there are no suitable substrate materials with a close lat-
tice match. Although a sapphire (0001) is used for the
substrate in most experiments, three-dimensional (3D}
growth is unavoidable due to the lattice mismatch. The
other is that n-type conduction, with electron concentra-
tions of 10' —10' cm, makes it difficult to grow the p-
type crystals. The origin of such high electron concentra-
tions is usually assumed to be N vacancies due to a lack
of residual impurities. Thus much effort has been made
for a long time to grow high-quality materials.

In recent years, these difBculties were considerably
overcome by a two-step growth technique, which uses a
preceding growth of thin A1N (Ref. 4) or GaN (Ref. 5) at
low temperature as buffer layers. This approach
effectively suppresses the 3D growth of these nitrides on
the sapphire substrate, and the crystallographic, electri-
cal, and optical properties are remarkably improved.
Furthermore, as for the p-type doping, it was found that
hole carrier concentrations are improved by low-energy

electron-beam irradiation (LEEBI), or by a thermal an-
nealing in a N2 gas atmosphere of Mg-doped crystals.
As a result of these treatments, efficient bright blue
LED's using a In„Ga& N/Al„Ga& „N double hetero-
structure (DH) have been fabricated, and experimental
efforts have been directed to realizing blue LD's.

In theoretical studies, several band-structure calcula-
tions have been published for A1N and GaN with some
crystal structures. ' Most of their results show the
density of states, charge-density distributions, and
structural properties such as the bulk modulus and pres-
sure dependence of the band gap. In spite of these calcu-
lations, electronic properties such as effective masses and
energy splittings have scarcely been investigated even for
the WR structure. On the other hand, experimental data
are also scarce due to the above difficulties. Therefore, it
is very important to determine the above electronic pa-
rameters, which are indispensable for material and device
designs based on the quantum theory.

The purpose of this study is to clarify the electronic
properties of the WR-type A1N and GaN, and to give an
important guideline on the material designs of short-
wavelength optical devices using these nitrides. There-
fore, we focus on electronic structures around the
valence-band maximum (VBM} and the conduction-band
minimum (CBM), and link the electronic band calcula-
tion with the effective-mass theory. At first, first-
principles electronic band calculations of WR-type A1N
and GaN are performed. Then we analytically investi-
gate the electronic properties on the basis of the
effective-mass Hamiltonian, where we consider the hex-
agonal symmetry of the WR structure. EfFective-mass
parameters such as electron effective mass, hole effective
masses, or, equivalently, Luttinger-like parameters,
crystal-field splitting and spin-orbit splitting, are derived
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from reproducing the calculated band structures around
the VBM and CBM. As a result, we present significant
parameters of these materials, which can be used for the
design of optical devices like LD's.

This paper is organized as follows. In Sec. II, the
method and results of the first-principles calculations are
described. In Sec. III, we explain the effective-mass ap-
proximation for the WR structure. In Sec. IV, numerical
results for the electronic properties are presented. Sec-
tion V summarizes the present studies.

II. ELECTRONIC BAND STRUCTURE

A. Method of FLAPW calculations

A1N and GaN usually have WR structure (space group
C6„) and zinc-blende (ZB) structure (space group Td) as
well. In this study, in order to understand the electronic
properties of A1N and GaN in the WR structure, elec-
tronic band calculations have been performed by using a
full-potential linearized augmented plane-wave (FLAPW)
method. ' The local-density approximation (LDA) is used
to construct exchange-correlation terms of the one-
electron potential. ' The spin-orbit interaction is con-
sidered as a perturbation to the scalar-relativistic Hamil-
tonian. The 3d electrons of the Ga atom are treated as
part of the valence-band states, since they are relatively
high in energy even though they constitute a well-
localized narrow band.

Inside the muffin-tin (MT) spheres, the angular
momentum expansion is truncated at l,„=7 for the
wave functions. A set of LAPW basis functions is con-
structed within the criterion that ~k+Cx~,„=5.5(2m. /a ),
with k being a wave vector in the first Brillouin zone (BZ)
shown in Fig. 1, and 0 being a reciprocal-lattice vector.
This criterion yields a set of about 390 LAPW basis func-
tions. The charge density has been self-consistently
determined using 28 meshed k points in an irreducible
wedge of the first BZ. The iteration process has been re-
peated until the calculated total energy of the crystal con-
verges into less than 1 mRy.

The lattice parameters used in the present calculations
are a =5.8808 a.u. , c =9.4146 a.u. for A1N, and
a =6.0263 a.u. c =9.7982 a.u. for GaN. These values
are the experimental ones. ' The internal parameter u,
which is the relative displacement of the N sublattice

kzr,

kx

FIG. 1. The first Brillouin zone for the wurtzite-type crystals.

with respect to the Al or Ga sublattice along the c direc-
tion, was fixed at the ideal value of 0.375c. The MT
sphere radii for Al, Ga, and N were the same values of
0.21a, since the use of the full potential ensures that the
calculation is completely independent of the choice of
MT sphere radii.

B. Results of FLAPW calculations

The calculated band structures for the WR-type A1N
and GaN are in good agreement with previous theoretical
results using the LDA. ""' It is well known that the
LDA yields quite reliable ground-state properties, but
seriously underestimates the band gap for all usual semi-
conductors. A more accurate band structure is achieved
by the quasiparticle approach using the GR'approxima-
tion. ' The GS' calculation was applied to these ma-
terials as well. ' ' The results show that there is a k-
directional dependence on the quasiparticle correction
for A1N and GaN. However, in general, the LDA wave
functions are very close to the corrected ones, and the
correction causes a rigid shift of the conduction band
against the valence band and, at the same time, broaden-
ing of both bands. Now we are mainly interested in the
band structure in close proximity to the VBM and the
CBM, which are the I points for the WR-type A1N and
GaN. Therefore, the k-directional dependence on the
GR' correction is negligible, and the LDA calculation
seems to be su%ciently accurate for our purposes.

In this paper, as an example, the characteristics of the
result for GaN are described, compared with the previous
calculations. We show the electronic band structure of
GaN by the FLAPW band calculation without the spin-
orbit interaction in Fig. 2, where the energy dispersions
along high-symmetry lines of the first BZ (see Fig. 1) are
shown. The energy bands consist of four parts, three oc-
cupied bands and an unoccupied band.

The lowest-energy bands, which are localized between
about —0.7 and —0.65 Ry, mostly originate from N 2s
states. The upper side of these states are hybridized with
Ga 3d states. The second-lowest-energy bands are locat-
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FIG. 2. The electronic band structure of the WR type GaN
without spin-orbit interaction. The energy dispersions along the
high-symmetry lines in the first BZ (see Fig. 1) are shown.
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ed between about —0.55 and —0.38 Ry, where the
lower-energy side almost originates from Ga 3d well-
localized states, and the upper one consists of the hybri-
dized states between Ga 3d and N 2s states. Due to these
hybridizations, Ga 3d states must be included in the
valence-band states, as mentioned above and pointed out
in Refs. 12 and 13. In the case of AlN, there is no hy-
bridization between cation d and N 2s states, since the Al
atom has no d electrons. Consequently, the lowest-
energy band is combined with the upper side of the
second-lowest one, and these two bands become one nar-
row band.

In the intermediate-energy region, there are broad en-
ergy bands whose width is about 0.53 Ry. The VBM is
the top of these bands, and is located at the I point.
These energy bands arise from N 2s, 2p and Ga 4s, 4p
states; however, the vicinity of the VBM consists almost
exclusively of N 2p states. The highest-energy region,
which is higher than about 0.6 Ry, is the conduction
band, and the CBM is located at the I point as well. The
vicinity of the CBM originates from N and Ga s states.
Our result for the characters around the VBM and CBM
is consistent with that of the previous study. ' Compar-
ing the results of A1N and GaN, the main features in
these two energy regions are very similar, except for the
order of energy levels around the VBM.

Here our attention is directed to the vicinity of the
VBM. We note that the band structures around the
VBM are different from the ZB-type crystal. Figure 3
shows schematic band structures near the I point
without and with the spin-orbit interaction. Even in the
absence of the spin-orbit interaction, the top of the
valence band is split into twofold- and single-degenerate
states. Using irreducible representations of group theory,
the former state is labeled I 6, whose wave functions

transform like x and y, and the latter one is labeled I
&

whose wave function transforms like z. The energy split-
ting between these two levels is induced by the hexagonal
symmetry of the WR structure, therefore this splitting is
called the crystal-field splitting 6„. The order of the two
levels depends on the kind of materials and the ratio c ja
of lattice constants. In the case of GaN, the I 6 level is
higher than the I, level, while in the case of AlN the I

&

level is higher. This difference between A1N and GaN is
in agreement with the result in Ref. 14.

Introducing the spin-orbit interaction, the twofold de-
generate I 6 level is split into I 9 and I 7 levels. Then the
single-degenerate I, level is labeled I 7 as well, and the
two I 7 levels are mixed. The energy splittings among
these three levels by the spin-orbit coupling is called a
spin-orbit splitting. According to our calculations, spin-
orbit splittings are much smaller than the crystal-field
splitting in these nitrides, though the crystal-field split-
ting itself is small. The values of the energy splittings are
discussed in Sec. IV.

III. EFFECTIVE-MASS APPROXIMATION

In general, transport and optical phenomena usually
involve the information of only a small region of k space.
In other words, the above characteristics of these systems
are governed by the band structures in the immediate vi-
cinity of the BZ center. Thus the effective-mass approxi-
mation is an appropriate method to make an analysis of
the electronic properties tractable. In this section, we ex-
plain the effective-mass approximation for the conduction
and valence bands of the WR structure, and discuss the
electronic properties near the BZ center.

A. Formulation

E(k)
crystal field

kz kx

E(k)
crystal field

kz kx

(b)

In ZB-type crystals, a parabolic band is assumed for
the electronic structure around the CBM, and the
Luttinger-Kohn Hamiltonian is used to describe that
around the VBM. ' According to our calculations, the
lowest conduction band consists almost exclusively of Ga
(Al) and N s states, which is also the case in ZB-type
crystals, and the s-like conduction band is isotropic in
contrast to the valence band, which shows a strong an-
isotropy. Therefore, if a small anisotropy of energy
dispersions is neglected, (i.e., if the parabolic band is as-
sumed), the electronic structure around the CBM is given
by the following relation:

E,(k) =E~+k /2m, *,
E(k)

spin-orbit

r

E(k)
spin-orbit

7~ r9

kz kx kz kx

FICx. 3. Schematic band structures near the I point of (a)
GaN and (b) A1N without and with spin-orbit interaction.

where m,* denotes the electron effective mass around the
CBM.

On the other hand, the Luttinger-Kohn Hamiltonian
cannot describe the valence-band structure of the WR-
type crystals, since it rejects the cubic symmetry of the
ZB structure. Thus we must consider the hexagonal sym-
metry of the WR structure. In general, the effective-mass
Hamiltonian is derived from either an invariant theory or
a perturbation theory. In this study, we use the former
one and expand the Hamiltonian within the second order
of k. Then we can obtain the effective-mass Hamiltonian
for the WR structure as follows:
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gf(k))=btL, +b2L, o, + 263(L~o +L o ~)+(A(+ A3L, )k, +(Az+A4L„)(k„+k„)
—A~(L~~k +L k~ ) —2iA6k, ([L„L~]k —[L„L ]k~ )+ Aq(k L~+k~L ), (2)

where I and o. denote the orbital and spin angular
momentum operators, respectively, and k represents the
wave vector in the first BZ. L+, o +, and k+ are defined
by

L+ =+(i—/&2)(L„+iL ),
o ~ =k(i/2)(o. „+io ),
k~ =k„+ik

and atomic units (i.e., A'= 1, mo =
—,', and e =2) and ener-

gies in Ry are used in this study.
Here A;(i=1—7) represents the parameters corre-

sponding to hole effective masses, or equivalently, the
Luttinger parameters, and 5;(i=1—3) denotes the pa-
rameters characterizing energy splittings at k=O.
corresponds to the energy splitting induced by the hexag-
onal symmetry, and 62 and 63 correspond to those by the
spin-orbit interaction. Here there seems to be little con-
tribution of the k linear relativistic effect in these rnateri-
als, since the upper part of the valence band almost arises
from N 2p states according to first-principles calcula-
tions. Generally, the relativistic effects on N 2p states are
not so much. Thus we consider the spin-orbit interaction
only at k=0 and neglect the k linear relativistic terms.

Next, in order to obtain the matrix representation of
this Harniltonian, we adopt the following functions as the
basis functions, which make L, and cr, diagonalized:

(1/P2)l(X+iY), a), (1 /v2) (lX+i Y), p),

Iz, a), Iz,p),

(1/+2)l(X iY),a), (—1 jv'2)l(X iY),p)—,

where lX), l Y), and lz) are Bloch functions at the I
point, transforming like x, y, and z, respectively, and la)
and lp) are spin functions corresponding to spin-up and
-down, respectively. Using the above six basis functions,
the Hamiltonian is explicitly expressed as

F=b, , +62+A, +8,
G =6I—62+A, +0,
H EA 6k k+ A 7k+

I=iA6k, k~+ A7k~,
%=Ask~,
b, =&253,
X= A, k, + A2(k„+k ),
8= A3k, + A4, (k +k ) .

Here we discuss the relations among the above parame-
ters from the point of view of the local symmetry. Note
that the local coordination on the atomic position of the
WR structure is the same as that of the ZB structure.
The two structures are different mainly at the relative po-
sitions of the third neighbors and beyond. In both types
of crystals, one kind of atom is tetrahedrally surrounded
by the other kind of atom. The layer stacking of the WR
crystal along the (0001) direction corresponds to that of
the ZB crystal along the (111)direction. Thus we intro-
duce the following approximation, which is called the cu-
bic approximation. At 6rst, let us transform the
Luttinger-Kohn Hamiltonian for the ZB structure to
another coordinate system, in which the z' axis is along
the (111)direction and the x' and y' axes along the (112)
and (110) directions, respectively. Next, comparing this
transformed Hamiltonian with the above Hamiltonian for
the WR structure, we can establish the relations among
the parameters A;s and 6;s. They are satisfied with the
following relations:

A I
= A2+2A4,

A3= —2A4,

A3+4A5 =&2A6,

A7=0,

H(k) =

F
0

0

0 —H
K 0
0 K

0
I
0

0

I

0 L*
I 0

6 0
0 F

0 K 0

(4)

According to these equations, independent parameters
are three A, and two 6, . Therefore, we must determine
at least five parameters, for example A „A3, A 5, A„and
b2, to reproduce the band structures near the VBM.
Then the energy levels E(k) on the eff'ective-mass approx-
imation can be obtained by solving the following equa-
tion:

D(1 ) =detlH(1 ) —E(1 )II =0, (7)

where F, 6, H, I, EC, 6, A, , and 8 are defined by where I is a 6 X 6 unit matrix.
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B. Analytical solutions

F'=hi+( A i+ A3)k, +( A2+ A4)(k„+k» ),
K'=A5(k„+k ), (10)

Q( A 2k2+ A 2 )(k 2+ k2)

As for the double sign, the plus sign corresponds to E2
and the minus sign to E3. According to these equations,
the energy dispersions of E,. are isotropic in the k -k„
plane within the second-order expansion of k. In case of
b, i )0 (b. i (0},the e8'ective masses of three energy bands,
E ] ( $ ) E2( 3 ) and E3(2) at k =0 correspond to heavy-,
light- and split-off-hole masses, respectively. Each hole
mass can be obtained from the second derivative of the
above analytical expressions. Thus the hole masses along
the k, direction (m') and those in the k„-k» plane (m )

are given as follows.
k, direction (k, =k» =0):

mii/mIIh
——

( A, + A5),

First we show the analytical solutions of the effective-
mass Hamiltonian at the I point. The Hamiltonian gives
the energy levels at k=0 as follows:

ED=6, +6~,
(8)

b, , —h2kQ(h, —b, 2) +865
23 2

where E& corresponds to the I 9 level and Ez 3 corre-
sponds to the two I 7 levels. As for the double sign, the
plus sign corresponds to Ez and the minus sign to E3.
According to these equations, in the absence of the spin-
orbit coupling (62=55=0), E i =E2, Ei 2 E5 =—b, i for
6&&0, and E& =E3, E& 3

—Ez=h& for 6& &0. Thus 6&
is called the crystal-field splitting 6„.On the other hand,
considering no hexagonal crystal field (5,=0,62=6,3),

E, =E2, Ei 2 E3=3~2 for hz3&0, and E, =E3,
E ] 3 E2

=362 for b, 2 3 & 0. Then, the quantity
3b,2( =36,5) corresponds to the spin-orbit splitting b.„in
the ZB-type crystals.

Next we study the analytical expressions for energy ei-
genvalues at general k points. Assuming that 62=53=0
(F =G, b, =0), or neglecting the spin-orbit coupling, the
Hamiltonian is easily diagonalized, and the energy
dispersions are given as follows:

E) =F' —K',
F'+K'+A, k+(F'+K' A, ) +8H'—

E2,3=

where F', K', and H' are defined by

where the subscripts, hh, lh, and split denote the heavy-,
light-, and split-off-hole bands, respectively. The naming
of three hole bands is based on the feature in the k„-k
plane. The features are discussed in Sec. IV.

IV. NUMERICAL RESULTS

A. Effective-mass parameters

Now we know the energy levels for arbitrary k points
thanks to the first-principles calculations, but the
effective-mass parameters m,* for the conduction band,
and A,. and 6,. for the valence band, are almost unknown.
Thus we investigated the finer electronic band structures
near the I point by using the energy eigenvalues at
three-dimensional (3D} dense meshed k points from first-
principles calculations. Then we derived the above pa-
rameters by reproducing the band structures near the I
point on the basis of the effective-mass Hamiltonian.

First we show the calculated results of the electron
effective mass. According to our first-principles calcula-
tions, the energy dispersion of the lowest conduction
band has some anisotropy for k directions. Therefore,
the electron effective mass was determined by averaging
the k-direction-dependent masses over a number of direc-
tions. Each k-direction-dependent one is obtained by
fitting the energy dispersion of the lowest conduction
band to a parabolic function in the vicinity of the I
point. The calculated electron effective masses for A1N
and GaN are summarized in Table I, where m,*, m„and
m, denote the average electron effective mass and the k-
direction-dependent ones along k, and k directions, re-
spectively. The obtained value for GaN is in good agree-
ment with the observed values, 0.22mo and 0.20mo.

Next we show the numerical results of the valence-
band parameters A; and 6;. Here, it is very difficult to
accurately determine the ten parameters at the same
time. Thus we adopted the cubic approximation for sim-
plicity, and performed the least-square fitting of the ener-

gy levels at 3D meshed k points in the vicinity of the I
point. This procedure is called 3D fitting. In this pro-
cedure, we minimized the function, g, ~D(k; ) ~, where
k;s are meshed sampling k points. The calculated results
for A1N and GaN are summarized in Table II. Further,
we show the upper valence-band structure of GaN in Fig.
4, where two kinds of results are shown together. The
broken lines are the result by diagonalizing the 6X6
effective-mass Hamiltonian using the obtained parame-

mo/mk = (A i+ A5}

mp/m split A 1
II

k„-k plane (k, =0):

mp/mhh = —( A2+ A4 —A5),

mp /m ih ( A 2 + A 4 + A 5 ) 2 A 7 /

mp/m, i;,
= —A2+2A7/~hi~,

(12) AlN
GaN

0.27
0.18

m,II

0.33
0.20

m,'

0.25
0.18

TABLE I. The electron efFective masses for A1N and GaN.
m,*, m,II, and m, denote the average electron efFective mass and
the k-direction-dependent masses along the k, and k„direc-
tions, respectively. All values are in units of a free-electron
mass mo.
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TABLE II. The valence-band parameters A; and b, ; for A1N and GaN. A; (i =1—6) denotes the
hole effective masses, or equivalently the Luttinger-like parameters, in units of A /2mp. 5; (i =1—3)
represents the energy splittings at the I point in units of mRy. The results of the line fitting for A;s
(except A6) and the I -point fitting for 6;s are also listed in round brackets, compared with that of the
3D fitting within the cubic approximation.

A3

A1N

GaN

—3.95
( —4.06)
—6.56

(—6.27)

—0.27
( —0.26)
—0.91

(—0.96)

3.68
(3.78)
5.65

(5.70)

—1.84
( —1.86)
—2.83

( —2.84)

—1.95
( —2.02)
—3.13

(—3.18)

—2.91
(-)
—4.86
(-)

—4.30
( —4.3)

5.36
(5.3)

0.50
(0.5)
0.38

(0.4)

0.50
(0.5)
0.38

(0.5)

(a)
0.47

8=8-ee=e-geeW=8-++=8=8
=8-&ag~0.46

~ 0.45

~ 0.44

4-4-o- .ea-.0~i

e

'a,
Ck,

cubic approximation
0 FLAPW '4

I I I I I I I I I0.43
0.00 0.03 0.06 0.09

wave vector kz ( 0, 0, 2 n. /c )

(b)
0.47

ters, and the open circles are the result by the FLAPW
band calculation with the spin-orbit interaction. From
the comparison between two results, it is found that the
3D fitting within the cubic approximation is in good
agreement with the FLAPW calculation.

Since A; are merely fitting parameters which are physi-
cally meaningless, we discuss the feature of three hole
bands around the VBM. The hole effective masses are
obtained by using values of A,-. The calculated hole
masses for AlN and GaN are summarized in Table III,
where mhh, mIh, and m, ~I;, correspond to I 9 (heavy), I 7

6 6

(light), and I 7 (split-oS bands, respectively. The sub-
scripts and superscripts stand for the labels of irreducible
representation in the case with and without the spin-orbit
coupling, respectively. The naming of three hole bands,
heavy, light, and split-off, is based on the feature in the

k -k plane. According to our calculations, the hole
masses have considerable k-directional dependence. The
mass of the I 9 band is heavy along any k direction. On
the other hand, that of the I 7 band is light in the k -k
plane but heavy along k, direction, and that of the I 7
band is the very reverse. Further, the I 7 band is split off
from I 9 and I 7 bands even without spin-orbit coupling.
These features show that the k-directional dependence of
hole masses is not negligible if we carry out the material
design and/or the characteristic analysis of quantum-well
devices like LD's. Thus the k.p perturbation parameters
A; in the WR structure, which correspond to the Lut-
tinger parameters y; in the ZB structure, are very
significant and useful for technological applications.

According to the experimental result for GaN, the hole
mass is 0.8(+0.2)mo. On the other hand, the calculat-
ed mass of the I 9 band, which is the lowest in hole ener-

gy among the three bands, is quite a bit more heavy than
the observed one. However, both the crystal-field and
spin-orbit splittings are so small that we estimated the
typical hole mass by averaging the k-direction-dependent
masses with the weight of k's star. Here we considered
two (heavy and light) and three (heavy, light, and split-
oS bands in averaging hole masses. In both cases, the
average hole mass is about 0.95mo —1.10mo, which is
consistent with the observed one. This value for the
WR-type GaN is much larger than for the conventional
ZB materials like GaAs. Such a heavy mass would cause
the high carrier density to realize the population inver-
sion. Therefore, a higher carrier density might be neces-

0.46
C4

~ 0.45
bQ

& 0.44

4R
e---0--~--~--

O~ O 4--y--gi
--'--- --)-.=-+:.-a- s.. s a8 --.. .~----]~

8

8 '-,

cubic approximation 4-.—
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TABLE III. The hole effective masses for A1N and GaN.
mhh, m1h, and m, pht denote the heavy-, light-, and split-off-hole
masses, and the superscripts

~~
and l represent the lt-directional

dependence along the k, and k„directions, respectively. All
values are in units of a free-electron mass mp. The results of the
line fitting are also listed in round brackets, compared with that
of the 3D fitting within the cubic approximation.

FIG. 4. The finer band structures near the I point along (a)
k, and (b) k directions with spin-orbit interaction. The results
obtained by the FLAPW band calculation (open circles) and the
effective-mass theory within the cubic approximation (broken
lines) are shown together for comparison.
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sary to obtain sufficient optical gain, if LD s using the
WR-type GaN-based materials are fabricated.

As for the energy splittings, the calculated spin-orbit
splitting 6„is in good agreement with the experimental
value 0.82(+0.37, —0. 15) mRy. On the other hand,
the calculated crystal-field splitting 6„is in disagreement
with the experimental value, 1.62(+0. 15) mRy, though
the sign and the relative size to 6„ is in agreement.
However, the electronic structures around the VBM are
very sensitive to strains. So for more detailed compar-
ison, more accurate measurements using homogeneous
strain-free crystals are desirous, and we must perform
first-principles calculations with lattice parameters free.

B. Accuracy of cubic approximation

We study the accuracy of the 3D fitting within the cu-
bic approximation, using analytical solutions of the
effective-mass Hamiltonian and energy eigenvalues near
the I point by first-principles calculations. First, we ex-
plain the result for the energy splittings. The crystal-field
splittings 6

&
can be determined directly from the

difference between I 6 and I, levels by the FLAPW cal-
culation without the spin-orbit interaction. Then, using
the obtained 6„the spin-orbit splittings 62 and h3 can be
derived from I 9, I 7, and I 7 levels by the FLAPW calcu-
lation with the spin-orbit interaction. We call this pro-
cedure the I -point fitting. The results of the I -point
fitting are shown in Table II, compared with those of the
3D fitting within the cubic approximation. According to
Table II, two kinds of results are nearly equal, and the re-
lation 6&=43 seems to be good. Therefore, the cubic ap-
proximation is fairly suitable for the energy-splitting pa-
rameters.

Next, we describe the result of the Luttinger-like pa-
rameters. According to first-principles calculations,
spin-orbit effects are very small in these nitrides. Thus,
for both the analytical expression and the FLAPW calcu-
lation, we used results without the spin-orbit interaction.
Further, we neglected the contribution of the parameter
A 7. Estimating from the energy splitting between E2
and E3 in the k -k plane, A7 is at most about 10
Rycm for GaN. Then, as for the value of m&z, the con-
tribution of A7(227/~b, , ~) is about 10 times as small
as those of the other terms [( A2+ 24+ A5)]. Therefore,
assuming that A 7 =0, we obtained A; (i = 1 —5) from par-
abolic fits of the energy dispersions along b, (for A, and

A 3) and g (for A2, A~, and 25) lines (see Fig. 1), respec-
tively. We call this procedure the line fitting. In Tables
II and III, the results of the line fitting are shown with
those of the 3D fitting within the cubic approximation.
From a comparison between two kinds of results for A;,
the difference between them is less than about 5%.
Therefore, the cubic approximation is fairly successful in
the analysis of the valence-band structures of WR-type
A1N and GaN.

Furthermore, the similarity between WR and ZB
structures has been investigated in previous works, '

where it was reported that the total-energy differences are
only -0.01 eV/atom, and that the trends in the band-

gap differences can be explained by the band folding and
crystal symmetry. From these results as well as our re-
sults, it is obvious that the cubic approximation for the
WR structure is valid in these nitrides.

V. CONCLUSIONS

In conclusion, we have performed first-principles
FLAPW band calculations within the LDA for WR-type
AlN and GaN. The electronic properties have been in-
vestigated on the basis of the effective-mass approxima-
tion, where we consider the hexagonal symmetry of the
WR structure. Electron efFective mass, hole efFective
masses, or equivalently, the Luttinger-like parameters,
crystal-field splitting and spin-orbit splitting have been
derived from reproducing the calculated band structures
near the VBM and CBM. The obtained parameters for
GaN are a.lmost consistent with the experimental results.
All the parameters we presented here will be very useful
for a characteristic analysis of quantum-well devices like
LD's. We suggest that the cubic approximation is avail-
able to analyze the electronic properties of WR-type crys-
tals. Lastly, in order to obtain a more quantitative under-
standing of the efFective-mass parameters, we may need
to perform calculations relaxing the values of the lattice
parameters a and c and the internal parameter u.
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