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Disorder-driven pretransitional tweed pattern in martensitic transformations
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Defying the conventional wisdom regarding first-order transitions, solid solid-displaciue transforma
tions are often accompanied by pronounced pretransitional phenomena. Generally, these phenomena
are indicative of some mesoscopic lattice deformation that "anticipates" the upcoming phase transition.
Among these precursive effects is the observation of the so-called "tweed" pattern in transmission elec-
tron microscopy in a wide variety of materials. We have investigated the tweed deformation in a two-
dimensional model system, and found that it arises because the compositional disorder intrinsic to any
alloy conspires with the natural geometric constraints of the lattice to produce a frustrated, glassy phase.
The predicted phase diagram and glassy behavior have been verified by numerical simulations, and
diffraction patterns of simulated systems are found to compare well with experimental data. Analytical-

ly comparing to alternative models of strain-disorder coupling, we show that the present model best ac-
counts for experimental observations.

INTRODUCTION

Typically, first-order transformations occur abruptly.
The liquid-vapor phase change, for example, is not
heralded by critical Auctuations, length scales do not
start diverging, and the system does not demonstrate
large anticipatory excursions into the approaching phase.
The textbook first-order behavior is fairly uneventful
compared to universal critical phenomena associated
with second-order transitions. In marked contrast to this
well-established pattern, first-order solid-solid structural
transformations (e.g., martensi tie transformations)
demonstrate pretransitional effects for as many as hun-
dreds of degrees above the nominal transition tempera-
ture, despite their distinctly first-order nature. As wit-
nessed in a wide-ranging variety of martensitic materials,
this striking pretransitional behavior takes several
different forms: anomalous phenomena in x-ray, electron,
and neutron scattering including the quasielastic
"central-peak" observation in neutron scattering; partial
elastic softening of various lattice distortive modes, in-
cluding q =0 homogeneous deformations as well as qAO
phonon modes; and anomalous behavior in transport
coefficients and thermal expansion coefficients. One par-
ticularly distinctive example of such precursor phenome-
na is the observation of the "tweed" pattern (Fig. l) in
transmission electron microscope images of materials ap-
proaching their martensitic transformation. In this paper
we study tweed structure in materials undergoing mar-
tensitic transformations, with the aim of better under-
standing the origin and nature of pretransitional phenom-
ena.

The main finding is that disorder, which is known to
generally be important in these materials, may, in fact,
play a fundamental role in bringing about pretransitional
behavior, and that tweed can be generated as a direct

response even to the simple statistical compositional dis-
order, which is unavoidable in alloys. (Special defects are
not required. ) Further, we provide numerical evidence
for the glassy behavior of tweed structure, which earlier
analysis had predicted. ' Our approach is (l) to introduce
a model that exhibits a disorder-driven precursive tweed
structure and to detail its phase diagram, (2) to analyze
the simulated x-ray-diffraction data and real-space im-
ages, and (3) to analytically compare this and other
strain-disorder coupling s by equating the disorder-
induced long-range elastic forces with a nonlocal interac-
tion in the order parameter, showing that the present
model best accounts for experimental observations. The
central importance of a disorder in any model that hopes
to shed light on pretransitional phenomena is suggested
by other experimental and computational studies as well,
including the findings of Heiming et a/. , who observe
precursor effects in zirconium doped with small amounts
of oxygen but not in pure zirconium, and Becquart,
Clapp, and Rifkin, who observe tweed structures in
molecular-dynamics simulations of disordered materials
but not ordered materials.

BACKGROUND

Many materials of technological importance undergo
martensitic transformations. In these solid-solid first-
order structural transformations, the lattice deforms
from one crystalline structure to another through some
large-scale motion that preserves the topological integrity
of the lattice (i.e., there exists a "lattice correspon-
dence" ). Unlike diffusive or order-disorder transforma-
tions requiring the interchange of atoms, these transfor-
mations are not reconstructiUe, that is, bonds between
neighbors are not broken and reformed; there is no
diffusion and atoms maintain their relationship with their
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neighbors. Rather, these transformations are disp/acive,
meaning there is some homogeneous strain that trans-
forms one lattice into the other, with atoms moving in a
cooperative fashion, sometimes at sonic speeds. A simple
example is the transformation of a square lattice into a
rectangular lattice, brought about by stretching along one
axis and shrinking along the other. Such transformations
have sometimes been termed "military" transformations,
in order to convey the impression of a large-scale coordi-
nated motion of an entire lattice, proceeding in lock step
from one configuration to another. This is in contrast to
the relative anarchy of, say, a diffusive transformation, in
which the atoms wander in search of a locally favorable
environment, e.g., molecules in a vapor diffusing to find a
home on a droplet.

The tweed pattern is seen as a pretransitional effect in
transmission electron microscopy of many different ma-
terials, including shape memory alloys (NiA1, FePd,
CuAu, etc.) and high-temperature superconductors (A-
15 compounds' V3Si, Nb3Sn, and the very-high-T,
YBaCuO-type" '3 and LaCuO-type cuprates, etc.), vari-
ous other ceramics' (e.g. , Y203-Zr02), and alloys under-
going phase separation, ' such as steel during tempering

treatment. ' As suggested by its name, the tweed pattern
consists of diagonal striations bearing a striking resem-
blance to the tweed textile. The image has no strict
periodicity, but there are two apparent length scales: one
(call it L) corresponding to the longitudinal extent of the
long diagonal striations and the other to their relatively
short transverse width (g). These distances appear to be
on the scale of tens or hundreds of lattice constants.
However, it can be dificult to determine the length scales
unambiguously, as artifacts of the imaging process can
sometimes be confounded with genuine effects of the
atomic con6guration.

In order both to develop a form. al theory and to test it
by simulation, we consider as a model system a two-
dimensional solid, which undergoes a structural phase
transformation from a square lattice to a rectangular lat-
tice as temperature is lowered. ' The two-dimensional
square~rectangular transition corresponds to the
tetragonal~orthorhombic transition seen in planar com-
pounds such as the YBaCuO-type and LaCuO-type high-
T, superconducting oxides. Conceptually, this is also the
two-dimensional analog of the cubic —+tetragonal transi-
tion seen in many materials, such as certain ferrous steels,

W( )D
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FIG. 1. Tweed structure shown here as experimentally observed in the transmission electron microscopy of NiAl. It is identified
by its diagonal striations, which reAect some pseudoperiodic lattice deformation with correlations on the scale of some tens of atomic
spacings. This pattern is consistent with simulation results below.
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shape memory alloys such as FePd, and certain indium
alloys, and the superconducting A-15 compounds Nb3Sn
and V3Si.

One very general and important experimental observa-
tion has attracted our attention to the role of disorder in
these systems. Typically, alloys undergoing martensitic
transformations are extremely sensitive to the relative al-
loying percentages of the elements that make them up.
For example, Fe& „Pd„undergoes its martensitic trans-
formation at room temperature when g=29%%uo, but as q
is increased to 32%%uo, the transformation temperature, TM,
plummets to absolute zero: a 1% shift in the concentra-
tion of palladium causes a drastic 100 K drop in T~. A
convenient way to think of this drastic compositional sen-
sitivity is to consider the martensitic transformation as a
fixed-temperature phase transition, which occurs as g is
varied and passes through some critical composition.
The drastic dependence of transformation temperature
on composition can then be viewed as simply a weak tem-
perature dependence of the critical composition.

This drastic composition dependence of the transfor-
mation temperature is a commonly observed property of
many of the martensitic materials that show pretransi-
tional behavior. In our opinion, this striking property
bears directly on the question of precursors, and it offers
some insight into their ubiquity. Since composition in
any alloy or doped compound is a spatially inhomogene-
ous quantity, the actual composition will vary around
some average composition simply due to the disorder that
is frozen in as the solid crystallizes from the melt. Since
the transformation temperature is so sensitive to compo-
sition, there must exist a locally defined hypothetical
transformation temperature, which depends on the local
composition. ' This local transformation temperature
may be higher or lower than the observed transformation
temperature, at which the first sign of bulk transforma-
tion is observed in a given sample, and long-range mar-
tensitic order is actually established. For example, a
small region in a sample of FdPd, which has a lower than
average concentration of palladium will seek to transform
into the martensitic phase well before the transformation
temperature at which the bulk martensitic order actually
develops. The static, quenched-in, purely statistical com-
positional disorder will determine the spatial variation of
local transformation temperature, and will thereby lead
to pretransitional deformations occurring on a mesoscop-
ic scale in an otherwise untransformed lattice.

In actuality any local tendency to transform may be
suppressed by the surroundings, which may not be ready
to transform. Therefore, the essence of this problem is to
treat the overall system as a collection of local regions,
which interact via extended strain fields. It cannot be a
simple superposition of different transformable units, nor
can models, which simply address isolated defects, pro-
duce the pretransitional effects we propose. Cooperative
behavior, we believe, is of the essence.

THEORY AND MODEI.

We seek here to model this coupling between composi-
tional disorder and the martensitic transformation, and

to understand the nature of the lattice deformation that
arises in response. Since the tweed structure we are in-
vestigating is a lattice deformation with a length scale of
many lattice constants, we will adopt a perspective that
focuses on this mes oscale structure, and leaves the
atomistic behavior of the material largely unspecified. To
this end, we will view the material as an elastic continu-
um and analyze it within a Landau-Ginzburg framework
governing the lattice distortive free energy. Pursuing this
approach, we construct a general free energy that is con-
sistent with the symmetries of the system and which is
taken to sufBciently high order in the relevant strain-
order parameters to produce the important physical
behavior. The parameters in the resulting free energy are
related to empirically measurable materials constants,
such as elastic constants, phonon dispersion curves, cou-
pling to composition, lattice constants, etc.

At the outset, we emphasize that the fundamental
cause of tweed in our theory is simply local (static) varia-
tions in the effective coarse-grained free energy arising
from compositional variation. While models that also
couple to reconstructive ordering, or other chemical reac-
tions, have yielded tweed structures in simulations, ' '
we suggest that ordering, per se, is not a fundamental
cause of tweed structures. No ordering or reconstruction
of any kind takes place in the tweed and martensite re-
gimes of almost any of the well-known alloys or ceramics
that show this precursor behavior. Perhaps, in fact, it is
best to think of ordering or other replacive effects simply
as additional ways, beyond composition, to produce spa-
tial variation in the coarse-grained free energy of our
model. Again, then, it is the cooperative elastic behavior
of regions of locally different coarse-grained free energy
that we propose to be the generic origin of this kind of
precursor.

The two-dimensional system is modeled by the follow-
ing free energy relative to a perfect square reference lat-
tice:

2+ e2+ 0 y2 0y4+ 3 y6+ (Py)2
2 2 2 4 6 2

which is a functional of the strain fields e, (x,y), ez(x, y),
and P(x,y). Here, e& =—(e +e )/&2 is the bulk dila-
tional strain, e z

=—e„ is the shear strain, and
P—:(e„—e~~ ) /&2 is the deviatoric (or rectangular)
strain. The symmetric strain tensor e is defined in the
standard way as the nonrotational part of the displace-
ment gradients,

BU, BU BU BU
e,"—=— + + --— (2)

ax, ax, ax, ax,
,

The second-order term guarantees that finite rotations
are not included in the strain tensor, but, in general, this
term is very small for these applications, and we have
safely neglected it in our analytical work, although all nu-
merical simulations include it.

The first three terms in the free-energy equation (1)
simply mean that the material in question has a Hooke's
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law restoring force to deformations into the dilational,
shear, and rectangular strain modes. (These, of course,
are the only three homogeneous elastic modes available
to a two-dimensional solid with square symmetry. ) The
coefficients in front of those three terms are simply the
harmonic elastic constants of the material, where
A] —C]] +C]2, A2 —4C44, and Ay —C]$ —C$2 —2C .
The free energy also includes higher-order (i.e., anhar-
monic) terms in the rectangular strain, P, in order to pro-
duce a first-order phase transition from a square "austen-
ite" phase with /=0 to a rectangular "martensite" phase
with /=+PM. This phase transition occurs as the elastic
constant A& "softens" (i.e., decreases with temperature),
and below a (nonzero) critical value A&"'=3P /16y the
rectangular phase becomes the stable phase, with the
transformation strain PM=[(/3+QP —4A~y)/2y]'
The parameters 13 and y are determined by the magnitude
and the energy of the martensitic strain at the critical
temperature.

We introduce compositional disorder in the simplest
way that is consistent with the symmetries of the prob-
lem. The elastic constant A& is allowed to be not only
temperature dependent, but also composition dependent.
The dependence of A

&
on both temperature and compo-

sition is taken to be a simple linear relationship, thereby
quadratically coupling the strain-order parameter P to
the random composition field:

A~(x)= AT[T To(g)]+—A„5i)(x):—A~+5A~ . (3)

Here, To(q) is the temperature marking the mechanical
instability of the austenite phase at the nominal composi-
tion g, and AT and A „describe the linear dependence of
the elastic constant A

&
on temperature and composition,

respectively. The spatially varying (but temporally con-
stant) field 5i)(x) =—i)(x)—i) is the local deviation from
the average composition. Its value on each simulation
cell is determined by selecting a random value from a
Gaussian distribution of unit width. (By normalizing to
unit width, the magnitude of compositional inhomogenei-
ty and the strength of its coupling to the elastic constant
A& are both included in the coupling parameter A„.)
Then, the local "transformation temperature" is given by
T~(x) TM(q) ( A„/AT)5g(x).

At high temperatures, all the regions of the system will
prefer to be in the undeformed phase, and at low temper-
atures all will prefer the martensitic phase. However,
near the bulk transformation temperature, there will be a
temperature range given by the typical magnitude of
( Az/AT)5i)(x), where the coupling between the strain P
and the random compositional disorder can provide a
non-negligible driving force toward a pretransitional de-
formation. Using numerical simulations and analysis, we
shall show that a pretransitional deformation does occur
for the present model and that it is the tweed structure.

SIMUI ATION

Figure 2 displays the results of a computer simulation
of the model described above. Configurations 2(a)—2(e)
show the development from the undeformed austenite

phase, through a pretransitional regime, into the fully
developed martensite phase, as the elastic constant A&
softens. One immediately recognizes the telltale diagonal
modulations of the tweed structure developing in the pre-
transitional regime. The simulation reveals that the sys-
tem does indeed accommodate the energetic demands of
the compositional disorder by generating a deformation
as shown, i.e., the tweed modulation is the natural
response of the system to the disorder.

The configurations in Fig. 2 are generated by simulat-
ing the continuum system described above, discretized
onto a 51X51 mesh. The simulation variables are the
displacements U and U at each site, and using a finite
difference scheme the strains and strain gradients are
found for use in calculating the free energy (1). A ran-
dom composition field, which varies around some average
concentration g is assigned at the beginning and held
static. The full rotationally invariant strain tensor is cal-
culated from any arbitrary displacement field and then
used to find the total energy of the system. A Monte Car-
lo simulated annealing algorithm is used to minimize this
energy, and generate a stable low-energy configuration
for a given point in parameter space. Typically, we
quench over four decades of temperature, using 3000
Monte Carlo steps per lattice site per decade.

The materials parameters used in the simulation are
those appropriate for FePd. Static harmonic elastic con-
stant measurements have given us A (2. 5 X 10' N/m
at the onset of tweed), Az (28X10' N/m ), and Ai
(14X10' N/m ). The strain gradient parameter ~/a
(2. 5 X 10' N/m ) can be calculated from the curvature of
the TAi phonon dispersion curve. The coefficients P
(1.7X10' N/m ) and y (3X10' N/m ) are determined
by the martensitic strain and the value of A

&
at the tran-

sition. The coupling to temperature, A T (2.4 X 10
N/m K), is known from measurements of the tempera-
ture dependence of A&. The coupling to statistical com-
positional variations, A„,will be discussed in detail
below.

A phase diagram, Fig. 3, generated by the simulation,
is straightforward and intuitively sensible. The vertical
axis is the elastic constant A& at the nominal composi-
tion, i.e., the "average" value of the elastic constant.
Since A& softens linearly with temperature over a large
temperature range (at least 150 K), this axis also
effectively rejects temperature. The horizontal axis is
the strength of the coupling A „between the strain-order
parameter p and the composition inhomogeneity 5il. The
general structure of the phase diagram is good
confirmation of the general mechanism underlying our
model: sufficiently far from the thermodynamic transfor-
mation temperature for the nominal composition, the ex-
pected conventional phases appear, while near the trans-
formation temperature there is a region where the effect
of the disorder becomes important, the lattice deforms,
and tweed structure appears.

In experimental observations, as the temperature of a
sample is lowered toward the martensitic transformation
temperature, a smooth and unremarkable TEM image
gives way to a mottled pattern, which signals the onset of
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FIG. 2. Simulation results. These configurations are generated by a Monte Carlo computer simulation based on the continuum
elasticity model of a system undergoing a square~rectangular martensitic transformation, where the transformation strain has been
coupled to a disordered composition field. The shading refiects the strain-order parameter P(x), varying from dark to light as the
strain goes from the horizontally stretched rectangular martensite variant to the undeformed square phase, to the vertically stretched
variant. (a) The undeformed austenite phase. (b) Mottled texture. (c) Fine tweed structure. (d) Coarse tweed structure. (e) Twinned
martensite.
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5

Aq

TWINNED
MARTENSITE -- 0

FICx. 3. The phase diagram for this model, plotted against
parameters A& and A„(given in units of 10' N/m ). The sym-
bols, X, and o mark some points in parameter space where
the numerically determined ground-state configuration is
austenite, tweed structure, or martensite, respectively. The
solid lines are drawn to separate the resulting three regimes: (1)
The austenite phase is the relatively undeformed lattice. (2) The
tweed structure develops as a response to the compositional dis-
order. The degree of deformation depends on the degree of
softening and the strength of the coupling to the disorder Geld.

(3) The twinned martensite is the conventional low-temperature
phase. The dotted lines correspond to the phase boundaries in
the infinite anisotropy approximation, in which the martensitic
tweed structure problem is mapped to a spin glass (Ref. 4).

some static lattice distortion —static at least on the time
scale of TEM observations. With further decrease in
temperature, the mottled pattern organizes into a pattern
with a distinguishable directionality, acquiring a notice-
able but diffuse likeness to tweed structure. As the trans-
formation temperature is approached, the tweed struc-
ture develops increasingly coarse and long-range correla-
tions, and as the sample passes through the martensitic
transformation, the tweed structure gives way to fully
transformed martensite, perhaps nucleating the emerging
finely twinned. structure.

In direct correspondence with these experimental ob-
servations, the simulation yields precisely the same pro-
gression of pattern development as A

&
is decreased

(where 2„is held fixed at some constant value). A per-
fectly undeformed system is initially interrupted by scat-
tered, noninteracting, and uncorrelated regions of distor-
tion. These are regions that have relatively large values
of 6i) (large negative values, since A„is positive for
FePd) and are therefore the first to transform from the
(locally metastable or eventually unstable) austenite
phase. Within the constraints of the surrounding lattice,
they thus deform precociously toward the martensitic
phase, giving the system a mottled appearance. (This is
the region above the austenite —tweed-structure bound-
ary. ) As 71& is further lowered, these regions grow dense
enough to interact, and longer-range diagonal correla-
tions develop, yielding a diffuse tweed, which grows in-
creasingly distinct as A& is further lowered. As A& ap-
proaches the nominal transformation temperature of the

sample, an increasing fraction of the sample prefers the
martensitic phase, and the tweed structure grows very
coarse before finally transforming into the twinned mar-
tensite configuration (which lies below the tweed-
structure —martensite boundary). The precise placement
of the austenite —tweed-structure boundary is somewhat
ill defined, as the distinction between "correlated" and
"uncorrelated" is subjective, particularly in small sam-
ples such as those studied here. (A quantitative study of
the degree of correlation can be found elsewhere. ) The
tweed-structure —martensite boundary, however, is well
defined, as the onset of long-range martensitic order is a
qualitative transition that can be located precisely.

The parameters in this phase diagram are A& (or
equivalently, temperature) and the strength of the cou-
pling to compositional variations, A„.In the laboratory,
temperature is easily varied, but for any given alloy the
coupling strength is an unadjustable property of the ma-
terial, so the behavior of a sample will trace a trajectory
through the phase diagram, which falls along a single
line, presumably with essentially constant A„. (Alter-
nately, holding temperature fixed, the behavior of a ma-
terial may be investigated over a range of 3

& by studying
samples of varying nominal compositions q. ) By compar-
ing the electron microscopy observations of FePd to the
phase diagram derived from simulations, we determine
the effective value of 3„.In experimental investigations
of FePd (Ref. 8) the onset of the tweed structure is seen to
be roughly 100 K above the transformation temperature,
corresponding to 2&=2.5X10' (N/m ). By matching
to the experimentally observed tweed-structure range, we
determined the strength of the coupling to composition
variation required to generate tweed structure over this
range in our simulation; the value found is

=2.0X10' (N/m ). This figure may be compared to
the following somewhat simplistic estimate for 3„.If,
say in a binary alloy such as FePd, the full "bulk" com-
position variation ( d A

&
/d il ) coefficient were assigned to

each lattice site, and the composition at each simulation
site varied between pure Fe or Pd, the statistical Auctua-
tion of A& would be 50 times larger than that found to be
required in our simulations. This result should be regard-
ed in the light that there is apparently plenty of driving
force provided by simple compositional variations to pro-
duce a tweed structure, even in the absence of any
specific defects or order-disorder changes.

This rather large estimate for the coupling 3„neglects
several important points, which should be considered in
any careful attempt to calculate the coupling to composi-
tion: (1) d 2

&
/d r) is the product of d T~ /d r) and

d A
&

/d T, where each of these are known from experi-
mental measurements near T~. Linearly extrapolating
away from the range of 7) (29—32 %%uo) over which the mar-
tensitic transformation occurs may well overestimate its
strength for concentrations outside of this range. As
mentioned above, it is convenient to think of the marten-
sitic transformation as occurring at a (weakly tempera-
ture dependent) critical composition, so it is perhaps
more accurate to consider A &(i) ) as a step function at the
critical composition, say, rather than a simple linear
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SPIN GLASS AND TWEED STRUCTURE

The dotted lines in the phase diagram (Fig. 3) are
drawn to provide a comparison between the model
presented here and earlier work' in which the martensitic
system was treated analytically by taking the approxima-
tion of infinite elastic anisotropy ' and formally mapping
tweed structure onto a spin-glass system. The infinite an-
isotropy approximation is motivated by the observation
of severe softness of A& in many martensitic materials
and a corresponding growth of the elastic anisotropy
a =C44/C'. (For example, in FePd a —20, in NiA1
a-10, and in some indium alloys a approaches —300. )
As discussed fully below, solutions in this approximation
are given by displacement fields of the form

U(x, y) = 1 1
U+ (x +y)+

1
U (x —y),

where U+ and U are arbitrary functions of position
along the (11) and (11) directions. These limiting
solutions clearly have infinitely long correlations in the
diagonal directions, explaining why there is a natural ten-
dency for a tweedlike, diagonal modulation. (This ten-
dency for a displacement field is related to the fact that
twin boundaries appear only along (11) directions. ) Al-
though this is clearly a very severe constraint on the form

function. (2) As will be discussed further below, finite-
temperature efFects are important in these systems.
Thermal lattice vibrations are quite substantial at the
temperatures at which tweed structure is seen and will be
correlated over some temperature-dependent length scale,
transmitting and averaging out the efFects of any disor-
der, including local compositional variation. (3) In any
I.andau-Ginzburg theory of a nonuniform system, the ex-
istence of a local free energy (a concept that is thermo-
dynamic in nature) implicitly assumes that one has "in-
tegrated out" certain (secondary) degrees of freedom.
For example, defining a free-energy functional of a static
strain tensor requires integrating over phonon modes,
which necessarily introduces a coarse-graining length
scale. ' Introducing this length scale into the problem
will result in averaging the e6'ect of compositional varia-
tions (and will also change other parameters of the mod-
el). (4) Any physical mechanism, which is based on the
chemistry of an alloy or doped compound, will involve
electronic e6'ects, which will exert their influence over a
length scale that is larger than the lattice spacing, typi-
cally on the order of a Fermi length. Again, this will lead
to a spatial averaging of composition, weakening the ap-
parent strength of the coupling to local compositional
variation. (5) This two-dimensional model, although
faithful to the real three-dimensional material from the
perspective of symmetry requirements, neglects an im-
portant efFect of dimension on compositional fluctuation:
A composition field that is defined by averaging within
some radius will average over a region of material whose
size will depend on dimension. Correspondingly, in a
higher dimension there will be smaller compositional
fluctuations.

of the allowed solutions, such displacement fields are
surprisingi*y still capable of smoothly and continuously
modulating between regions of the high- and low-
temperature phases. That is to say, regions of the austen-
ite and the two martensitic variants can be patched to-
gether without generating any of the two energetically
costly strains, e, and e2. As in the full elastic model of
this paper, it is compositional inhomogeneities that gen-
erate a local propensity toward one phase or the other,
and thereby provide the driving force behind the tweed-
structure-like modulation.

The approximation of infinite elastic anisotropy helps
to explain how the lattice manages to accommodate the
compositional disorder, but, further, it demonstrates the
subtlety of that accommodation. In the eCort to adjust to
the local disorder, subject to the constraint of infinite di-
agonal correlations, the displacement field sufFers sub-
stantial frustration. As in many systems, this coupling of
disorder (compositional) and frustration (elastic strain)
gives rise to glassy behavior. In a formal and rigorous
way, this claim can be made mathematically precise, and
the martensitic system can be mapped to an infinite range
bipartite Sherrington-Kirkpatrick spin glass. (See Ref. 1
for details )Tw. eed structure is therefore an intermediate
phase between the high-temperature square phase and
the low-temperature rectangular phase, in direct
correspondence with the spin-glass phase, which exists
between the ferromagnetic and antiferromagnetic phases.

Admittedly, actual materials do not have infinite elas-
tic anisotropy: One should therefore not too boldly as-
sert claims founded on what amounts here to a mean-field
approximation. Tweed structure, which in this approxi-
mation is an actual thermodynamic phase with second-
order phase boundaries, will appear in the real world as a
"ghost" of an intermediate phase, perhaps without true
long-range order in time, but with observable glassy
behavior. It is therefore of particular interest to investi-
gate the nature of the remaining glassy behavior when we
relax the approximation of infinite elastic anisotropy.

The numerical simulation, which uses materials param-
eters appropriate for FePd, allows us to gain insight into
the nature of the glassy manifestations in a system with
realistic finite elastic anisotropy. In particular, we can
observe the transition to glassy behavior in our numerical
simulation as temperature is decreased. Note, as ex-
plained above, that temperature is introduced into the
simulation through the temperature dependence of the
softening elastic constant 3&. However, the Monte Car-
lo method we have adopted allows us also to introduce
thermal fluctuations and study their ability (or inability,
as the case may be) to destroy the long-range order in
time, which is the signature of a glassy system. Using the
number of attempted Monte Carlo steps (MCS's) per site
as a m.easure of time, we have identified a regime in phase
space where fluctuations become very slow.

To quantify such glassy behavior, we have measured
time correlations of the martensitic P distortion. Because
this strain fluctuates around a zero mean, the quantity

g(t) =—g P(site i, time 0)P(site —i, time t )
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FICs. 4. Correlations in the P martensitic distortion as a func-
tion of time (where time is measured in attempted Monte Carlo
steps). The physical temperature for each curve is converted
from the corresponding Monte Carlo temperature. The upper
curve reveals persistent correlations, suggestive of sluggish,
glassy dynamics.

will be zero unless the values of P at time zero and time t
are correlated. Figure 4 shows values for this correlation
function, after normalizing to g(0) = I and averaging over
a number of intervals for each time t for improved statis-
tics. All of the data in the graph were produced with a
single set of parameters, which gave a clear tweed struc-
ture when thermal

fluctuations

were negligible. The
physical temperature given for each curve is determined
from the Monte Carlo temperature by using the known
elastic constants, strains, and the appropriate grid spac-
ing to equate the Monte Carlo Auctuations with a
thermal Boltzmann distribution.

The behavior at the two temperatures differs sharply.
At 38 K, memory of the deformations present at t =0
lasts over tens of thousands of steps, as some local distor-
tions have been unable to surmount the potential barrier
between one martensitic variant and the other. At 380
K, however, all areas in the lattice are able to fm.uctuate
between both martensitic variants, and memory of the
original configuration is nearly lost after merely a hun-
dred MCS's. Using a typical frequency for atomic
motion and the size of each Monte Carlo step (which was
held constant in this part of the study), we can estimate
that a thousand Monte Carlo steps correspond to several
picoseconds. Since the time scale for neutron scattering
is of order picoseconds, we emphasize that there exists a
regime in the numerical simulations for which the result-
ing deformations constitute a robust tweed pattern,
which is static for a duration that is experimentally
significant.

Clearly, the low-temperature model in Fig. 4 has a
wide distribution of relaxation times, characteristic of
glassy behavior. If our system were a true spin glass on
an infinite lattice, the longest relaxation time scales would
diverge, and there would be true long-range order in

time. Experimental observations of physical systems,
which display spin-glass behavior, have observed relaxa-
tion times of days or weeks. Even spin-glass simula-
tions on small lattices have relaxation spectra, which are
bounded above only by the (rather large) time scale asso-
ciated with Ripping all of the spins in the lattice. To get a
grasp of how long such waiting times might be in our sys-
tem, recall that the mapping from a spin glass to our
infinite anisotropy model maps one spin to a correlated
region as long as a lattice diagonal, so that the energy to
Hip over a "cluster" of our "spins" is really the
overwhelming elastic energy barrier to reversing strain in
several long, overlapping tweed-structure strips. In our
finite anisotropy limit, correlated tweed-structure regions
are still large compared to the lattice constant, so the dy-
namics in our model will still resemble that expected in a
(large but finite) spin glass. It seems likely that the hys-
teresis and frequency-dependent relaxation seen in the
tweed-structure regime in real materials hint at the
glassy, slow dynamics predicted by our model.

DIFFRACTION

Transmission electron microscopy studies are not al-
ways designed to yield direct information about the un-
derlying atomic displacements. It is therefore useful to
refer to the diffraction images produced in conjunction
with the tweed-structure observations. Figure 5(a) shows
experimental' x-ray-diffraction contours taken from
tweed structure produced in YBaCuO, and Fig. 5(b)
shows diffraction patterns at the same Bragg peaks for
the simulated tweed structure computed directly by
Fourier transforming the displacements in the simula-
tion. As can be seen, the qualitative features are faithful-
ly reproduced.

Beyond the simple reassurance derived from qualita-
tively matching simulated diffraction patterns with exper-
imental results, additional information comes from focus-
ing on reciprocal space, since real-space strain images
and reciprocal-space diffraction patterns yield different
information under the time averaging present in any data
collection process. In a real-space image, which makes
one martensitic variant light and another dark, a region
that is Auctuating quickly from one variant to the other
would appear to be grey in a coherent time average.
(This could be the case for a tetragonal to orthorhombic
transformation observed under "two-beam" TEM imag-
ing, which shows strain projected along a given direc-
tion. ) In a diffraction pattern from a sample of tweed
structure, the characteristic cross pattern is a result of
correlations in strain, not just the absolute strain. Even if
the specific martensitic deformations vary in time, the in-
coherent time average, which is given in a diffraction pat-
tern, will still show clear streaks as long as the strains
maintain persistent instantaneous correlations.

Figure 6 demonstrates that "static" tweed structure
(upper row) melts to a "dynamic" tweed structure (lower
row) as temperature is increased. ~ The first column
shows the instantaneous configuration: The distinctly
tweed-structure-like deformation in the upper sample is
largely obscured in the lower sample by thermal Auctua-
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FIG. 5. Diffuse streaking around three Bragg points. (a) Experimental x-ray-scattering data (Ref. 13) for YBa&Cu(A1)307
around the indicated Bragg peaks. (b) Corresponding diffraction data extracted from the computer simulation of tweed structures
(using FePd parameters) faithfully reproduce important features of the experimental data, i.e., the diffuse streaking is highly aniso-
tropic, most pronounced in the (11) directions, and asymmetrically depends on the Bragg peak index. One should note that the
original authors got a similarily impressive qualitative picture using linear elastic response to randomly placed oxygens, along with
thermal fluctuations (but see Fig. 8). They viewed the aluminum atoms on the copper sublattice (our quenched disorder) as a pertur-
bation which keeps the short-range order in the oxygens (which desire to form chains) from becoming long-range (and thereby yield-
ing a martensitic distortion). There are no natural candidates in the cubic shape memory alloys we have studied for producing tetrag-
onal distortions analogous to those produced by oxygens in YBaCu(A1)O, as we discuss in the section on alternative couplings.

tions. The middle column shows an average of real-space
deformations over 150000 attempted Monte Carlo steps
(corresponding to averaging over approximately a
nanosecond). The tweed structure in the upper sample is
still easily discerned, whereas the lower sample has aver-
aged to virtually zero net deformation. However, both
simulated samples yield a time-averaged diffraction pat-
tern with the characteristic diagonal streaking, revealing

the presence of instantaneous tweed-structure-like corre-
lations. This is analogous to the presentation of Van
Tendeloo, Van Landuyt, and Amelinckx, who show
that the tweed-structure-like correlations of static and
dynamic tweed structure can be verified by their
diffraction images, even though they behave very
differently over the relatively long time required to make
a TEM image.
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FIG. 6. Effects of time averaging for "stat-
ic" and "dynamic" tweed structures. (a) In-
stantaneous snapshot of real-space positions.
Notice that the tweed structure easily dis-
cerned in the upper sample is obscured by the
large thermal fluctuations in the higher tem-
perature (bottom) sample. (b) Average of 30
real-space configurations recorded during
simulation. The tweed structure is visible in
the top row, but the deformation has averaged
to almost zero in the bottom row. (c) Average
of 30 diffraction patterns calculated during
simulation. Note that instantaneous tweed-
like fluctuations are present in both cases.
Length of simulations is 150000 attempted
Monte Carlo steps (approximately one
nanosecond).
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Of course, static and dynamic are only defined on the
time scale of the relevant real-space observations. How-
ever, our theory predicts a clear transition to macroscopi-
cally long-range order in time, and current evidence sup-
ports this prediction. Molecular dynamics simulations of
tweed in NiA1 have found a change from static to dynam-
ic behavior with increased temperature, and neutron
diffraction and TEM observations of real NiA1 find a stat-
ic component of tweed structure, which appears and then
grows as the temperature is lowered. In our own nu-
merical simulations, we have observed such a transition
by detecting the onset of correlations below some temper-
ature. For example, the static tweed structure of Fig. 6 is
static (on a time scale of several thousands of MCS's)
from 0 to roughly 70 K, and dynamic from 70 to 90 K.
Similarly, the dynamic tv.'eed structure of Fig. 6 actually
arises from a sample that is fully twinned up to roughly
76 K and then is a dimly visible (i.e., static ) tweed struc-
ture at 85 K, and then is dynamic at temperatures as high
as 114 K. Quantitatively, this same transition is demon-
strated in Fig. 4.

Thus, in our model, both static and dynamic tweed
structures are present over temperature ranges of tens of
degrees kelvin. In a real three-dimensional sample, one
can assume there would be an even larger tweed-structure
range, since thermal fluctuations are more heavily
damped in three dimensions. The simulation results also
serve as a reminder that, depending on the material in
question, either static or dynamic behavior may dominate
most of the temperature range of tweed structures. Since
available experimental probes react difFerently to changes
in dynamical behavior, understanding variations in the
time dependence of tweed structure will be vital for ap-
propriate comparison of data. These concerns apply not
only to difFraction patterns and TEM images, but also to
the central peak of inelastic neutron scattering, which has
been associated with a tweed structure that is static on
the time scale of neutron scattering. Interestingly, our
findings also indicate that introducing thermal Auctua-
tions can produce a transition from martensite to tweed
structure, once again implicating the long-suspected
inAuence of vibrational entropy as a stabilizing efFect for
the high-temperature phase.

It has long been known' that the difFraction patterns
such as those shown above are consistent with the pres-
ence of j110) planes shearing in (110) directions, the
so-called Zener mode. ' The square —+rectangular trans-
formation considered here, as well as the
cubic —+tetragonal and tetragonal~orthorhombic trans-
formations all result from precisely such ( 110) /(1 10)
shears. In addition, this shear (coupled with an addition-
al homogeneous strain) is responsible for body-centered-
cubic~close-packed transformations. The observation
of a pretransitional deformation, which involves this par-
ticular shear, is therefore very consistent with the ap-
proach of the martensitic transformation. Furthermore,
it is this shear mode that couples to the elastic constant
A &, which is seen to soften in many materials as the mar-
tensitic transformation temperature is approached and
which motivated the approximation of infinite elastic an-
isotropy discussed above.

For completeness, let us make explicit the connection
between the observed difFraction behavior and the lattice
displacements. To consider the difFraction pattern from a
distorted lattice, we make use of the fact that an arbitrary
displacement field can be written in a perfectly general
way as

U(x,y) = x+y x —y
d

" I.

+ i U. x+y x —y
I. d

In the infinite anisotropy approximation, L would be tak-
en to be infinity, yielding Eq. (4). A displacement consist-
ing of long (but not infinite) diagonal correlations can be
expressed by taking L ))d (where we define U and U+
such that they have similar functional dependences on
their first and second arguments). The correlation length
L then describes the longitudinal length scale of the
tweed-structure striations, and d describes their trans-
verse width.

The general expression for the diffracted intensity at
a wave vector Q (scattering from sites s with structure
factors f, ) is

&(Q)= g f, (Q)e

If we write Q=K+q (where K is the nearest reciprocal
lattice vector to Q) and write R, =R, +U, (where U, is a
displacement around the lattice point R, ) then we can ex-
pand (6) assuming small displacements and find

r(Q)=~g(Q)~' y(Q U, )e'

(where, for convenience, we have assumed a monotonic
lattice, or at least a lattice with an effectively constant
f, ). Fourier expanding U, and noting that the summa-
tion over sites will give us a 5 function, we find

r(Q) =
I f(Q) 'IQ U, ' . (7)

Equation (7) indicates that, in the approximation of
small displacements, the intensity of difFuse scattering
around Bragg peaks [normalized by 1/ f(Q) ~ ] will obey
a

~ Q ~
dependence. Comparing the observed scattering

intensity to a ~Q~ fit will allow us to verify that the
scattering is caused by a small lattice deformation. Sub-
stantial deviation from a strict Q~ dependence would
imply that the approximation of scattering from small
displacements is not appropriate, suggesting that the
scattering is due perhaps to substitutional disorder or to
microdomains large enough to produce size broadening. '

Figure 7 shows the difFuse scattering intensity (normal-
ized by the appropriate structure factor) plotted for
Bragg peaks (OQO), with Q /(2m/a ) =4, 6, 8, and 10 for
the experimental measurements' (boxes) and
Q/(2m. /a)=0, 1,2, . . . , 10 for our simulated diffraction
patterns (crosses). The curve shows the best ~Q~ fit to
the experimental data. The minor deviation from the
~Q~ fit refiects the fact that displacements are finite, yet
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I dx —1 +U
& +y & y Ik (X+y)

d ' L

(Sa)

X +y I —y IQ (X+y)
L ' d

Make the substitutions k+ =—(k„+k )/&2 and

s= — and t=(x +y) (x —y)
d&2 I.&2

in Eq. (Sa) and

s=— and t=(x +y) (x —y)
I.&Z dv'Z

in Eq. (Sb). We then find

(Sb)

1
U+(k) = —Ids dt

1
U+ (s, t)e +

1
U (k)= — ds dt U (s, r)e +

(9a)

(9b)

small.
Assured that we are indeed observing diffuse scattering

from small displacements, we can proceed by solving the
Fourier transform of Eq. (5), U(k)=U+(k)+U (k),
where

The general shape of this Fourier transform is clear by in-
spection: Expression (9a) is simply a Fourier transform
of U+ (s, t) scaled by 1/d along the s direction and 1/I.
along the t direction (similarly for U ). Since, by con-
struction, U+ and U are simple isotropic displacement
fields, then so are their Fourier transforms, and the final
result is a Fourier transform U(k), which has the shape
of two diagonal streaks emanating from the origin, the
length of each streak being —1/d and the width being—1/L. In addition to the variation in diffuse scattering
with ~Q~ discussed earlier, there is also a marked varia-
tion with the orientation of Q, as demonstrated in Fig. 5.
The product Q Uq in Eq. (7) will cause diffuse scattering
resulting from U+ to vanish for Q~~(1, 1) and the diffuse
scattering from U to vanish for Q~~(1, —1). This is
known as the "extinction condition" associated with
I 110I /( 110) shears. (Reference 2S discusses extracting
d and I. from data. )

Figure 8 shows the trace of the diffuse scattering
around the Bragg peak (660) in the (110) direction for
YBaCu(A1)O. The corresponding simulation diffraction
data is also shown, averaged over several simulation runs
for improved statistics and scaled by a single constant for
both the ( 110) direction and the ( 110) direction. The
simulation data points closely follow experimental points
for the regime covering the first two orders of magnitude
of intensity but then fall off quickly, partly due to the ab-
sence in the simulated diffraction pattern of background
scattering that is experimentally unavoidable. As Jiang
et al. have shown' for YBaCu(Al)O, the 1/q behavior

f I I l I i I
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0 5 10
k = Qa/Brr

FIG. 7. Diff'use scattering intensity vs wave vector. The
squares are experimental measurements (Ref. 13) of difFuse
scattering intensity at Q= (OQO)+e, where
Q/(2rrla)=4, 6, 8, 10 and e=(0.060.060). The crosses are
simulation data, scaled by a single constant for comparison to
the experimental data. The curve is a fit to I—~Q~, which
would be exact in the limit of infinitesimally small displace-
rnents.
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Flax. 8. Intensity of diffuse scattering in the (110) direction
around Bragg peak (660). The experimental data (Ref. 13) are
shown with crosses, and the simulated data with squares. The
line is for comparison to a 1/q dependence (e.g., which would
result from the elastic response to random oxygen positions on
the two directions of chains, see caption to Fig. 5). Our model
simulates the short-range oxygen correlations on the chains im-

plicitly, by treating the oxygens as part of the elastic degrees of
freedom.
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indicated by the line corresponds to a lattice distortion
which can be explained as a linear elastic response in a
materia1 with a random distribution of oxygen atoms.
The fact that the intensity falls off quicker than 1/q is
offered by them as evidence for nonrandom short-range

0(-40 A) correlation in the oxygen ordering. This is a
satisfying explanation for the tweed structures in
YBaCu(Al)O, but not for the tweed structures in Fepd
and other shape memory alloys which have no atoms
analogous to the oxygens in YBaCu(A1)O, whose location
and symmetry naturally produce distortions coupling to
the modes mediating the martenistic transformation and
the precursive deformation. We attach only minor
significance to the agreement between the x-ray scatter-
ing in this system and our simulations: Even though our
theory is nonlinear, one should expect linear response to
dominate the strain behavior far from the transformed re-
gions (i.e., at small q). It is simply reassuring that the
computed structure of the scattering profile (where the
mobile oxygens are treated as part of our anisotropic
nonlinear elastic background) is consistent with experi-
ment, but we view our prediction of glassy dynamics to
be a more crucial test for this system.

COMPATIBILITY AND NONLQCAL INTERACTIQNS

Having reviewed the explicit relationship between the
tweed-structure deformation and the observed diffraction
pattern, we wish now to explain the physics underlying
that deformation. We wish to emphasize repeatedly that
an essential aspect of the physics underlying tweed struc-
ture is that any local fluctuation in the elastic free energy
functional (e.g. , due to compositional inhomogeneity)
cannot be regarded in isolation. The lattice response is
not simply a superposition of the responses expected for
independently considered sites of disorder. Rather, mu-
tual nonlocal interactions between spatially separated. re-
gions conspire to give an extended cooperative response:
i.e., the tweed phenomenon. In this section, we here de-
velop a simple yet illuminating analysis, which explicitly
uncovers the effective nonlocal interaction that leads to
these extended cooperative responses. We write the non-
local interaction in terms of a renormalized Fourier space
elastic constant and show that the specific form of the
tweed deformation immediately follows.

The only explicitly nonlocal term in the free-energy
equation (1) is the strain gradient term (VP) . However,
even disregarding this term, the order parameter P can-
not be an entirely arbitrary function of position: There is
no guarantee that such a field (even if continuous) is
physical. This problem relates to the following important
subtlety of any Landau-Ginzburg-type model that treats
elastic strain as the relevant order parameter: The true
degrees of freedom in a continuum elastic medium are
contained in the displacement field, U(x), even though it
is the strain fields, e;, which appear in the free energy.
Instead of treating the strains as independent fields, one
must assume that they correspond to a physical displace-
ment field, i.e., that they are derivatives of a single con-
tinuous function. This is done by requiring that they
satisfy a set of nontrivial compatibility relations concise-

ly expressed by the equation VX(VXe) =0. In two di-
mensions this can be written as

V e, —&88„e2—(8 —8 )/=0 . (10)

(V &),
1

v'8
(B„A,),

2

(12a)

(12b)

where A, is given by

' (v')(v'x) — ' (a..„x)=(a.„—a„)y.xxyy &z yy (12c)

This opaque set of equations becomes quite transparent
after reexpressing in k space:

(k —k )
X(k)= (k),

(k +ky) /A, +8(k k )/A,
(13a)

Ignoring this geometrical compatibility constraint and
minimizing the free energy directly would lead to the in-
correct result that ei and e2 are identically zero, and P
(the only field directly coupled to the composition) trivi-
ally responds to the local disorder. We can explicitly ac-
count for the compatibility constraint by appending it to
the free energy (1) via a Lagrange multiplier A, (x). It is
then possible to solve for e& and e2 because we have two
constraints relating the three strain fields: the compati-
bility condition (10) and the requirement that the free en-
ergy is minimized. Solving for e& and e2 in terms of the
order parameter P, we are able to express the free energy
in terms of P alone. The contributions of e, and e2 to the
free energy will be accounted for by terms that have the
appearance of a nonlocal interaction coupling P(x) and
P(x'). Note, by integrating out e, and ez from the free
energy in this way, we are not resorting to an approxima-
tion of infinite anisotropy; we are simply analytically
solving for the fields ei and ez in terms of an arbitrary P
field.

Proceeding, we find the solutions of the two secondary
strain fields e

&
and e2, which minimize the free energy for

a given field P subject to the compatibility constraint. In
the standard way, we extremize the free energy with
respect to variations in the strain fields, and find Euler-
Lagrange "equations of motion*' relating the two secon-
dary strain fields to P. Introducing variations 5e„fie2,
and 6A, into (1) yields

&f= ~,e, ~e, + ~2ez~ez+&j V ~e, —&8~,~e2 j

+M, f V e, —&8B„e—(i)„„—i) „)P). (11)

Doing the requisite integrations by parts, and requiring
that 5f is zero, we find the following Euler-Lagrange
"equations of motion:"
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(k„+k)(k, —k )/A,
, (k)= (k),

(k, +ky) /Ai+8(k„k )/A2
(13b)

—&8(k„k )(k„—ky ) /A ~e2(k)=
(k +k ) /A +8(k k )/A

x g x P 2 (k) (13c)

The free energy, which is now a functional of P alone,
now may be expressed

I' = f fdr dr'f, (r, r')p(r)p(r')

+ f f drdrf2(r, r')p(r)p(r')

+ ff&„,& f 4( r ) ld r,
where f&„„is the part of the free energy (1), which is ex-

plicitly dependent on P alone. The nonlocal interactions

f, and f2 account for the free-energy contribution due to
the e& and e2 strain fields, respectively. They are given

by

and

f, (r, r')—:f dk ~~

f2(r, r'):—f

(k„+k)(k —k )/A,
8(k ky)/A2+(k +k ) /A,

&8(k k )(k —k )/A2

8(k ky)/A2+(k +k ) /A,

2

e ik.(r —r')

ik-(r —r')e

(13a)

where a is the system area (see Fig. 9). More transparent-
ly, we can write

and

fdk Ai
Q 2

r

(k„+ky)(k, —
ky )/A )

8(k„k )/A~+(k, +k ) /A,

2

(15a')

&8(k„k )(k„—k )/A~

8(k k )/A2+(k„+k2) /A,

2

(15b')

These terms are thus simple harmonic terms, where the
bare elastic constants 2

&
and A2 are now k dependent.

The harmonic term in P is now

A~(k)f
with the restoring force A&(k) given by

A~(k)=A~+A, Q, (k) +A2Q2(k)

where

(17)

(k +k )(k —
ky )/A,

)(k):—(k„+k ) /Ai+8(k, k )/A~

FICy. 9. The long-range nonlocal interaction f(r, r'). Sum-

ming the two interactions f, (r, r') and f2(r, r'), and using ma-
terials parameters for Fepd as in the simulation, give us the full
form for the nonlocal interaction, f(r r') relating P(r) and—
P(r'). (The function is truncated near the origin to maintain a
reasonable scale. )

&8(k, k )(k„—k„)/A2
(k +k ) /A, +8(k ky)/A2

~(k)—:

The key feature of the harmonic free energy, Eq. (16), is
the factor (k~ —k ) buried in Eqs. (18), which leads in a
natural way to a tweed-. structure-like deformation, as fol-
lows.

One can immediately see from Eqs. (13b) and (13c) that
strains e, and ez will be generated by nonzero P(k), ex-

cept for Fourier components for which k —k =O.

Equivalently, one can see from (15a) and (15b) that only
Fourier components of P(k) with k„—k =0 wiH incur
no free-energy cost through the terms f, and f2, and



KARTHA, KRUMHANSL, SETHNA, AND WICKHAM

g 0.0i
~~
Q

0

0.001—

I I I I I I I I

5 10 80
r (lattice constants)

50

FIG. 10. The long-range nonlocal interaction plotted along
the diagonal (crosses) and axial (circles) directions. Note the
1/~r~ dependence of the interaction strength (as indicated by
the reference line). Distance is in units of lattice constants, and
the y axis is in arbitrary units. (The tail appearing at long dis-
tances is merely an aliasing e6'ect. )

AI.TKRNATIVE COUPI, INGS

In the preceding section, we have reexpressed the sim-
ple physics embodied in continuum elasticity in a manner

that their contributions to the harmonic restoring force
(17) go to zero. As a result, even for finite elastic anisot-
ropy, nondiagonal Fourier components of |I) with
k —k WO will be suppressed relative to diagonal com-
ponents, which will be increasingly prominent for in-
creasing anisotropy. The resulting deformation is a
tweed-structure-like modulation with long but finite diag-
onal correlations.

The significance of this nonlocal interaction lies partly
in the anisotropy of the interaction, as explained above,
but also in the range of the interaction. In Fig. 10, we
plot the numerically integrated function (f I +f 2) along
the axial and diagonal directions. The interaction
strength along the axial directions is positive, strongly
suppressing axial correlations. The interaction along the
diagonal direction is negative, enhancing diagonal corre-
lations but only insofar as this interaction survives the
k, —k suppression. (Note, we plot in Fig. 10 the abso-
lute magnitude of the interaction strength along the diag-
onal direction for better comparison. ) As one can see
from the figure, this long-range interaction dies o6' like
1/r and would produce logarithmic divergences in a
poorly accommodated two-dimensional system. The
inevitable result is the development of extended, coordi-
nated lattice modulations, which take advantage of the
compositional disorder (or any other driving force that
couples to the martensitic strain) without generating un-
necessary strains, i.e., tweed structure.

that emphasizes the 1ong-range, collective nature of the
lattice's response to a perturbing force. In particular,
this approach helps to clarify why a tweed-structure-like
modulation is the natural response of a system in which a
disorder field is coupled to the strain. We will here con-
sider possible couplings between the disorder field and
the strain and argue that the coupling incorporated into
the present model, i e ,. t.he term rIP, is most effective at
generating tweed structure and most appropriately de-
scribes the experimental observations.

We have noted that the simplest coupling between the
martensitic strain P and the composition i) is

prompting its inclusion in our Landau free energy via the
term A 5gg . While it is true that this is the simplest

"I

coupling between a scalar field and the order parameter

P, our decision to consider a scalar field coupled directly
to the P component of the strain field requires
justification, since nonscalar disorder fields and the other
strain components cannot, in principle, be neglected out
of hand.

First, we have chosen to couple to P directly for the
same reason that we have taken it as our order parameter
and included its anharmonic terms: P is the predominant
strain measured in the tweed-structure deformation, and
it is the strain responsible for the martensitic transforma-
tion. As such, it is larger in magnitude than the other
strain components and will be most susceptible to in-
teracting with a driving force, whether due to intrinsic
disorder or some extrinsic field. such as an externally ap-
plied stress.

Second, we have chosen a scalar disorder field simply
because tweed structure is so impressively widespread a
phenomenon, and we desire to study the simplest, Inost
universal disorder. Indeed, there are important materials
with unit-cell configurations that allow for some disorder
field more complicated than simply scalar: The obvious
example is oxygen concentration in Y-Ba-Cu-0 (YBCO).
However, we find it provocative that tweed structure ap-
pears in materials with even simple lattices, such as fcc or
bcc lattices. Here, disorder takes the form of random
placement of atoms, with each site being symmetrically
equivalent with every other. In this case, disorder is
necessarily simply a scalar field for which the broken
symmetry of the martensitic strain precludes a linear cou-
pling. Even in the case of nickel-rich Ni Al, , which
has an ordered P-CsC1 structure, the compositional disor-
der can be described by a scalar field corresponding to
the positions of the excess nickel atoms, which are ac-
commodated by random substitution onto the aluminum
sublattice. "

Third, we know that composition couples not only to
the martensitic transformation strain but to the marten-
sitic transformation temperature. Compositional inho-
mogeneities will result in a spatially varying transforma-
tion temperature, and in a P Landau free energy this is
refiected in spatial variations in the coefficient of P .

Fourth, the experimental observation of hysteresis im-
mediately allows us to conclude that a simple linear
response mechanism cannot be the general origin of
tweed structure. Hysteresis is seen to occur upon cy-
cling of temperature: Upon heating, the tweed pattern
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persists up to a temperature thai is higher than that at
which it initially appeared upon cooling. This hysteresis
implies that the tweed structure is something more com-
plex than simply linear response of the lattice to some
static defect or impurity. In linear response, the lattice
displacements are calculated as a single-valued function
of the perturbing force, and the tweed structure would
therefore form and fade without history dependence.
The temperature dependence of the tweed pattern would
arise from the (single-valued) temperature dependence of
the elastic constants, and it is difficult to conceive of a
possible source of hysteresis in this mechanism.

Having given the above justification for the riP cou-
pling that we have investigated in detail, we would like to
go on to consider other possible couplings.

Coupling to order parameter linearly. The system in
which tweed structure has received the greatest amount
of attention in the last several years is the high-
temperature superconductors. In the YBCO-type materi-
als„ there are twice as many oxygen sites in the Cu-0
planes as oxygen atoms, and the tetragonal to ortho-
rhombic martensitic transition occurs as the randomly
distributed oxygen atoms break the twofold symmetry be-
tween sites and preferentially align along one axis. This
alignment results in an increased lattice constant in one
direction relative to the other, and a net rectangular de-
formation in the Cu-0 plane. In this case, if the oxygen
distribution is taken as the disorder field, disorder clearly
couples directly to P, and the corresponding term in a
Landau free energy describing this system would appear
as a term linear in disorder and strain i)P. Even though
the coupling is linear, it is conceivable that hysteresis
may arise from the complicated dynamics of the diffusing
oxygen.

This model has been extensively studied.
Semenovskaya et al. ' ' and Parlinski et al. ' have each
considered a model for YBCO in which diffusing oxygen
atoms arrange into martensitic microdomains, and the
coupling between oxygen position and elastic strain leads
directly to an unquestionably tweed-structure-like lattice
deformation. Morphologically, the tweed structures
found in these studies are essentially identical to those
presented in this paper; not only is the qualitative appear-
ance identical, but quantitatively the correlation lengths
are comparable as well. However, there is a fundamental
difference in the physical nature of the tweed structures.
In their investigations, the tweed structure is not an equi-
librium phase but rather a nonequilibrium or metastable
configuration. Semenovskaya et al. observe tweed struc-
ture as an intermediate structure as the oxygen distribu-
tion gradually evolves through an ordering process, pass-
ing through a transient stage (or getting stuck in a meta-
stable well) consisting of highly anisotropic micro-
domains before ultimately reaching the equilibrium
twinned martensitic configuration. In addition to this
transient tweed structure, Parlinski et al. also find "em-
bryonic" tweed structure resulting from thermal Auctua-
tions above the transition temperature, which they treat
analytically as critical fluctuations in a second-order tran-
sition. These studies have produced a dynamic or meta-
stable tweed structure in contrast to the static equilibri-

um tweed-structure phase that our model seeks to ex-
plain. Yet, despite the compelling analogy, it is not quite
accurate to infer they have produced the liquid out of
which our glass forms.

The nature of the disorder in their nonequilibrium
tweed structure is fundamentally different from the na-
ture of the disorder in our equilibrium tweed structure.
The distribution of oxygen atoms constitutes their disor-
der: Randomly scattered or clustered into microdomains
or ordered into martensitic variants, the oxygen atoms
couple to the strain and give rise to some lattice deforma-
tion. Yet, since the oxygen atoms diffuse in response to
external parameters, oxygen is not a source of quenched in-
disorder. The oxygen is effectively an additional degree of
freedom, which the system integrates out as it searches
for a stable equilibrium. In this light, it is clear why
there is no stable, static, equilibrium tweed-structure
phase to be found in these models. In contrast, the model
presented in this paper relies on the presence of intrinsic
quenched-in disorder, in the form of static compositional
inhomogeneities, in order to stablize the tweed-structure
phase.

Why then is static tweed structure seen in YBCO at
all? Significantly, it is when YBCO is doped with an im-
purity that static tweed structure appears. After substi-
tuting copper with as little as 1.5% of a transition-metal
element (such as Fe, Co, Al, or Ga), TEM observations of
tweed structure are made. ' These impurity atoms are
frozen in at temperatures well above the tweed-structure
regime, ' typically at )700 K, and therefore the impuri-
ty disorder is truly quenched in. Studies by Jiang et al.
and Krekels et al. have demonstrated static micro-
domain formation due to quenched-in impurity atoms.
In these studies, the oxygen-copper and oxygen-impurity
interactions are such that the impurity atoms, which
prefer nearest-neighbor oxygen occupancy, confound the
oxygen chain alignment preferred by the surrounding
matrix of copper atoms. It is through the compromise
arrangement of the oxygen atoms that the static impurity
disorder is communicated to the elastic deformation. Re-
cent simulation studies by Semenovskaya and Khacha-
turyan have included quenched-in impurities as well as
the long-range strain interactions and have indeed gen-
erated a static, apparently stable, tweed-structure phase.
Ultimately, in such a model, the impurity atoms act as
sites favoring the square phase amid copper sites favoring
the rectangular phase. The compositional variation
therefore selects a phase (square or rectangular) but it
does not select a particular martensitic variant: The sym-
metry of a copper site with the unit cell prevents it from
coupling linearly to the rectangular strain. It is just this
physical situation that is represented in our general mod-
el by a quadratic coupling between compositional disor-
der g and rectangular strain P. The present study, which
seeks to clarify the general principle involved in equilibri-
um tweed structure, and the studies cited above, which
seek to elaborate in valuable detail the specific mecha-
nism at work in the case of YBCO, therefore complement
each other very well.

Coupling to gradients of disorder. Although the disor-
der on an atomic scale can be described by a scalar field,
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it is possible for the random compositional variations to
conspire to produce clusters of more complex symmetry,
which may then collectively couple to the order parame-
ter. For example, as Robertson and Wayman have ar-
gued with respect to NiA1, random clusters of nickel
atoms have a high probability of having tetragonal sym-
metry, and therefore coupling to the martensitic strain.
In the language of the Landau-Ginzburg formalism, this
corresponds to a coupling between higher-order gradients
of the disorder field and the order parameter.

In two dimensions, the term P(B„—8 )g is a
symmetry-allowed coupling between g and P, which is a
priori no less important than the quadratic coupling we
have used. Since this term is only linear in P, it could
well be comparable in magnitude to the quadratic cou-
pling, despite the second derivative, and be just as
effective in generating some lattice deformation. The
relevant question, however, is what is the capacity of
such a term to generate tweed structure. This is most
easily answered by reexpressing the term in k space:
P(k)(k„—k~)g(k). Recall that the tweed structure is
correlated along diagonal directions, and therefore is
composed of Fourier components for which k —k ~0.
Therefore, although (8„—B~)g couples to the order pa-
rameter, it does not do so in a manner that allows it to
generate tweed. (In three dimensions, a slightly more in-
volved calculation leads to the same result. )

Coupling to bulk dilation. Perhaps the most commonly
considered deformation due to compositional disorder is
that which arises from atomic size mismatch in alloys.
This mechanism is represented by the coupling ge, be-

5f =(A)e, +Dg)5e)+ A2e25e2

+A. I V 5e, —&88„„5ez I

+5XI V e, —&8B e2 —(8„„—8 )Pf, (19)

and the corresponding expressions for e„e2,and A, are

e2=

(V A, Drl), —
1

v'8
(8 A, ),

(20a)

(20b)

(20c)

In k space this gives us

tween composition and bulk dilation, and although it
does not directly couple g and P, we have repeatedly em-
phasized that the strain fields are not independent and
are intrinsically coupled by the compatibility conditions.

In the preceding section, we were able to translate the
bulk dilation and diagonal strain contributions to the free
energy into nonlocal interactions in P by integrating
those secondary strains out of the free energy, subject to
the compatibility constraint. We can carry out the analo-
gous analysis for a term Dye&, as follows.

The variation in the free energy caused by variations
5e„5e2,and 5A, is

e2(k)=

(k2 —k2)P(k)+(k +k )Dg(k)/A,
(k„+k ) /A, +8(k k )/A,

(k, +k )(k„—k )P(k)/A, —(k k )Dg(k)/A, A~

(k +k,, ) /A, +8(k ky )/A~

—V'8(k„k„)(k,—k )P(k)/A~ —(k ky )(k„+ky)Drl(k)/A „A~
(k~+k )2/A, +8(k„k )/A2

(21a)

(21b)

(21c)

Again, the free energy can now be written in terms of P
alone. The contributions due to A, e, and A2e& are iden-
tical to those found in the preceding section, as they must
be, with the terms proportionate to q canceling. The
contribution from the disorder term Dye &

is now a non-
local interaction between disorder and &P (where the term
quadratic in disorder can be dropped by redefining the
zero of the energy):

I'„=f f dr dr'f„(r,r')P(r)g(r),

where
( k„+k& )( kx —

k& )

a A (k+k )/A +8(k k )/A

More transparently, we can write

(k +k )(k —k )F„= (k'+k')'/A +8(k'k')/A

X(b(k)q( —k) . (24)

In the preceding section we casually argued that a term
like this one will be ineffective in generating a tweed-
structure-like deformation because it vanishes precisely
for those Fourier modes (k„=+k) that correspond to
tweed structure. A more careful analysis would account
for the fact that the restoring force A&(k) is k dependent,
and diminishes at k +k~ —+0, enhancing the effectiveness
of this driving force. The term in the last section turns
out indeed to be harmless, but here we give a more com-
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piete analysis. Within linear elasticity, it is possible to
solve explicitly for the deformation resulting from Eq.
(24).

We are considering the harmonic free energy

k k„U(k)
—k, k„U,(k) (27)

A~(k) 2+3 (25) Dg
e&(k) = —Q2(k)p(k) —— Q3(k),

1

(28)

where A&(k) and Q, (k) are defined in Eqs. (17) and (18a),
respectively. This is minimized when

—DQ, (k)g( —k)

A, (k)
(26)

The most revealing measure of this simple result is the
corresponding diffraction pattern for a white disorder dis-
tribution rj(k) = r), which we calculate using

where

(k„k )(k +k )/A2
3(k)=

(k2+k2)2yA +8(k2k2)yA
(29)

We can invert Eq. (27) and use Eqs. (26) and (28) to find

U„(k)
U (k)

—DgQ, (k)
k k A~(k)

ky kx — DgQi(k)Q2(k)
A~(k)

Q3(k) .
1

(30)

The scattering contours in Fig. 11 were calculated
from the solution (30) to the linear problem. For finite
anisotropy, the diffuse scattering deviates substantially
from that expected from tweed structure, showing that a

substantial amount of nontweed-structure-like deforma-
tion is occurring in the lattice.

This is in agreement with the much earlier analysis of
Cochran and Kartha, ' who show that the long-range
strain field associated with random variation in bulk dila-
tion will lead to diffuse scattering with a strong radial
component at (Oh ) Bragg peaks. This is qualitatively
distinct from the diagonal diffuse streaking seen in tweed
structure. As the anisotropy increases however, the
diffuse scattering lobes converge toward the diagonal
directions, and grow increasingly similar to the diagonal

FIG. 11. Diffraction contours due to linear coupling to el.
Diffraction contour around Bragg peaks (04), (24), and (22)
(from left to right) at anisotropies a=1, 5, and 50 (from top to
bottom). (The coupling strength D was scaled with the anisotro-

py, so that the net deformation is constant in magnitude, but in-

creasingly tweed structure like. ) Since tweed structure can be
observed (Ref. 8) in FePd, for example, when the anisotropy is
as small as A =5, this implies that tweed structure cannot be
explained by a linear response to a coupling to bulk dilation.

FIG. 12. Configuration resulting from linear coupling to el
showing substantial deformation, but no identifiably tweed-
structure-like modulation.
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streaks associated with tweed structure.
This suggests that within linear elasticity a coupling

ge& between disorder and bulk dilation is ineffective at
generating tweed structure for most realistic materials
parameters. As a fairer test of this coupling, we must
also determine whether tweed structure might still appear
in the full nonlinear model that includes terms anhar-
monic in the P strain. Qf course, an analytical solution is
now unfortunately inaccessible, but introducing the cou-
pling to bulk dilation into our numerical simulation with
finite anisotropy, we have determined that this coupling
does not result in an identifiably tweed-structure-like
modulation. The configuration in Fig. 12 was obtained
by eliminating the coupling imp and replacing it with a
coupling qe, of the same strength. The lattice is notice-
ably deformed, yet the modulations clearly do not consti-
tute tweed structure.

CGNCLUSIQN

We have reported the results of a simulation of the pre-
transitional behavior of a two-dimensional martensitic
model material. Unlike the historically traditional pro-
cedure of seeking and studying in local detail the cou-
pling of special localized defects to first-order transitions,
we show that intrinsic statistical variation of composition
su%ces to generate tweed-structure patterns, as well as to
provide an understanding of how a tweed-structure re-
gion can exist in a transitional regime over an extended
temperature range above the nominal bulk transforma-
tion temperature. Most importantly, the model described
here has uncovered a tweed structure that is far more
complex than a mere lattice response to local defects.
Long-range, cooperative, nonlinear processes give rise to
tweed that is, in the infinite anisotropy limit, a distinct
stable thermodynamic phase between the austenite and
martensite phases, and that is, moreover, a glass phase
that exhibits properties distinct from the phases it
separates: slow relaxation, a diverging nonlinear suscep-
tibility, and glassy dynamics. In actual materials that do
not have infinite anisotropy, the phase transitions bound-
ing the glassy phase will be rounded, but many real-world
materials are indeed anisotropic enough that the tweed-
structure regime is likely to still exhibit experimentally
observable glassy behavior.

From the modeling point of view we have once again
demonstrated the utility of nonlinear, nonlocal free-
energy functions, now extended to nonuniform, disor-
dered systems, for representing the mesoscale phenome-
nology of patterns in lattice distortive phase transitions.
This formalism makes contact with a wide class of other
displacive transitions in metals, nonmetals, and ceramics,
e.g. , ferroelectricity, ferroelasticity, and perhaps even
biomolecular conformation changes. It has been our
aim in this paper to outline the method in sufhcient detail
that it can now be applied to various materials, at least
semiquantitatively.

A logical continuation of the present research would,
of course, extend this model and simulation to three di-
mensions. Like many attempts to address pretransitional
mesoscale modulations, this approach casually seeks to
investigate a three-dimensional phenomenon with a two-

dimensional model, and various problems arise with this
uncontrolled approximation. A two-dimensional system
will certainly be more unstable toward a lattice distortion
such as tweed structure than a real three-dimensional ma-
terial. (Indeed, in two dimensions there is generally no
stable finite-temperature crystalline phase. ) Also, in at-
tempting to describe a three-dimensional material with a
two-dimensional model, one must use materials parame-
ters from the real material and hope that the model will
yield similar behavior, but it is possible that qualitatively
different physics may be important in the real three-
dimensional sample. For example, in modeling planar
compounds such as the high-T, materials, such a two-
dirnensional approach still incorporates the appropriate
physical symmetries. On the other hand, cubic materials
have additional compatibility conditions, and the limit of
infinite elastic anisotropy yields a six-component Potts-
like model rather than an Ising model. We have yet to
investigate how this may cause tweed structure in cubic
materials to differ from tweed structure in tetragonal ma-
terials.

An additional issue deserving further research is the
softening behavior in the pretransitional tweed-structure
regime. We have long suspected that the pretransitional
"anomalies" in elastic constant behavior are inextricably
connected to the presence of tweed-structure-type modu-
lations. Whereas conventional wisdom holds that elastic
softening leads to pretransitional modulations (and ulti-
mately to the martensitic transformation), we believe that
the softening can in turn be enhanced by the pretransi-
tional modulation. A bulk elastic constant, measured
over an entire macroscopic specimen, will necessarily
reAect not simply the harmonic response arising from the
bare interatomic potentials, but also the mesoscopic lat-
tice response to the applied driving force. When stressed,
a modulation such as tweed structure will certainly
respond elastically, but it will also Hip domains, depin
boundaries, rearrange clusters, etc. We believe that it is
precisely such nonlinear processes that account for much
of the behavior underlying the pretransitional anomalies
in elastic softening, internal friction, and acoustic at-
tenuation. We have undertaken to investigate these
effects in our model by studying the response of a simu-
lated patch of tweed structure to an externally applied
strain. Allowing these relaxational processes, we measure
elastic constants, which are substantially softer than the
"bare" elastic constants otherwise found. Furthermore,
we observe the dissipative and hysteretic effects, which
underlie the experimental ultrasonic attenuation and
internal friction measurements.

Many of the ideas that have been incorporated into
this model have also been of central importance in earlier
work by a number of other investigators. Ericksen ' and
Jacobs have considered the limit of infinite anisotropy
and shown the general form for allowed solutions.
Semenovskaya et al. ' '" and Parlinski et al. ' have not-
ed the vital importance of the long-range nature of strain
fields in a lattice modulation such as transient' and
dynamical' tweed structure. Jiang et a/. ,

' Krekels
et aP. , and Becquart, Clapp, and Rifkin have recog-
nized the importance of compositional randomness (i.e.,
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random placement of alloy components or dopants) in
determining the tweed structure. We have assembled
these various ingredients into a strikingly simple and
powerfully general model, which provides compelling
answers to two questions that have been troubling inves-
tigators of pretransitional phenomena in martensitic ma-
terials for many years: What is tweed structure? Why
does it occur? Moreover, the answers given here have es-
tablished an unexpected connection between tweed struc-
ture and spin glasses, suggesting a new line of experimen-
tal investigation into tweed structure. The signature of
glassiness may be observable in the tweed structure
through measurements of nonlinear elastic constants at
the onset of the tweed structure, measurements of
frequency-dependent relaxation phenomena using ul-
trasonic attenuation, or investigations of "remanent
strain" through hysteresis measurements, for example.

In establishing this connection between tweed and
glasses, it is hoped that the tools being developed within
the field of disordered systems in condensed matter
theory may be brought to bear on the problem of pretran-
sitional phenomena in martensitic systems.
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