
PHYSICAL REVIEW B VOLUME 52, NUMBER 11 15 SEPTEMBER 1995-I

Statistical mechanics of high-field transport in semiconductors
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The paper is devoted to the statistical-mechanical description of high-field transport in semiconduc-

tors within the semiclassical picture, assuming the band structure and electron-phonon interaction to be
known. Our goal is to obtain a physical understanding in simple, universal terms without resorting to
specific, simplified models for the band structure and/or the electron-phonon interaction. We first exam-

ine the lucky-drift model against an exact (analytical and numerical) solution of the Boltzmann transport
equation in the simple parabolic case, and two discrepancies are found. The first stems from an incorrect
expression for the drift velocity of a hot electron, while the second is associated with the approximate
nature of the statistical device yielding the energy distribution. With the aim of retaining the features of
simplicity of the lucky-drift description, another approach to the statistics of transport in the high-field

regime is developed, based upon a nonlinear Fokker-Planck equation in energy space. While it gives the
exact solution in the parabolic case, it has the ability to take up transport in an arbitrary band structure
as well, and accounts for the success of the generalized lucky-drift model. The carrier energy distribu-

tion is expressed in terms of integrals over constant-energy surfaces in the Brillouin zone; the integrals
involve the electron-phonon interaction and have direct physical meaning. The momentum-space distri-
bution is derived approximately from the energy distribution. A simple comprehensive picture of trans-

port statistics emerges that is not linked to a particular material or to specific assumptions regarding the
electron-phonon interaction.

I. INTRODUCTION

The fundamental and practical importance of high-
field transport in semiconductors is widely known. ' The
quantum mechanics comprises the kinematics (energy-
momentum relationship), for which present band-
structure models are deemed satisfactory, and the dynam-
ics (electron-phonon interaction), which is incompletely
known at high carrier energy. The description of the
large-time behavior of a carrier (range of energy and
momentum explored, real-space motion . ) on the basis
of those ingredients calls for a statistical-mechanical
model, which most frequently rests on the semiclassical
Boltzmann transport picture, and numerical solutions are
found through Monte Carlo simulations. This technique
has reached a high level of sophistication, and yields not
only the steady-state solution, but allows for the examina-
tion of transients and nonuniform situations. Yet there
is still a need for simple models giving straightforward
understanding of general features of transport and pre-
diction of the chemico-physical trends. Not only is it ap-
pealing for general solid-state physicists, but it is also our
experience that even well-written papers describing
Monte Carlo simulations are sometimes basically misun-
derstood by the device designers calling for them. In
1983, Ridley introduced the so-called lucky-drift model
of high-Geld transport in order to find out the main fac-
tors controlling the high-energy tail of the carrier distri-
bution, responsible for band-to-band or impurity impact-
ionization processes. Shortly after Shichijo and Hess's
simulation including a realistic band structure, he could
show qualitatively why an electron experiencing many
collisions was usually more lucky in attaining high ener-

gies than a ballistic electron, hence the name, lucky drift.
He also found that in addition to the mean free path,
another characteristic length played a determinant role at
high Geld, namely, the energy relaxation length. Let us
say, in short, that Ridley's model is based upon a hierar-
chy of scales, whether in time, energy, or distance. This
first version of the model was developed quantitatively in
the case of a parabolic band structure, and good agree-
ment with Bara6's solution of the Boltzmann transport
equation was found; but the niacin features carry over to a
nonparabolic monovalley model. Later, Burt introduced
a variant of the lucky-drift model and the agreement
with Monte Carlo simulations was found to be excellent
in the parabolic case, and moderate in the nonparabolic
multivalley case. More recently, we introduced a third
version of that model in order to use the same expres-
sions for expectation values that are employed in Monte
Carlo simulations, so as to sharpen the correspondence
between both descriptions. We could make an euristic
generalization of the model to arbitrary band structures,
and this resulted in a very encouraging, parameter-free
comparison with a computer simulation. '

In this paper, a critical examination of the lucky-drift
model (Sec. II) shows that the apparent agreement with
Monte Carlo results actually comes from the cancellation
of two unsuspected flaws. The major one is due to the
failure of the Drude formula for the local drift velocity.
The second one is rooted in the lucky-drift ansatz yield-
ing the energy distribution. In Sec. III, that ansatz is re-
placed by a nonlinear Fokker-Planck equation in energy
space. Agreement with the prediction of the Boltzmann
transport equation is excellent in parabolic bands. How-
ever, the energy distribution is obtained analytically for
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arbitrary band structure and electron-phonon interaction;
the quantities entering the solution are calculated in the
Appendixes. Next, Sec. IV applies the Boltzmann equa-
tion to obtain the carrier distribution in momentum
space, which is shown to depart slightly, and can be de-
rived, from the distribution in energy space. That small
departure provides the justification of the Fokker-Planck
approach. Section V sketches the conclusions.

II. CRITICAL LOOK AT THE LUCKY-DRIFT MODEL

A. Introduction

The statistics of any transport model consists of at
least two parts: (i) calculating the expectation values of
the observables, and (ii) obtaining the probability law of
energy or momentum. In a previous paper, we pointed
out that some of the expectation values in the original
lucky-drift model were not calculated in the standard
way of statistical mechanics owing to the use of a helpful
fiction, the so-called lucky-drift trajectories. In some, but
not all, cases, this fiction led to discrepancies that we
chose to eliminate by forsaking the notion of a deter-
ministic real-space trajectory, and by coming back to the
statistical-mechanical orthodoxy underlying computer
simulations. But at the same time, we retained the idea of
lucky-drift trajectories in energy space, in order to obtain
the probability law n (E), where n (E)dE is the probabili-
ty for the carrier's energy to be in the interval
[E,E+dE], or alternatively the repartition function
(probability for the energy to exceed E)

P(E)=f n(E')dE'.

The lucky-drift expression for P(E) at high E can be ob-
tained easily by noticing ' that the main contribution is
the probability for the carrier to avoid energy relaxation,
while drifting from zero energy up to E. Energy relaxa-
tion in the drift mode is characterized by an energy relax-
ation length A,E, which is the distance traveled by an elec-
tron drifting at the velocity vd(E), during the energy re-
laxation time rz(E). Considering phonon emission only,
the latter is defined by

E /i. z (E)= Aco/r(E),

where ~(E) is the collision time, fico the phonon energy
(assumed constant), and vd(E) is given by a Drude ex-
pression (written here for constant eS'ective mass m *, i.e.,
for a parabolic band),

ud(E) =qFr(E)/ni

In the parabolic case Az=ud(E)rz(E) is independent of
energy, ' while it depends on E in a nonparabolic band
structure. It usually drops at high E, owing to the in-
crease in the scattering rate.

Since the probability of drifting over dz and thereby
gaining dE'=qI dz from the field without relaxing ener-

gy to the lattice is I dz/Az(E') =exp[ —dz/Az(E')], —

E dE'
P (E)i„D=exp —fo qFAz E' (4a)

dE'
n (E)~LD-—[qFAz(E)] ' exp —fo qFA, z E (4b)

The latter equation is just Eq. (44) of Ref. 8 in which the
ballistic contribution is dropped. At low E, collisions are
infrequent and the electrons travel ballistically rather
than by drift. One strength of the lucky-drift model is its
ability to combine ballistic and drift motions in calculat-
ing ' P(E). In this paper, we shall be concerned with
the high-energy realm and thus disregard the ballistic
contribution.

The prediction of Eq. (4b) was compared to Monte
Carlo data for ZnS (a GaAs-like material) from a simula-
tion performed in a realistic band structure, and satisfac-
tory agreement was found without using any adjustable
parameter. The available Monte Carlo data comprised
the energy distribution about the average energy, for two
values of field. In so doing, we followed the spirit of
McKenzie and Burt's work, which was devoted to such
a comparison in the simple parabolic case, and obtained a
very good agreement for the average energy and the
hard-threshold impact-ionization rate over four orders of
magnitude.

B.Wolf's theory and the lucky-drift model

It is clear from the outset that the P(E) obtained by
the lucky-drift model is approximate. The success of the
previous comparisons asks the question of the extent of
its accuracy. Obviously the clearest answer should resort
to an analytical, instead of numerical, comparison with
an exact solution of the Boltzmann transport equation.
Such an exact solution exists in the case of a parabolic
band structure, with an isotropic electron-lattice interac-
tion characterized by a constant mean free path in which
each interaction consists of the emission of a fixed quan-
tum %co. It is Wolff's theory, ' which idealizes the non-
polar (deformation-potential} interaction with optical
phonons. The fact that only emission, and not absorp-
tion, is considered, makes it a zero-temperature theory,
which can be straightforwardly extended" to finite tem-
peratures for high-energy carriers (E &)irtco} thanks' to
the golden-rule expression of the electron-phonon in-
teraction rate. At finite temperature, one simply has to
replace fico by %co/[2n(co)+ I ], where n ( co)=[exp(A co/
kT) —I] is the Bose-Einstein population of the optical
mode. Another simplification of Wolff's solution to the
Boltzmann equation is the consideration of a weak an-
isotropy of the k-space occupation function f (k), ex-
pressed by truncation to the first spherical harmonic,

f (k) =fo(E)+f, (E)cos8,

where fo(E) has the meaning of the energy occupation
function [that is, n (E)=N (E)fo(E), N(E) being the den-
sity of states], and

~f, (E)
~

&&fo(E). Such an assumption
proves to be valid at high field, where the collisions are so
frequent that they scatter the electrons in all directions.
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f, = —qFA, dfo/dE, (6b)

where E =(qFA, ) /3fuu is a characteristic energy de-
pending on the electric Geld F and the constant mean free
path A, . If we disregard the impact-ionization events con-
sidered by Wolff, the only solution of (6a) that remains
finite as E ++ 00 —is fo(E)-exp( E/E —), where
means henceforth a proportional relationship. Thus,

n(E)-E'~ exp( E/E )—,
and the repartition function [Eq. (1)] is

P(E)=I (3/2, E/E~)/I (3/2),

(7)

(Sa)

where the incomplete Euler function I (u, x) has an
asymptotic expansion,

+ OOI (u, x)= t" 'e 'dt =x" 'e [1+(u —1)/x. . .],
X

yielding (for E »E )

P(E) =2(E/E )'~ exp( E/E )/i/n —. (Sb)

Now the lucky-drift model yields in the high-energy
limit, '

n (E)-exp( 2E/3E ), —

P(E)= exp( 2E/3E ) . —
(9a)

(9b)

The discrepancy between Wold's theory and the lucky-
drift model is twofold: (i) there is a misfit in the dom-
inant exponential term, and (ii) the subdominant, preex-
ponential factor is different. In contrast, if we calculate
the average energies, they agree to be E,„=3E„/2.

The question which immediately arises is the following:
Since the Monte Carlo simulation gives an exact solution
to the Boltzmann transport equation, it should yield
Wolff's result, and therefore disagree with the lucky-drift
prediction, contrary to McKenzie and Burt's findings.
They compared the average energies given by the lucky-
drift and Monte Carlo models, and found excellent agree-
ment, as expected. They compared the high-energy tails
given by both models by calculating the hard-threshold
impact-ionization rate a„at E = 1.5, 2.0, and 3.0 eV, tak-
ing a set of GaAs parameters. The ionization rate as a
function of E,

P (E)

f P(E')dE'
(10)

is proportional to P(E) for E,„«E, in which case the
denominator is E,„.For E,„&E (where E„is calculated
as 3E /2, i.e., discarding impact-ionizing events), a large

Intermediate fields give rise to a larger anisotropy and re-
quire higher-order harmonics, arid this has been ad-
dressed by Baraff. ' ' In the lucky-drift picture, it
means that electrons reaching high energies do so by
drift, not ballistically.

From Boltzmann's equation and Eq. (5), Wolff has de-
rived simple equations for f0 and f„
d fo/dEz+(E '+E ')dfo/dE+ fo/EE =0, (6a)

fraction of carriers reaches the threshold, P(E')=1 for
0 & E' & E, and a„=qF/E becomes hardly sensitive to
the P(E) function. Therefore, only in the E,„«Ecase
do we truly probe the high-energy tail of the distribution.
This requires that, at a given E, F should not be too high,
though high enough for the lucky-drift concept to be ap-
plicable. Consequently, the relevant range of field should
obey

2fico « qFA, « (2Efico)

so that E„«Ecorresponds to

(E/2%co) «E/qFA, .

(1 la)

(1 lb)

In Ref. 6, (E/2%co)', calculated at room temperature,
ranges between 7 and 10, while E/qFA, actually never
exceeds 20, so that (lib) is not satisfied and Wolff's
asymptotic form is never reached, and the discrepancy
between Eqs. (8b) and (9b) cannot be disclosed. The same
is true of Ridley's comparison with Baraff's curves,
which are the numerical solution of Boltzmann's equa-
tion.

C. Monte Carlo simulation

For the sake of completeness, we have performed a
Monte Carlo simulation corresponding to Wolff's theory.
At finite temperature, emission and absorption processes
have been treated exactly, namely,

[1/~(E) ], = [n (co)+1]ug (E—iiico)/Ao,

[1/r(E) ]»,=n (co)us(E +fico) /A, o,

(12a)

(12b)

where u (E)=(2E/m )'~, m is the effective mass, and
Ao= [2n (co)+ 1]A, is the zero-temperature mean free path.
We have taken two sets of parameters, those of Ref. 6
(Ao=550 A, m*/m0=0 22, fico=2.9 meV) and those of
Refs. 8 and 9 (AD=45 A, m'/m0=0. 30, irido=42 meV) at
T =300 K. No impact-ionizing events were introduced
in order to study the effect of the electron-phonon in-
teraction alone up to very high energies. The high-
energy tail has been probed by counting the number of
collision-free fiights ending above nE,„(1& n & 7), which
yields' an estimator of P(nE,„). More than 10 scatter-
ing events, real or fake, were simulated in order to get a
reproducible P(7E,„). This is confronted to the Wolff
and lucky-drift predictions in Table I, part of which are
displayed in Fig. 1. One can see that Wolff's and the
Monte Carlo solutions to the Boltzmann transport equa-
tion agree extremely well with each other, as they should,
while the lucky-drift prediction steadily deviates as E be-
comes higher. This holds at high fields, while at lower
fields the agreement between WolfF's and the Monte Car-
lo solutions is not as good, as expected owing to the
simplifications in the former. In the low/intermediate
(0—2E,„) energy range, the lucky-drift and Monte Carlo
figures agree with each other, in consistency with the
findings of Ref. 6: this means that (i) the average energies
obtained by both approaches are the same, and (ii) the er-
rors in the exponential term and the prefactor cancel
each other around E,„. In the case of a realistic band
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structure, our comparison between Monte Carlo data
and the generalized lucky-drift model was made over a
small energy range around E,„.Therefore, we attribute
the good agreement obtained to such cancellation of er-
rors in the exponential and nonexponential factors in the
intermediate-energy range, and to the very close values
of E„obtained from both approaches. The results of
this paper strongly suggest that for E »E,„, the Monte
Carlo and lucky-drift predictions would disagree, but the
available Monte Carlo data are restricted to the inter-
mediate energy range.

(In passing we could see that Wolff's solution is closer
to the Monte Carlo results than is the analytical theory of
BarafF, ' based on the maximum anisotropy approxima-
tion. That theory is designed to represent analytically the
whole energy distribution over a large 6eld range,
comprising the low-energy part, which contains ballistic
electrons responsible for anisotropy at moderate 6elds,
and thereby cannot be very accurate as regards the high-
energy tail. )
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XSince the lucky-drift approach is deliberately approxi-
mate, and was successful in interpolating the ballistic and
drifting behaviors of a hot electron, ' it should not be
blamed for the absence of the E' factor in P(E) [Eqs.
(Sb) and (9b)], but in view of the results of Sec. II C the
dominant, exponential dependence should be corrected.
The argument of the exponential is E/qFA. z,—where in
Az=vd(E)rz(E) the energy-dependent drift velocity is
given by a Drude expression Eq. (3). The idea behind Eq.
(3) is the central idea of lucky drift, that is, the electron
relaxes crystal momentum and attains a state of drift
while its energy is almost unafFected by the collisions as
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FIG. 1. Semilogarithmic plot of the repartition function
P (E) (probability for the carrier's energy to exceed E) as a func-
tion of energy E over the [E,„,7E,„]range. The band structure
is parabolic, and the electron-phonon interaction is isotropic

0
with a constant mean free path. Parameter values A,p=550 A,
m */mp =0.22, fico=29 meV, T =300 K, field F=0.1 MV/cm
(from Table I). The results calculated from four theories
[Wolff's (Ref. 10, dotted line), Monte Carlo (Sec. II C, solid line),
lucky-drift (Ref. 6, dash-dotted line), and Fokker-Planck Eq.
(27) (dashed line)] are shown. The Wolff and Fokker-Planck
figures are almost indistinguishable.
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E ))Ac@. This assumes that the variation in E and thence
in ~ is negligible over the scattering time, in other words
that the change in ~ would give a small, erst-order
correction to the Drude expression, which applies for a
constant collision time.

However natural such an assumption looks, it is in-
correct. As a matter of fact, the variation of the collision
time as the electron is being accelerated by the field be-
tween two collisions brings a zero-order correction to the
drift velocity. ' In the case of parabolic dispersion rela-
tion and isotropic scattering, Shockley' arrives at

vd(E) =qFr(E)[1 ( ,' )d—Ln—(1/~)IdLnE]/m * . (13)

This was needed to explain why the energy-dependent
Drude mobility fails to give the conventional mobility
upon integration over energy in the thermalized trans-
port regime, a discrepancy we also pointed out in the
high-field transport regime. For deformation-potential
scattering 1/r-E '~, whence vd (E)=2qFr(E) /3m *,
and A,z is reduced by a factor —', . Then the lucky-drift
n (E) has the same exponential term as Wolff's [Eq. (8b)];
the only difference is in the slowly varying prefactor,
which in turn causes the average energies to disagree.
The prefactor is reminiscent of a density of states, and
this points to the approximate nature of the ansatz ' '

used to calculate P(E) ("lucky-drift trajectories" in ener-

gy space).
Based on Shockley's reasoning, ' Appendix A brings a

closer insight into the failure of Drude's formula, and
gives a general expression for the local drift velocity, even
in anisotropic band structures and almost regardless (see
Sec. IV 8) of the form of the electron-phonon interaction.
The upshot of all this is that Ud can be meaningfully
defined as a function of energy, and this is used in the
next section.

III. A FOKKER-PLANCK APPROACH

A. Aim

In the previous section, we pointed out two Aaws in the
lucky-drift model. The major one stemmed from an in-
correct expression for the energy-dependent drift velocity
yielding in turn a wrong energy relaxation length; it was
cured by substituting Shockley's to Drude's formula. The
second Raw has to do with the statistics, and its conse-
quences in an arbitrary band structure are difficult to
guess. This section is aimed at designing a statistical-
mechanical model for high-field transport, assuming the
carrier kinematics (band structure) and dynamics (lattice
scattering) to be known, that retains some essential
features of the lucky-drift description. The first feature is
the real-space description of the electron's motion in
terms of a local drift velocity —in fact, such a description
is valid for nonballistic motion, which is always true at
high enough energy at steady state. The use of a slowly
varying velocity (on times r &(t «rz) allows straightfor-
ward visualization of the motion, which is fast and possi-
bly ballistic at low energy where collisions are infrequent,
and slow at high energy where the scattering rate is very

large. The second feature is the use of energy E as the
basic variable, instead of k in computer simulations: this
is made possible by the fact that for hot electrons,
momentum is relaxed very rapidly compared to energy,
so that momentum is randomized on scales over which
energy hardly changes. The consideration of E instead of
k or p=Ak spares to the physicist or device engineer a
detailed consideration of the structure of phase space:
the main transport properties can be understood on the
basis of a one-variable function, the density of states
N(E).

That such a program can be envisioned, is strongly
suggested by the generalized lucky-drift model intro-
duced previously, in which the energy relaxation length
involving vd(E) and rz(E) gives a realistic probability
law n (E) if suitable energy dependences are used. The re-
lationship between E space and p space is tackled in Sec.
IV and used in the appendixes for deriving the general ex-
pressions for all the relevant quantities. In the remainder
of this section, we shall take for granted that a local drift
velocity can be defined as a function of energy alone in
spite of band-structure and electron-phonon anisotropies,
and the reader is advised that any doubts he may have
should be postponed until Sec. IV. The next two subsec-
tions introduce the Fokker-Planck approach for finding
n (E) in a generic material: in subsection D, we set out
the physical meaning of our solution, and in subsection E
make the link with Wolff's theory and the generalized
lucky-drift model.

B.Equation of evolution in energy space

The problem is to find how the probability distribution
n (E, t) evolves in time owing to energy exchange with the
field and the phonon bath. Since the integral of the prob-
ability density is conserved in time, and since the energy
changes can be assumed almost continuous for hot car-
riers (A'co &(E), it is possible to write down an equation of
continuity,

Jz = 8'(E)n (E)—B[L)(E)n (E,t)]/dE . (15)

When (15) is input into (14), we have a Fokker-Planck
equation, ' 8'has the meaning of a drift velocity in ener-
gy space, and D is called the diffusion coefficient. If D is
a function of E, we are dealing with a nonlinear Fokker-
Planck equation. ' Strictly speaking, the drift and
diffusion currents cannot be defined unambiguously in the
case of a variable diffusion coefficient. For instance,
Kurosawa' uses another, equivalent definition. The
reasons why we cast Jz in the form (15) is that an initially
peaked distribution n (E,O) =5(E —Eo) will become,

(14)

in which Jz (in s ) is a density of probability current in
E space. Equation (14) is analogous to the conservation of
probability (in real space) in Schrodinger s wave mechan-
ics. This idea has been introduced for dealing with hot-
electron problems independently by Kurosawa' and
Levinson. ' The next step is to write the probability
current as the sum of a drift term and a diffusion term,
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after some time, shifted and broadened in such a way' '
that the average shift, or drift in energy space, obeys

d (E —Eo ) Idt = W(EO), (16a)

so that W(Eo ) is the average rate of energy gain (or loss)
of the particle, while the broadening caused by the ran-
domness associated with the energy exchange is

d((E —Eo) ) Idt=2D(Eo) . (16b)

More specifically, ' ' the Dirac distribution 5(E Eo)—is
changed into a Gaussian packet centered at
Eo+W(Eo)t, with a variance 2D(E&)t. This holds at
times t short enough that W(E) and D (E) retain their
values at Eo. Hence, W(Eo) (in eV/s) represents the
speed at which the center of the packet moves in energy
space, starting from Eo, while the diffusion term em-
bodies the variance caused by the energy exchange ex-
perienced by the electron both from the field and the pho-
non bath. General conditions to be obeyed by diffusion
coefficients' ' are D (E))0, except at E =0, where
D (0) vanishes.

The time evolution of the probability density has two
origins, namely, the energy exchange with the field and
lattice vibrations. The rates of change of n (E, t), due to
the field and the lattice are additive in the semiclassical
transport picture, viz. Bn/Bt =(Bn/Bt)~+(Bn/Bt)~h,
with the subscript "I"' standing for the field and "ph" for
the phonons. In modern language, this means that the
intracollisional field effect is ignored. ' Thus, the current
JE is the sum of two terms, each being a superposition of
drift and diffusion, '

JE JF+Jph
(17)

W(E) = W~(E)+ Wph(E), D (E)=D~(E)+Dph(E) .

functions of E) displayed in Table II, and we proceed to
examine each in turn.

The field-related drift velocity in energy space, Wz(E)
(in eV/s) is related to the drift velocity in real space ud (E)
already discussed in Sec. II D,

W~(E) =qFvd(E) . (18)

It is usually positive, though a negative value is a priori
conceivable in an energy range where electrons traveling
upfield (giving rise to Bloch oscillations) are possible.
Equation (13) gives Ud (E) for isotropic band structure
and electron-phonon interaction; Appendix A gives the
general expression for vd(E) and W~(E) =qF vd(E).
Realistic calculations of Wz(E) and Dz(E) in specific ma-
terials are planned for future publications.

Kurosawa derives (18) in another way. The evolution
of E„due to field is

W~h(E) = %cols(E), — (20)

(dE,„/dt)z = f E ["dn (E,t) ldt]~dE
0

=f E( aJ, /aE)d—E

=f JzdE = f n(E, t)W~(E)dE . (19)
0 0

Since n is an arbitrary probability density, Wz(E) should
be identified with the rate of energy gain from the field,
viz. , qFvd(E). From (19) one can see that the diffusion
term averages to zero and does not affect the average en-
ergy, but only the shape of the distribution.

The pho non-related drift velocity in energy space
W~h(E) is oriented downwards. In the simple case of
emission of phonons of fixed frequency m at a time rate
1/r(E),

We are thus led to deal with four coefficients (actually, in general, see Appendix B.

TABLE II. The physical quantities used and obtained in the Fokker-Planck approach. The 8 s are energy rates, or drift velocities,
giving the average motion in energy space, and the D s are half energy variances per unit time representing the tendency to spread in
energy space. The f's are occupation functions (probability for a state to be occupied); f(p) can be written down explicitly for cubic
material [Eq. (42) appearing in this table], in general it is given by Eq. (40). s denotes (3/2)(A'co/qFA, ) and E' means
(1+s)(qFQ)'/[3Aco[2n (co)+1]].

Physical quantity

Average energy gain
from field (eV/s)

Average energy loss
to phonons (eV/s)

Field-related
diffusion coefficient (eV /s)

Phonon-related
difFusion coeKcient (eV /s)

Energy occupation

function

Momentum-space

occupation function

Notation and structure

8'p(E) =q F.vd (E)

W'ph (E) 'Rco /v( E)

DF«) = [ [q~ v, (p))' (p) ] E

D ph (E) (Aco ) /2v( E)

E
fo(E)=exp f [Wp„(E')/D~(E')]dE' .

~ph(E (p ) )f(p) =fo(E(p)) cosO
(qF vg cosO)E(p)

General expression

(A8)

(B7)

(A11) or (21)

(B8)

(28b)

(40)

Parabolic form

2(qF) A, /3m vg(E)

flcovg (E) /A 0

( qF) Arvg (E)/3

(Ace) vg(E)/2k

E ' '+'exp( —E/E' )

fo(E)[1+(3fico/qFAO) cos8]
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C. Di8'usion coefficients in energy space Wph(E) =aE' (2kT E—) . (23)

There are two ways to derive the diffusion coefficients.
The one employed in previous works consists in using
general statistical-mechanical arguments regarding the
occupation of phase space. The other one we shall em-
ploy here consists in directly calculating the variance,
after time t, of a distribution of carriers initially peaked
at energy Eo. by equating the variance to 2D(EO)t,
D (Eo) is obtained. We first review and criticize the ear-
lier method before introducing ours.

To determine DF, consider that the particle only ex-
changes energy with the field, not with the phonon bath.
Since the particle is coupled to a reservoir of momentum
and energy, at steady state it is equally likely to be in any
phase-space voluine d p, so that n(E)-N(E). If this
n (E) is input into (15), Jz =0 and Dz(0) =0 entail upon
integration,

This means that the lattice can thermalize the electron
through the exchange of low-energy, zone-center acoustic
phonons. In our case, the dominant interaction proceeds
by optical and zone-edge acoustic phonons, that for sim-
plicity we model as quanta of fixed energy %co. It turns
out that a particle cannot reach a canonical distribution
by exchanging quanta of fixed energy with a reservoir.
Therefore, we need determine D~h(E) directly from the
very features of the electron-phonon interaction. Consid-
er the simple case of optical-phonon emission at a rate
lie(E). In the absence of F, the change of the popula-
tion n (E, t)dE during dt is caused by loss (E~E fico)—
and gain (E +fico~E):

( Bn IBt )„h
=n (E +fico, t )Ir(E +fico ) n(E—, t ) le( E) .

(24a)

Dp.(E)= f W~(E')N(E')dE' .
N E o

(21) Upon second-order expansion with respect to %co«E,
Eq. (24a) may be written

Equation (21) can be derived from elementary arguments
a la Shockley, see Appendix A, where D~(E) is expressed
as an integral over the constant-energy surface E (p) =E.
This gives a closer physical insight into the field-related
diffusion in energy space than the general statistical-
mechanical argument. Let us set ofF the gist of the result.
If the energy at zero time is E, and if t is taken to be the
typical collision time v., then the typical energy after t is
E+qFA, , where A, =u~~ is the typical mean free path at
energy E; E+qFA(respectiv, ely, E qFA) is for—an elec-
tron traveling downfield (respectively, upfield). Now if
we remember that the auerage energy change is qFu&~,
with u& « u, then the variance in energy
(qFA, ) —(qFu~r) =(qFA, ) . Hence the carrier motion in
energy space, due to field, is strongly diffusive. By equat-
ing (qFA, ) to 2DFr, we get DF = ,'(qFUs) r. Ex—actequa-
tions valid for arbitrary band structure and electron-
phonon interaction can be found in Appendix A, which
also contains a mathematical proof of Eq. (21).

Let us now turn to the phonon-related diffusion
coefficient D h. Kurosawa obtains it by requiring that
when the carrier exchanges energy with the lattice only
(that is, F =0), then n (E) will be the canonical distribu-
tion N(E) exp( E/kT). If this—n (E) is input into (15),
Jz =0 and D~h(0) =0 entail upon integration,

X exp( E'IkT)dE' . (22)—

Levinson' arrives at the same conclusion, and notices
that an energy-space version of the fluctuation-
dissipation theorem ensues. The reasoning is entirely
right, but is not suited to our purpose. Indeed one can
see that Kurosawa's or Levinson's W h(E) [from Eqs.
(3.7) and (3.8) of Ref. 17] corresponds to the energy relax-
ation rate associated with acoustic phonons at equiparti-
tion,

W h(E) = fico Ir(E)—, D h(E) =
—,'(fico) lr(E) . (25)

Drift velocities and difFusion coefficients are gathered in
Table II.

D. General features of the energy distribution

The steady-state distribution of electrons submitted
both to the field and the coupling to phonons corresponds
to a vanishing probability current, Jz =0. This amounts
to stating that the loss to phonons is balanced by the gain
from the field:

1 d(D hn) 1 d(DFn)—W h(E)+ — = W~(E)
n dE n dE

(26)

If in (26) diffusion terms are dropped, we recover the con-
ventional energy-balance equation yielding the typical en-
ergy of the distribution ' —W~h(E)= W~(E), or E/
A.z(E) =qF in the spatial lucky-drift notation. Therefore,
the Fokker-Planck description leads to the same typical
energy as the lucky-drift model, but difFers from the latter
in dealing with the fluctuations about the average. Ac-
cording to the foregoing subsection D~h /DF
=(ficolqFA, ) «1, so that at high field the fiuctuations
are essentially due to the energy exchange with the field,
not to the exchange of quanta with the lattice, contrary
to the vanishing-field case where the variance of the
canonical distribution arises from the thermalized lattice.

The solution of (26) is

( Bn /Bt ) h
=A'co[ B(n Ir ) /BE]+ ,' ( fa)i—) [B ( n /r ) /BE ],

(24b)

which can be cast in the form —BJ&h/BE, with
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E W»(E')+ Wz(E') d—Dr(E') /dE' d—D&h(E') /dE'

Dr(E')+D „(E') (27)

Neglecting D~h &&Dz in the denominator, and noting
that in the numerator WJ;(E') dD—r(E')IdE' according
to (21) is Dr(E')dLn [N(E')]IdE', we arrive at

g W»(E')
n (E}=N(E)exp f, dE' (28a)

f0(E)=exp ~ f [W»(E')/DJ;(E') ]dE' (28b)

It is generally not expressable in terms of an electron
temperature unless the integrand is constant with respect
to E' as occurs in parabohc bands.

E. Link with WolfPs theory and the lucky-drift model

In this subsection, Eq. (28a) is first confronted to
WolFs distribution in the case of a constant mean-free-
path, isotropic interaction with phonons of fixed frequen-
cy, and then to the n (E}given by the generalized lucky-
drift model of Ref. 8.

Consider an electron interacting isotropically with a
flat optical-phonon branch in a parabolic band structure;
for simplicity, we take zero temperature. The field- and

if we also neglect dD—h(E') IdE'. From (25) taking this
term into account would change W h(E')= fun/r a—p-
pearing in (28a) into

(%co—!r)[1+,'Aa)dL—n (1/r) IdE] .

The last term is low if the collision rate varies slightly
over A'co, which is usually true except in the vicinity of an
intervalley separation energy in a direct-gap material,
where N(E) and as a result 1 lr(E) exhibit sharp varia-
tions. There D»(E) is high over a narrow energy range
so that the contribution to the integral in (27) is
insignificant anyway. The point of greater concern re-
garding intervalley transitions is that the collision rate
varies so sharply over Ace that writing down the local
equation (14} for the conservation of probability is ap-
proximate: this is also apparent in the expansion (24b)
leading to 8'~h and D~h. The Fokker-Planck approach
will soften intervalley transitions: we take the optimistic
view that uncertainty broadening would anyway do the
same, since in practical cases fi/r exceeds %co

Equation (28a) is a particularly simple expression for
the energy distribution. The prefactor N(E) is reminis-
cent of the field's propensity to populate phase space uni-
formly, and thereby favors energy ranges where the den-
sity of states is high, whereas the exponential term does
not favor high-energy states owing to the energy loss to
phonons W h(E) &0. Note that a strong W» can be
overcome by a large DF embodying the field's ability to
broaden the distribution. From (28a), the nonequilibrium
occupation function is

r

phonon-related drift velocities in energy space are [see
Eqs. (13) and (25)]:

Wz(E) =2(qF) r(E)/3m, W»(E) = Aoi—lr(E),

DF =qFvz(E)E . (29)

where 1/w(E) =v~(E)/I, , and A, = Ac. The diffusion
coefficients are [see Eqs. (21) and (25)]

Dz(E) = (2E lm )' (qF) A, /3,
D h(E)=(2E/m')'~ (iris')) /2A, .

We check that D h/D~ &&1 at high enough fields, as no-
ticed earlier. Application of (28a) straightforwardly
yields.

n(E) —E'~ exp( E/E )—,

which is precisely Wolff's distribution (7). In Tables I
and II, we have computed the exact result of (27),
without neglecting D»(E), and at finite temperature. It
is seen in Table I and Fig. 1 that the agreement of the
Fokker-Planck prediction with Wolf's or the Monte Car-
lo figures is excellent.

We now turn to the link between the Fokker-Planck
approach and the generalized lucky-drift model. In the
foregoing subsection, it was noticed that the "typical"
carrier energy, corresponding to energy balancing be-
tween gain from the field and loss to phonons, was ap-
proximately the same in both frameworks. We want here
to compare the full distributions in a universal way,
without considering a specific material for which the ex-
act Dz and 8"~h should be obtained from the detailed
band structure and electron-phonon interaction accord-
ing to the formulas of the appendixes.

If in Eq. (28a) we take W h(E)= flu/~(E), we—are
left to seek an approximate universal expression for
Dz(E). To this end, we consider Eq. (21), and notice that
the drift velocity vd(E) is roughly proportional to the col-
lision time ~(E), which in turn is roughly proportional to
1/N(E) according to the golden rule, or even Dyson's
equation, provided that (i) energy be conserved in a col-
lision event, and that (ii) all k's within the final energy
shell be reached with more or less the same probability.
The latter feature is true of the nonpolar (deformation
potential) interaction, but is not verified by the polar in-
teraction, which strongly favors final k's close to the ini-
tial k, that is, a small part of the energetically accessible
phase space. [If quantum effects are so strong as to
broaden the final energy, an isotropic interaction should
yield 1/~(E) broadly -N(E), the proportionality being
poor at intervalley separation energies in direct-gap semi-
conductors, where N(E) exhibits sharp variations. ] It fol-
lows that the integrand in Eq. (21) is approximately con-
stant with respect to E', so that we may equate it to its
value at the upper energy E, and obtain upon integration
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Then the Fokker-Planck prediction (28a) becomes, if we
recognize that E'r(E')/fico=rF(E') [Eq. (2)] and
vd(E')rE(E') =RE(E'),

tion amounts to writing the transition probability as

W» =T~ z 5[E(p)—E(p')], (31)

n (E)=N(E) exp
dE'

qEA, E E' (30)

This is close to the lucky-drift expression Eq. (4b). The
difference between the Fokker-Planck [Eq. (30)] and
lucky-drift [Eq. (4b)] predictions lies in the preexponen-
tial factor, which in the latter roughly varies with E as
[N(E)] /E. Compared to the former, there is an extra
factor of N(E)/E. In the parabolic case, such a factor-E ' was pointed out in Sec. II when lucky drift was
confronted to Wolff's theory, and is not very serious as
far as the asymptotic behavior is concerned and the
correct vd(E) is used, but it is now clear that for sharply
varying N(E) it matters. Another superiority of the
Fokker-Planck approach is that it provides us with
definite expressions for its basic quantities, while those
entering the generalized lucky-drift model were guessed
in an euristic manner in our previous work [not to men-
tion the erroneous vd(E) disclosed in Sec. II]. As a final
point, we note that D h/DF in the lucky-drift language is
fuu/ (2qI" AE )=%co/E,„,a very small quantity.

IV. MOMENTUM SPACE DISTRIBUTION

A. Calcu1ation of momentum-space distribution

The usual way of obtaining f (p) is to write the
Boltzmann transport equation, as is done, for instance, in
Wold's theory. ' %'e shall use the equivalent elementary
approach of Shockley, who considers the traffic in
momentum space in a pictorial way which readily sug-
gests the relevant approximations. The main idea behind
Shockley's treatment of low-field conductivity is that
electron-lattice scattering with acoustic phonons is al-
most elastic, so that the electron-phonon interaction con-
nects electron states located on a constant-energy surface
in the Brillouin zone. As has been remarked many
times, ' the case of hot electrons emitting or absorbing
high-frequency phonons is very similar. We shall, there-
fore, consider as a working approximation that the
electron-phonon interaction effects transitions over a
constant-energy surface, or within a constant-energy shell
of fixed thickness dE =fico. This quasielastic approxima-

We have hitherto fastened our attention on the distri-
bution in energy space, embodied in n (E). There are,
however, a number of observables that are not only ener-
gy, but also momentum, dependent. The simplest one is
vg, whose mean value is the average drift velocity. Real-
istic impact-excitation or impact-ionization rates are also
strongly momentum dependent ("anisotropic"). It is,
therefore, very desirable to complete the knowledge of
n (E) or the occupation function fo(E) with that off (p).
The second motivation for obtaining f (p) is to justify the
Fokker-Planck approach together with the expressions
for Wz and Dz (Appendix A), and for W~h and D h (Ap-
pendix 8).

and the principle of detailed balancing 8'p p Wp p
en-

tails T = T ~ . Let f (p) be the occupation function of
momentum space (per unit volume of the crystal), that is,f (p)d p/Ii is the probability for the carrier's momen-
tum to lie in the momentum volume d p. From f (p), the
probability density in energy space n (E) is obtained as

n(E)= f f ff(p)5[E(p) —E]d p/h (32)

f(p)=f0(E(p))+fi(p) . (34)

If integrals over p space are to be calculated,
f (p)=f0(E(p)) may be used as a first approximation, as
is done in the Appendixes, unless the outcome is zero, as
occurs with an odd function of p. Then it is necessary to
resort to the nonuniform part f&.

In Wolff's theory, f, can be obtained from fo [Eq.
(6b)]. In order to obtain the general relation, we
consider a small momentum volume d p containing
5n =f(p)d p/h electrons of a given spin. The rate of
change of 5n is threefold. First, the field bring to p, at
time t, particles which were at p —qF dt at time t —dt,
whence

The density of states (per unit volume of the crystal) is
given by

N(E)= f f f5[E(p) E]d —p/h'= f f dS, /~v, [a',
(33)

where Ifz means the integral over the surface
E(p) =E, and dS& is the corresponding surface element.
The occupation function in energy space appearing in
Eqs. (S) and (28b) is f0(E)=n (E)/N (E); it is the
energy-shell average off (p).

In the absence of a field, all states belonging to a
constant-energy surface are evenly occupied, and it is li-
able to say that f (p) is a microcanonical distribution,
that is, f (p) =fo(E). This is obvious from the examina-
tion of the collision term in Boltzmann's transport equa-
tion and the detailed balancing principle. In this state of
affairs, the average v over the constant-energy surface
vanishes. If the field is present, there will appear a devia-
tion from uniformity, commonly called "anisotropy, "
giving rise to a nonvanishing average of v~ directed along
F in cubic materials. Since the average drift velocity is
an order of magnitude smaller than the group velocity,
the deviation from uniformity should, in general, be
small. This is conspicuously clear in Wolff's solution for
a spherical parabolic band structure Eq. (6b): at a high
field, the anisotropic part of the occupation function is
small, and is expressed as the first spherical harmonic F&.
(At an intermediate field, the anisotropy is stronger, the
occupation function is more forward oriented, and this is
related to the occurrence of ballistic electrons. ' ' )

Thus, we shall consider that at constant E, the occupa-
tion function slightly departs from fo(E), and we proceed
to determine the deviation f, (p):
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d (5n) —qF ( d(5n ) /c}p ) = —
q F (c}f /c}p )d'p lh ' f i (p) =qF vg (p)r(p)

fico/i (E)
((qF v ) ~)z

(41)

(35)

Second, out scattering (p —+p') depopulates momentum
volume d p at a rate

= —f f f5nW„, d'p'lh'
dt

5n /—~(p),
where the scattering time r(p) is defined as

1/~(p)= f f f W .d p'/h

=ff
Third, in scattering (p'~p) from states lying (approxi-
mately) in the same energy shell gives

(37)

f f f(p')T, dS /~vs~h d p/h
in

(38a)

By breaking up f (p') into a uniform and a nonuniform
part [Eq. (34)] and accounting for detailed balance, the
in-scattering term reads

d (5n)
dt

fo(E)/~(p)

+f f f, (p')T ~ dS /iv' ih' d'p/h' . (38b)

Equating the total rate of change of 5n to zero at steady
state yields,

qF.(c}f/c}p) = —f i(p)/~(p)

+
~

p' 7 ~ ~ S~. v~, 39

fi(p)=qF v (p)~(p)( dfoldE)—
+~(p) f f f, (p')T ~ dS, /~v' ~h' (40)

is the desired generalization of Wo16's relationship Eq.
(6b). To check that f, (p) is small compared to fo, we no-
tice that the integral term in (40) (related to scattering an-
isotropy' ) is of the order f, unless it vanishes, so that
the order of magnitude of f, is always given by the first
term in the right-hand side of (40). Now froin Eq. (28b),
dfoldE =fo(E) W h(E)/Dz(E}, whence

which could be obtained [within the quasielastic approxi-
mation Eq. (31)] from Boltzmann's transport equation.
Equation (39) is an integro-differential equation which
can be converted into an integral equation for f i if the
left-hand side is approximated to qF.(c}fo/c}p)=qF
~ v (dfo/dE}. Then,

where ( )z means the energy-shell average, I /r(E)
=(1/r(p))z, and Dz(E) was obtained from (All). Gen-
erally speaking fi/f0=boo/qFA, (E) is much less than
unity, with A,(E}the mean free path at the energy of in-
terest.

In general, f i is not a combination of the spherical
harmonics Y]'* only. In view of Wo16's work, ' it is
reasonable, however, to assume that at high energy and
field, first-order spherical harmonics prevail in fi, and
derive the coefficients of Y&'*'. Pushing the expansion to
higher orders is dubious, since Eq. (40) is already approx-
imate. Taking a cubic material where only Y& is present
and fi(p)=f i(E) cos8, we multiply Eq. (40) by qF vs(p)
dS&/~vg ~

and integrate over the energy shell:

dfo
dE

DF(E)fi(E)=
(qF.v cos8)z

—Wph(E} fo(E),
(qF'vg cos8)z

where use has been made of (All) and (28b). The advan-
tage of expressing fi(E) in this way is the relation it
bears to the power brought by the field, namely,

(42)

f f f qF v f(p)dS dE/~v ~h

ENE qFvg

= f dE N(E)DF(E)( df0/dE)—
0

= f dE n(E)[ —Wph(E)] . (43)

In the preceding chain of equations, the energy-
dependent integrands are identical. We, thus, see that the
shell average (qF v fi)z, multiplied by the number of
states N (E)dE, yields the power received by the phonon
system. The last equation is arrived at by using the ap-
proximate fo(E}of Eq. (28b} in which D h is neglected,
and this approximation is good. A rigorous result for
that power is

f Jz(E)dE,

i.e.,

f qFUd (E)[n (E)dE] d[Dz(E)n (E)]—. (44)
0

The first term is the power production due to the average
rate (drift term in JF), while the second is related to the
variance (diffusion term in Jz). Since JF= —J~h, the
same can be said in terms of phonon-related probability
current, but the phonon-related difusion current is negli-
gible. Upon integration over all energies, the second term
of (44) does not contribute and the former expression of
power is recovered:

f qFUd(E)N (E)f0(E)dE,
0

thereby proving that the momentum-space average of
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v (p) is the same as the energy-space average of ud(E) if
f i (p) is taken to be a first-order harmonic with a
coefficient given by Eq. (42).

B. Validity of the Fokker-Planck description

Generally speaking, the Fokker-Planck equation is a
special type of master equation which is often used as an
approximation to the actual one. ' In semiclassical
transport, the latter is deemed to be Boltzmann's, which
refers to momentum space. Now in the case of isotropic
band structure and electron-phonon interaction, Levin-
son' actually derived the Fokker-Planck equation from
Boltzmann's under the assumptions that A~ &&E and the
anisotropic part of the distribution f i(p) is small corn-
pared to the isotropic part fo(E). The generalized pro-
cedure is to consider the constant-energy surface
E(p) =E and assume its occupation to be almost inicro-
canonical, that is, ~fi(p)~ &&fo(E}, and obtain the first
two moments (mean and variance) of energy change,
yielding W(E) and D(E). This is done in the Appen-
dixes Ta.king the Fokker Plcinck f-o(E), the almost mi-
crocanonical occupation of states at constant E is proUed
in Sec IVA .for fico/qFA, (E)«1, thereby establishing the
Fokker-Planck description of high field transport in a
self consistent -manner. One may alternatively notice that
~fi(p)~ &&fo(E) is equivalent to having ud(E) &&vs(E).
Now lucky-drift and the effective-mass approximation,
which is never very wrong as far as velocities are con-
cerned, give vd(E, „)=(fico/m )' and vs(E,„)=(2E,„/
m')', so that the condition for the Fokker-Planck ap-
proach to apply is simply Ac@ «E„,namely, that the car-
riers are hot. The typical accuracy is (Ace/E, „)'

The condition qFud(E) «qFus(E) also states that an
initially peaked distribution n (E,O)=5(E Eo) spreads-
in energy space much more than it shifts. [Actually,
W(E) =qFud(E) fico/r(E) h—as the same order of magni-
tude as Wz(E), and D(E)=Dz(E}.] It means that the
master equation underlying the nonlinear Fokker-Planck
equation is of the diffusion type, and the latter can be
derived from the former by taking the energy quantum
iricu as an expansion parameter, since ud /us = (fico/
E,„}'~ (&1. We shall leave this point as a parentheses
(adinittedly cryptic), and refer the reader to van
Kampen's treatise for a rigorous justification.

The prominent role played by constant-energy surfaces
in the high-field transport problem stems from the
electron-phonon interaction connecting states of (alinost)
equal energy as fico «E,„.While the field tends to popu-
late the whole phase space evenly, it is the quasielastic
electron-phonon interaction that makes the constant--
energy surfaces play their role. There is a condition,
however, which is that at constant energy, the electron-
phonon coupling should not be strongly preferential to-
ward certain states within the shell E(p)=E. It is this
condition that makes the occupation of an energy surface
almost microcanonical. As is known, the condition is not
obeyed by the polar coupling, which at high energy for-
bids large k' —k. Before closing this section, we, there-
fore, comment on polar scattering.

The condition
~f i (p) ~

(&fo(E) is not valid for forward
peaked f (p), as occurs in purely polar materials at high
field (and also in nonpolar materials at intermediate
fields' ' ). For them the first obstacle is that it is not pos-
sible to split apart the determination of n (E)
=N(E)fo(E) and of f, (p): the determination of the
coefficients, especially WF(E), will chiefly involve
knowledge of the "anisotropic" part of the distribution,
fi(p), which in this work is consistently neglected. The
second obstacle is that if f (p} peaks forward (in cubic
material), WF=qFud tends towards qFu, entailing the
breakdown of the nonlinear Fokker-Planck description,
which rests on ud «u . For purely polar materials, a to-
tally different treatment is called for, and they will not
be considered here. In medium-to-large-gap polar ma-
terials, such as GaAs, ZnS, or Si02, the nonpolar interac-
tion eventually prevails at high enough energy owing to
the large density of states, and the fact that as far as is
known deformation-potential scattering is essentially iso-
tropic. This will make f (p) mainly energy, rather than
momentum, dependent at high enough' ' field. [In this
respect, it is worthy of remark that Wolf's theory allows
for scattering anisotropy, but this does not affect

~f, ~ /f 0
whatsoever, see Eqs. (10) and (13) of Ref. 10 where
const=O in the absence of iinpact ionization. ] At first
sight, near isotropy in f (p} holds at high energy, where
nonpolar scattering prevails, but according to remarks
above, diffusion in energy space by the field is so strong as
to smear out the anisotropy in the loiv energy f (p) as
well. Practically speaking, if an GaAs the field is high
enough that E,„reaches or overtakes the intervalley sep-
aration 0.35 eV, we expect the occupation function f (p)
to reduce to its isotropic part fv(E) at all energies, except
for a small f i (p) as discussed in Sec. IV A.

V. CONCLUSIONS

This paper has developed an alternative framework for
dealing with the statistics of high-field transport in semi-
conductors within the semiclassical picture. While the
conventional approach rests on the Boltzmann transport
equation in momentum space, we propose a Fokker-
Planck equation in energy space, the coefficients of which
have a direct physical meaning (Table II). The electron's
motion in energy space is the superposition of an average
motion of velocity WF(E)+W~h(E), and of Brownian
motion tending to enhance the variance of the energy dis-
tribution, described by the difFusion coefficient D(E)
=DF(E). At steady state, Eq. (28b) yields the energy oc-
cupation function fv(E) as a functional of W~h(E) and
DF(E), which are expressed as integrals over constant-
energy surfaces in the Brillouin zone involving the band
structure and the electron-phonon interaction. This al-
lows us to guess by inspection, or at worse at the expense
of quadratures, the relevance to transport problems of
some features of the electron-phonon interaction, which
experimentally' and theoretically is incompletely
known at high energy.

The momentum-space occupation f (p) can also be ob-
tained in so far as it differs slightly from f0(E(p) ): the
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difFerence fi(p) is given by Eq. (40). This is the generali-
zation of Wolfi's theory in which the anisotropic part f,
off (p) is small. And

~f i ~
&&fo, which is tantamount to

ud «ug, is the condition for the Fokker-Planck approach
to be valid —and expresses Ridley's state of lucky drift.
It excludes narrow-gap polar materials in which f (p) is
strongly forward oriented at high field.

Monte Carlo simulations can, in principle, providef (p} with higher accuracy in so far as the semiclassical
framework is valid, and a quantitative comparison be-
tween the Fokker-Planck and Monte Carlo predictions in
specific materials, taking the same, realistic band-
structure and electron-phonon parameters, is planned as
a further work. The expected typical accuracy is
(Ace/E, „) . The Fokker-Planck vs Monte Carlo com-
parison displayed in Fig. 1 is already very encouraging.
But the main asset of the Fokker-Planck description is its
being largely analytical and endowed with immediate
physical meaning.

We have been concerned with steady-state transport in
this paper, because it is the minimal goal of any transport
theory. But the Fokker-Planck equation can handle non-
stationary problems as well. Another issue of interest
usually addressed in the Monte Carlo framework consists
in nonlocal e6'ects, and it is not unrealistic to expect that
simple features of nonlocal transport could be understood
within the present framework, or a variant thereof, just
as Ridley demonstrated the versatility of the original
lucky-drift theory by building an analytical nonlocal
theory of ionization waves on that basis.
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APPENDIX A

E(t) E,=(a E),r+ ,'(a'—E),r'+- (A 1)

In this appendix, we calculate the average and the vari-
ance of the energy gain of an electron between two col-
lisions. According to Eqs. (16a) and (16b) the former
leads to WF(E) and thereby to the instantaneous real-
space drift velocity in the revisited sense of Sec. II D,
and the latter to the diffusion coefficient D~(E) defined
and derived in another way in Sec. III C. The dispersion
relation E(p) is assumed to be known (band structure).
We also assume that the scattering rate I/r is known as a
function of p [electron-phonon interaction, Eq. (37)].

We follow Shockley's line of reasoning. ' Consider an
electron of momentum po and energy EO=E(po) at time
t =0. By Bz, we denote the differential operator
qF.a/ap (derivative along qF, in s '). (Vector F denotes
minus the electric field, and q & 0 the elementary charge,
qF is the force exerted on the electron. } The energy
change after t before any collision occurs is

where the subscript 0 means that the quantity is calculat-
ed at po. Then the probability for the electron starting
from po not to experience a collision between 0 and t is

c ( t) =exp —f dt '/r[p( t ') ]
0

where account is taken of the change in ~ as p changes in
time according to dp/dt=qF. Upon first-order expan-
sion' of r(po+qFt'),

c(t)=exp( t/ro)f—l+ —,'(t/ro) (a~r)0]+O(F ), (A3)

The former is the average collision time, it is shorter than
ro if in the course of the fiight r(p) decreases owing to p
reaching a phase-space region, where the scattering rate
is higher.

From (Al} and (A4), the average energy gained over a
Qight is, to order I",

(E(r) —E, ) = [(a,E),+[a,(ra,E)],]r, ,

which can be rewritten as

(A5)

(E(t)—Eo) =qF [v (po)+[a+(vga)]0]ro . (A6)

This is equivalent to Shockley's equation' giving the
average vector displacement over a Bight. To the vector
mean free path vg(po)ro, a term is added which describes
how that free path varies owing to qF. Thus, '

(dE/dt)„=qF [v, (p, )+[a,(v, ~)],] (A7)

is the rate of energy gain from the field for an individual
electron starting from p=po. We now average that rate
over the energy shell E(p)=ED taking a uniform (i.e.,
microcanonical, see Sec. IV) occupation of that shell.
The number of states corresponding to a surface element
dS in p space is proportional to dS&/~vg~, so that the
microcanonical ensemble average of (A7) gives
WF(EO) =((dE/dr)~)~:

Wp(EO)=qF vd(Ep)

f f, a, [v r(p)]dS /~v
~

f fE dSp/~vg~
(A8b)

( )E denotes the ensemble average over the constant-
energy surface E(p)=ED, and f f~ denotes the surface

0
integral over E(p)=ED. This also holds for a surface
consisting of several sheets. Averaging (A7) wipes out
the group-velocity term owing to E( —p)=E(p), and
there remains the vector drift velocity vd(EO) at the ener-

gy Eo. In materials other than cubic, vd is not necessarily
directed along F. In Sec. III, qFud(E) should be under-

where ro means r(po). In (A3), the exponential gives the
nonscattering probability if ~ were constant while the
electron is being accelerated by the field, and the second
factor is the lowest-order correction due to the change in
r. From (A3), we obtain the averages (denoted by ( ))
over a collision-free Qight,

(t) =r [1+(a r) ], (t ) =2r [1+3(a r) ] . (A4)
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stood as qF vd(E). In the isotropic case, (Agb) leads to
Eq. (13).

We turn to the calculation of the diffusion coe%cient
DF(E) used in Sec. III. Consider the variance in the ener-

gy E(t)—Eo acquired from the field between two col-
lisions, instead of its average. From (Al), we have

( [E(t) —Eo]') = [(BpE)0]'(t') +& (F'),
whence from (A4)

([E(t) E]—') =2r [(B„E)] +&(+') .

(A9)

(A 10)

The right-hand side can be converted into the volume in-
tegral of Bz(rB~E) over the doinain E(p) &E. Next, if
we interpret Bzg as div(qFg) (with g, any scalar func-
tion), the Ostrogradsky theorem yields

f f f B,(rB E)dp= f f (rB E)qFdS . (A13)
E(p) (E E

Lastly, we write the vector surface element dS as
(BE/Bp)dS&/~vs~. Q.E.D. It must be noted' that the
r(p } to be used in this appendix is the relaxation time of
the energy-space mean free path, which may differ from
the collision time.

APPENDIX 8
This appendix derives the phonon-related drift velocity

W h(E) and difFusion coefficient D h(E) in energy space,
the electron-phonon interaction 8'p p. being known.
First, we address the question of phonon emission and
absorption (absent in Sec. III) from a fiat phonon branch.
Second, keeping only phonon emission for simplicity, we
obtain W»(E) and D»(E) in the general case.

Since the average of the energy gain of the electron en-
semble at Eo is of order I, its square is negligible com-
pared to (A10), which therefore yields the desired vari-
ance upon ensemble average over the energy shell. If it is
equated to 2Dz(EO)ro (to lowest order in Q, we get the
diffusion coefBcient in energy space,

f t r(p)(B E) dS /~v
D~(Eo) =

f f I I

(All)
&p P

The average displacement of the carrier packet in energy
space, starting from E =ED, is proportional to the drift
velocity, while the "Brownian" (undirected) spread is re-
lated to the group velocity, which typically is an order of
magnitude larger than vd. This is why [([E(t) Eo])]-
is negligible compared to ([E(t)—Eo] ). (This is also
the rationale for a nonlinear Fokker-Planck description
of the fiuctuations, as explained in Sec. IV B and Ref. 23.)

Equations (AS} and (All) yield Wz(E)=qFvd(E) and
DF(E) from elementary arguments. We proceed to
demonstrate that DF(E) and W~(E) are linked through
Eq. (21) obtained on general statistical-mechanical
grounds. We have to check that

f f (rp)( „BE)'dS, i/vi

= f dE'f f B,(rB E)dS /~v
~

. (A12)

Emission and absorption ofphonons offixed energy I.n
Sec. III C, only emission of phonons of fixed energy was
considered. If absorption is taken into account, two more
terms have to be added to (24a), and the second-order ex-
pansion yields

W» (E)= %co
—/r, m(E) +fico/r», (E),

D h(E)= —,'(iris')) [1/r, (E)+1/r,b,(E)],
(Bl)

where 1/r;(E) (i = em, abs) should, in general, be under-
stood as a constant-energy average of 1/r;(p) as ex-
plained below. If 1/r(p) is the sum of the emission and
absorption rates, and if the ratio of these rates is as-
sumed"' to be [n (co)+1]/n (co), then

fico/[2n (co)+ 1] (iriai)

r(E) ' " 2r(E)

Optical and acoustic phonons. Considering only phonon
emission for simplicity, the energy relaxation rate for a
carrier of momentum p is given by

W,„(p)= f—f f W„.e,, ,d'p /h', (B3)

where 8' ~ is the transition probability per unit time
from state p to state p', and fKop p is the energy of the
corresponding phonon. If several phonons connect p and
p', a sum over branches has to be performed. [If iruu~.

is independent of p and p', W»(p) reduces to Acolr(p)
according to Eq. (37)]. In view of the quasielasticity of
the interaction (Wz& =Tz & 5[E(p)—E(p')], Eq. (31)),
we convert W h(p) into a surface integral:

W»(p)= —f f T» fico~ dS ~ /iv' ih (B4)

which can be written as

W»(p) = —(iriai, p)p/r, p(p) —(irido„)p/r„(p),

where ( )& means, an average of fico . with a weighting
factor T&z /~vz~h over the energy shell E(p')=E(p),
and

1«(p)= f f Tt, r dSt, /~vetch =1/r, (p)+1/r (p) .

(B6)

In (B5), the acoustic term is usually neglected owing to
the small acoustic-phonon energy. But it should not be
overlooked that the total scattering rate (B6), including
the acoustic-phonon scattering rate, is the one that ap-
pears in drift velocities. While acoustic-phonon scatter-
ing hardly contributes to 8'ph and Dp„, it may affect 8'+
(and DF) in reducing the drift velocities and thereby the
energy exchanged with the field. An occurrence of this
phenomenon can be found in Fischetti's theory for
SiOz.

Finally, from (B4), we obtain W h(E) as the micro-
canonical average of W»(p) over the energy surface
E(p)=E:
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—f f (dS tlv I)f f (dS, l~v'~h )fico, T„,
f f,dspilvst

Similarly, one obtains the phonon-related difFusion coefticient,

f fE'" p~~"s~) f f~(" p' ~"g~~ ' —'+~p'-p' Tp~'

(B7)

(B8)

which is usually negligible (see Sec. III D) within the validity range of the Fokker-Planck approach (Aco/E, „&(1 ).
If both phonon emission and absorption take place, (B7) and (B8) should be supplemented with the absorption term,

see (Bl).
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