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Optical sum rules for inhomogeneous electron systems
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Optical properties can be determined by either the transverse dielectric function e~(q, u) or the
longitudinal dielectric function e~~(q, io) in the long-wavelength limit, i.e., q —+ 0. By expressing
ei (q -+ 0, io) in terms of density response functions, we calculate the third, fifth, and seventh
frequency moments of Imez(q ~ 0, u) in addition to the first frequency moment, the well-known
conductivity sum rule. While the third and Bfth moments re6ect the inhomogeneity of the system,
correlation efFects contribute explicitly to the seventh moment. In addition, the frequency moments
of Im[—1/e~~ (q —+ 0, &o)] can be constructed from these moments. The dielectric functions evaluated
in a self-consistent field (SCF) approximation, such as the random phase approximation (RPA) or
the adiabatic local density approximation (ALDA), satisfy the first three odd frequency moments
provided the single particle states on which the SCF calculation is based are calculated in the
corresponding SCF approximation. The seventh frequency moment constitutes a severe requirement
that ei (q ~ 0, u) evaluated in the RPA or the ALDA cannot satisfy. This is demonstrated for nearly
free electron systems.

I. INTRODUCTION

Sum rules are defined as &equency moments of the
dissipative part of response functions. Both the trans-
verse and longitudinal dielectric functions are defined by
response functions. The transverse dielectric function
e~(q, io) is related to the current-current response func-
tion, while the longitudinal dielectric function e~~(q, io)
can be expressed by the density-density response func-
tion. As shown for isotropic systems by Ambegaokar
and Kohn in the long wavelength or optical limit, i.e. ,

q + 0, e~ (q, a~) =
e~~ (q, io). We make use of this property

when we evaluate sum rules for the energy loss function
ImI —I/e~((q, ~o)] for q m 0.

Sum rules are useful properties of response functions
&om both the experimental and the theoretical points
of view. They determine the high &equency behavior or,
more precisely, the &equency moments are the expansion
coe%cients of the asymptotic high &equency expansion.

In principle, the evaluation of response functions of
a system requires knowledge of the exact eigenstates of
the unperturbed system. In most cases, these cannot be
calculated and approximations are unavoidable. On the
other hand, sum rules can be evaluated exactly in some
cases. They can be used not only as a testing ground for
the quality of approximations involved in calculations of
response function, but are also used as guides for the
construction of approximations.

Most microscopic calculations are performed with one
of the variants of the self-consistent field (SCF) approxi-
mations, such as the random phase approximation (RPA)
or the adiabatic local density approximation (ALDA)
of density functional theory. In these calculations, self-
consistency enters at two levels. First of all, the SCF ap-
proximation is based on the response function of (seem-
ingly) independent particles, and the effective potential
that deterxnines the independent particle states must be

determined self-consistently. Second, the effective dy-
namical potential to which the independent particles re-
spond has to be determined self-consistently. Sum rules
demonstrate that the two self-consistency procedures are
not independent of each other. Past RPA type calcula-
tions of the dielectric function were often based incon-
sistently on band structure calculations (LDA), such as
the Xo, method. We show that sum rules are violated in
this case. A consistent RPA calculation must be based
on single particle states evaluated in the Hartree approx-
1Dlation.

Approximations affect difFerent properties in difFerent
ways. For example, we show that a consistent ALDA
calculation of the optical properties, i.e. , I/e~~ (q —+ 0, io),
satisfies the Grst, third, and fifth &equency moment sum
rules, whereas for q g 0 the third frequency moment
is violated and thus an accurate determination of the
plasmon dispersion cannot be expected within the ALDA
even for small q.

The difFerent behavior can be understood as follows.
If a weak external periodic perturbation with wave vec-
tor q acts on the system, the response will depend on
correlations over distances equal to or larger than the
wavelengths A = 2m/q with q = ~q~. In the optical limit
(A -+ oo), correlations are expected to vanish. How-
ever, this is true only if the system is homogeneous. In
inhomogeneous systems, regions of different density re-
spond differently to a long-wavelength perturbation, such
as visible light invoking ultimately short-wavelength Buc-
tuations and correlations. As a result, we are able to
evaluate the third and fifth &equency moments in terms
of the inhomogeneous electron density and of the exter-
nal potential that causes the inhomogeneity. The seventh
&equency moment, however, explicitly involves correla-
tions.

As expected &om the above discussion for the jellium
model, all frequency moments of e~(q w O, io) and of
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Im[ —1/e~~(q ~ 0, u)] are known, as we briefly indicate.
For suKciently high &equencies, we have

0

e~(~) = e~(q w 0, ~) = Ree~(cu) = 1 — ", (1)

These simple results are valuable as limiting cases for
inhomogeneous systems when the external (crystal) po-
tential becomes constant. Of course, the third frequency
moment sum rule for q g 0 for the jellium model

02where u„= 4vrnae /m is determined by n0, the density
of the electrons. Because e~ (~) satisfies Kramers-Kronig
relations, we have for large u,

+ d~
+~sl(q) = (u Im

7l

1

equi (q) Lo)

d~' Ime~ ((u')
Ree~ ~ =1+P

7l

I(2n —1)
~2n (2)

which is known in the literature, reduces to u„ for q ~
0.n=1

where P denotes the principal value. I( ) is the &e-
quency moment of order (2n —1) of Im e~(u), i.e. ,

+OO

I " ' =P cu" Ime~(M)
—OO

Only odd moments contribute, because Ime~(ur) is an
odd function of w. By comparison with (1), we see that

I(1) ~0'
p

I( ) =0 for n) 1. (4)

This result (4) is also obtained by inserting

o b(~)
Iiii e~((d) = 7r(d

(d

1

(~
e( qM 0) ld)

p2w
1 = 1+

1 ~0~ /~2 ~2m
p n=1

(6)

and because of the Kramers-Kronig relations,

1 + d('=1 —P
e)((q m 0, u)) vr

1xIm—

1 + +(2n —1)1
~2n

We find by comparison with (6)

+OO
~(2n —1) 2n 1Im 1 p2A= CcJ

e~~(q -+ 0) ~)
(8)

for n = 1, 2, 3, . . . , which also follows when

Im = —ur„[b(~ —(u ) —b(~+ td„)] (9)
E'~~ (q M 0, ld) 2

is inserted into (8).

into (3). We make use of e~(q + 0, ~) = e~~(q ~ 0, ~)
and have for high frequencies

An outline of the paper follows. In Sec. II, e~(q, u)
and e~~(q, ~) are defined in terms of current-current and
density-density response functions, respectively. We then
express e~ (q -+ 0, u) in terms of density-density response
functions and evaluate the third, fifth, and seventh &e-
quency moments of Ime~(q ~ 0, u) for inhomogeneous
systems. For simplicity, we consider ideal crystals of cu-
bic symmetry and neglect lattice dynamical effects. Fi-
nally, by using e~(q —+ 0, ~) = ell(q w O, ur), we ob-
tain a high frequency expansion of 1/e~~(q m 0, )d) by
inverting the high frequency expansion of e~(q -+ 0, u).
The expansion coefBcients that we obtain in this way ar~
the first four odd frequency. moments of Im[ —1/e~~(q —+

0, ur)].
The seventh moment is very complicated. For nearly

&ee electron systems, however, the seventh moment can
be expressed to second order in the weak (local) pseu-
dopotential in terms of third moments of the jellium
density response function y" (G, u), where y(G, u)
y'(G, u) + ig" (G, ur) and G are reciprocal lattice vectors
with G = ~C~. The third f'requency moment of y"(G, u)
is very well known2 and, to the extent that many ground
state properties of the jellium model have been deter-
mined in recent years with increasing accuracy by Monte
Carlo (MC) siinulations, their numerical values are
accurately known.

We use extensive literature on the theory of the density
response function of the jellium model, discussing (Sec.
III) various approximate forms for y(G, id). This section
is devoted to a study of the extent to which e~ (q -+ 0, u),
evaluated in a SCF approximation, satis6es the exact
sum rules.

Furthermore, in the SCF approximation, the dielectric
function of inhomogeneous systems can be decomposed
into two contributions, a term accounting for direct in-
terband and intraband transitions and a term that arises
&om the coupling of long- and short-wavelength Huctua-
tions, as a consequence of the inhomogeneity. This term
is known as local field corrections (lfc). Its evaluation is
very cumbersome and the neglect of this term is known as
the Ehrenreich-Cohen approximation. For quasihomo-
geneous systems, such as simple metals, its contribution
is expected to be small. In any case, it is desirable to
have some a priori means to judge their importance and
we show that sum rules for the lfc provide such an esti-
mate. A summary and conclusion are presented in Sec.
IV.



8030 KURT STURM 52

II. SUM RULES AND ASYMPTOTIC
EXPANSIONS FOR Ims~(q —+ 0, a)

AND Im[ —I/e~~(q w 0, ~)]

A. Definitions of s~(q, ~) and e~~(q, ru)

(ol[A (t), A, (t')llo)

+OO

= h X~~(q, q';sr)e ' (' 'l. (19)
7T

Consistent with their use in macroscopic Maxwell's
equations, e~(q, u) and e~~(q, ur) are defined by

4vre
eg(q, (u) = 1 — " + q X"(q, q;u))

Cd Cd

Sum rules as &equency moments of order n are obtained
by difFerentiating (19) n ptim-es with respect to t, p times
with respect to t' and taking the limit t ~ t' at the end,
i.e.,

F. 81" " t'—' lim o
l

in
l

A—~(t) I
-i",

I
A-~ (t')

Q i +i' -( Ot) ( ~t')

1 4me
, x-(q q ~)

II (q& Cd) q
(12)

+OO

~ xaam(q q'~)
7t

In (11), g is the polarization vector of the transverse
field, so that 2I . q = 0. X"(q, q; ~) and X„„(q,q; ~) are
the current-current and density-density response func-
tions defined. in linear response theory at T = 0 K by

(olj, l~)(~Ll ,. lo)
0 ) - E„—Ep —hu —ib

g/

oli-, l~)(&li, lo

Eo —Ev —~ —ib

0 is the volume of the system and

dCd ~ 1m' (q -+ 0, ~) = ~„",
—OO

(21)

where p ( n and for two operators A,B [A, B] = AB-
BR. These sum rules connect the dynamical behavior of
the system described by X&&(q, q', u) with ground state
properties. This is obvious by the inspection of the left-
hand side of (20), and suxn rules are useful if the latter
can be evaluated in terms of some known quantities.

It follows from (11) and (12) that sum rules can be
formulated for e~(q, ur) and 1/e~~ (q, u). Very well known
examples are the conductivity and f suxn rules, which
are the 6rst &equency moments,

jq = 1 ) (p e 'x'-+ e 'x "p )2m
(14)

dCd
y (i) = cd Im

—OO

—1 0.~~(q, ~)
(22)

is the Fourier transform of the current operator.
(q, q;u) is obtained by replacing the current oper-

ators in (13) by the density operators n~, n ~ . They
are de6ned by

nq = e 'q'a.

2
Here, the average electron density n0 determines cd„

4ire2np/m.

B. e~(q ~ 0, u) in terms of density response
functions

E„,lv) are the eigenstates of the unperturbed system,
i.e.,

&pl~) = E-l~)

In order to obtain higher order &equency moment sum
rules for e~(q, ~) and for 1/e~~(q, ~) in the optical limit
q -+ 0, we rewrite e~(q —

& 0, u) in terms of density re-
sponse functions. Because of the transversality condition
g. q = 0, g jq commutes with the Coulomb interaction
of the electrons in 'Rp [last term in (17)] and thus

2 2

ep=) l
-+V(r ) l+ —) . (»))

Ep, lo) denotes the ground state of the system. In general,

x»(q q ' ~) = x~~(q q ~) + ix~~(q q ' ~) (18)

where A can be either n or j. The reactive part
X&&(q, q', a) and the dissipative part X&&(q, q', e) are
related by Kramers-Kronig relations and, as a conse-
quence, the dissipative part satis6es the relation

lixn(Eo —E )(olgj~li) = lxm(Ol['Ro pj's]l&)

= «I[&p n. ip]l~)

h 0)ryVV(r)r)
xm

CX

= ) V ~(olh~lx ), (23)
. h(g. C)

AQO

where in the last step an ideal crystal is assumed. Then
V(r) = g& V~e'+' is periodic and G are reciprocal
lattice vectors.
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4me ) ) (q G)(G'. g)V ~V~ y"
Ggo G'$0

x(C, G';(u) (24)

Here and in the remainder of the paper, we drop the
indices nn, which denote the density-density response
function, i.e., y„„(a,C'; m) = y(a, G', u). The conduc-
tivity sum rule (21) and application of Kramers-Kronig
relations yield

+oo g
hJ& = (dime~ ((d)

—OO

4vre 1 02) ) (ga)(a'&)v ~v~-
Cgp G'Qp

xy'(G, a'; (u)
~

p (25)

and

p2

Res~(~) = 1—

+ ) ) (qa)(a'q)V ~V~ [y'(G, a';(u)
Ggp G'$p

—q'(a, G'; 0)]. (26

At first sight, the form of Res~(w) is surprising for an
insulator considering the small u behavior. However, ex-
panding y'(G, C'; u) in a Taylor series for small u

y'(a, a';~) = y'(G, G';0)+ —, g'(G, a';sr)~~ —p

~4 g4
y'(G, G', ur)~ —p g . . (27

proves that e~(ur) exhibits the appropriate behaviour of
an insulator, namely for u ~ 0

The existence of a gap in insulators means that elec-
tronic excitations are not possible for ~ ~ 0. Then, using
(23), Ime~(u):—Ime~(q —+ 0, ~) can be rewritten in the
form

4' e2 1
Ime~((u) = —) ~(0~gjp~v)

~
b(E —Ep —M)

with an important modification. For the jellium model
of a metal,

1m'~(~) = ~ "b(~) (30)

p2 n„m h((u)
Ime~((u) = vr(u

np m~pt

4me2+, , ) ) (ga)(a'~)v v .&"
Ggo G'go

x(G, G', ~). (31)

The conductivity sum rule then provides a general defi-
nition of m zq

+v m
1 ——

'+p mopt
) ) (~a)(a'&)v
Ggo G'Qo

1 0 Ix V~ — y'(a, G'; u)) [ p.
2 |9@1

(32)

Using (31), Res~(u) as obtained by Kramers-Kronig is
identical in form to (26). For the small u behavior, we
find with the help of (32) typical metallic behavior

Ree~(~) =—
p2

m nv

m~~t np2

4vre2+, ) ) (77G) (a'77) v
Ggo G'$0

1 84
xv~ —, y'(G, a';~)~ p4. 19M

+b.

exhausts the conductivity sum rule, where p
4vrn„e2/m is determined by the valence electron density
n„. In a real crystalline metal, there is a contribution
&om interband transitions in addition to the intraband
term (30). The latter must be reduced appropriately to
allow for the additional contribution in the conductivity
sum rule. As we shall show below, the reduction fac-
tor is m/m ~t, where m pq is the optical mass. Writing

pu2 = urP n„/np, we have for a metal

4vre2
e~(~) = 1+, ) ) (ga)(a'g)v c

Ggo G'$0
g4

x Vc —, y'(G, G'; ur)
i

—p +
4. |94)

+ d~1= 1 + P —Immi(ld) +
7i (d

= eg(0) +.. . . (28)

In summary, for a metal, we have

m n„ b(u))
e~((u) = 1 — " + a~~

(d " mozt np

+ 2 ) ) (ga)(G'rI)V cVc
Ggo G'go

x [y(G, G', u)) —y(a, G'; 0)] . (34)

For an insulator, therefore, we have
Parts of the results presented in this subsection were de-
rived by various authors.

(~) =1 — ", +, , ) ) (~a)(a'n)v ~
Ggo G'$0

x V~ [y(G, G', cu) —y(G, G'; 0)] (29)

A form very similar to (29) can be derived for metals,

C. The third and Mh frequency moment sum rules

We are now in a position to obtain some additional
sum rules for e~(w). The third frequency moment sum
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rule can be calculated either &om the original definition
of e~(~) or from (29) or (34), respectively. Following
Hopfield, we obtain

CL4) 4vre 1I—: id Ime~ (4))
—OO

x(01[~30 [&0 jo~]]10)
4me2 ) (gG) V ~nc,

GQO

and we find

84) ~'~~(~)

4me2 ) ) (gG) (G G') (G'g) V ~ Vc n~
GQOG go

(40)

The third and fifth frequency moments are measures of
the inhomogeneity of the system and vanish as expected
if VG mo.

where n~ = (Olnc ]0)/B. Using (29) and (34), we obtain

I(3)—4vre
, ) ) (&G)(G'&)V V,~

QQO Q'QO

dc' 1 ~Ix —y"(C, C'; ~)
7i (d

4me ) ) (qG)(G'g)V ~VC, y'(G, G';0).
C QO Q'QO

(36)

D. The seventh frequency moment sum rule

According to (31), we have

+OO

I = QJ I mt~ ([d)

) ) (gG)(G'i[))V ~V~ M~ l(G, G'),
QQO G'QO

(41)
It follows from (35) and (36) that

(gG)nc, = —) y(G, G', 0)(I)G') V~
G'gO

In this way, nQ is uniquely determined by the crystal
potential and the static density response function. Al-
though the important result (37) has some similarity to
a linear response relation, this is not the case, because
y(G, C'; 0) itself depends in general on V(r). It reduces
to a linear response relation in the weak pseudopotential
lilnit when g(G, C'; w) can be replaced by b~c y(G, ~),
where y(G, u) is the density response function of the jel-
lium model.

With the aid of (37), we rewrite (34) and obtain

m n„ b(u))
e~((u) = 1 — " + nr(u

mopt AO

4me ) (gG) V ~n~
GQO

4me+ ) ) (rIG)(G'g)V ~VC y
C $0 G'QO

x(G, G';id), (38)

which includes the insulator (29) for m/m ~q
——0.

The fifth frequency moment of Ime~(~) is derived us-
ing the f sum rule for y(G, C'; u), i.e.,

+OO

M~'l(G, G') —= II (G Gl .
)

11= @
—„(0][[n~ &0] n-~ ll»

G G'
AQ Q~ )

+OO

M~'l(G, G') = ~'~"(G, G'; ~)
7r

= —,—«l[[«j~ &0] «'i-~]lo). (42)

Formally, it is not diKcult to evaluate the commutators
in (42), but its numerical evaluation for arbitrary crystals
is presently very difBcult. The formal result is presented
in Appendix A. Here, we restrict ourselves to nearly
free electron (NFE) systems and replace M~sl(G, C') by

M& l(G), where M~ &(G) is the third frequency
moment2 of g"(G, ur), the dissipative part of the density
response function y(G, co) of the jellium model.

m (2m j (2m)

+~'[1 —I(G)]I. (43)

(Ek;„) = (Ol p (P /2m)l0)/N is the average kinetic en-
ergy per electron, when N is the number of electrons.
It consists of the kinetic energy of independent electrons
and of a correlation contribution,

(Ekin) (Ekin)0 [rec(re)]
rs

(44)

where (Ek;„)0 ——3s&/5. s& is the &ee electron Fermi en-
ergy and s,(r, ) is the correlation energy per particle as a
function of the density parameter r, [4m(r, ao) s/3 = no
ao.'Bohr radius]. e', (r, ) is known in the metallic regime
&om MC simulations. Correlation eH'ects including
exchange arising &om the Coulomb interaction are ac-

where M&s&(G, C') is the third frequency moment of
II (G Gl.

)
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counted for by

1 . k G.
I(G) = —— ) K(G, k) [S(iG —ki) —1]

kgo, kgG

with

( )
k G C(C —k)

k2 ]C —kf'

and the static structure factor

(45)

(46)

this, one must introduce a cutofF in the C summation
related to the finite spatial extent of the nuclei. It was
pointed out by Hopfield in connection with I( ) that
this sum rule makes sense when smooth pseudopotentials
are used. Smooth pseudopotentials have been designed
for all elements of the periodic table, but they are, in
general, nonlocal.

In general, response functions and thus dielectric func-
tions cannot be calculated exactly. In the next section,
we will examine the most common approximations with
respect to their ability or inability to satisfy the sum rules
that have been derived in this section.

(47)

S(q) is known &om MC simulationss and I(G) was first
calculated by Iwamoto et al.

III. SUM RULES AND SELF-CONSISTENT
FIELD APPROXIMATIONS

FOR THE DIELECTRIC FUNCTION

E. Sum rules for Im[ —1/ell (q ~ 0, &u)]

The asymptotic high &equency expansion of e~ (~) is
given by

I(i)
ei((u) = 1— I(7)

~8 (48)

~(~) y'(3) y'(5) ~(7)
1/all(q~O u) =1+

2 + 4 + s + s +.
(49)

E(2 i) are the &equency moments of Im[—1/all(q -+
0, m)] expressed in terms of I(

y (&) I(~) (50a)

F&'& = [I(')]'+ I('), (50b)

S &') = [I(')]'+ 2I~')I(') +. I&'& (50c)

E( ) = [I( )] + 3[I~ )] I( ) + 2I~ )I( ) + I( ). (50d)

For V~ ~ 0, the jellium results of Sec. I are recovered.
E( ) was previously derived by Taut in a different way.
The above results can be generalized to arbitrarily inho-
mogeneous systems by replacing q+ G, q+ G' by q, q'.
Then there is no Brillouin zone that restricts q and q'.

Finally, some comments on the external potential V(r)
are necessary. If we wish to include the response of all the
core electrons, V(r) is the superposition of the potentials
of the nuclei. Representing the nuclei as point charges,
V(r) is singular at the nuclei with the consequence that
the moments I( ), F(2 ) diverge for n ) 1. To avoid

where for n = 1, 2, 3, 4 the moments I( " ) are given
by (21), (35) or (36), (40), and (41). Using e~(~)

q m O, cu), the asymptotic expansion of 1/ell(q
0, u) is obtained by inverting (48),

Microscopic calculations of the dielectric function are
usually carried out in one of the variants of the self-
consistent Geld approximations such as the RPA, the
ALDA, or time dependent local density approximation
(TDLDA) of density functional theory. As pointed out
in the Introduction, self-consistency enters at two levels:
first in the calculation of single particle states on which
the independent particle response function is based, and
second in the calculation of the effective dynamical field
to which the supposedly independent particle responds.
Sum rules tie these two self-consistency conditions to-
gether. Vfe now pose the question: To what extent do
SCF approximations satisfy the sum rules we derived
above'7

Before we go into the details of the investigation, we
summarize the results. The first, third, and Gfth fre-
quency moments are satisfied in a SCF calculation, pro-
vided the effective single particle potential that deter-
mines the single particle states for the independent par-
ticle density response function are calculated using the
same self-consistency condition as imposed on the calcu-
lation of the effective dynamical potential. This means
that Hartree type single particle states must be used
when the response is calculated in the time dependent
Hartree approximation (commonly known as RPA) or
LDA type single particle states for the response in the
ALDA or TDLDA of density functional theory.

Past calculations of the dielectric function within the
RPA were often based on single particle states calculated
by the Xn method, a particular form of the LDA. In this
way, sum rules are violated as will be shown explicitly.
Violations of sum rules are also likely to occur when ex-
change correlation effects are taken into account differ-
ently in the effective single particle potential and in the
effective dynamical potential.

To satisfy the seventh frequency moment sum rule
is much more diKcult, because it involves exchange-
correlation (xc) effects via the correlation contributions
to the kinetic energy and to the Coulomb interaction.
The investigation within the NFE approximation illus-
trates that calculations carried out consistently in the
sense that the first, third, and fifth frequency moments
are satisfied, and do not necessarily satisfy the seventh
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moment sum rule. In fact, the RPA and the ALDA vio-
late the seventh moment sum rule. For the RPA, this is
not surprising, because xc efFects are neglected at both
levels, but even the ALDA violates this sum rule. First
attempts to overcome this problem were made by Gross
and Kohn, Iwamoto and Gross, and Dabrowski. ~

A. Self-consistent Beld approximations
and the third and Bfth frequency moments

rive e~~ (q, ~d) and obtain the optical properties in the limit
q~0.

In the ALDA, we have, with v~ = 4me /q2,

ALDA(

= 1 —v~) y (q, q+ G;id)e~p(q, (u), (54)

where ~GG, is the inverse of the matrix EGG defined by

We first demonstrate that a consistent ALDA calcu-
lation of e(q —+ 0, id) satisfies the first, third, and fifth
frequency moment suxn rules. This includes the RPA if
on both levels xc efFects are neglected. The proof is very
simple if the starting point is the form of e~(id) displayed
in (38). The first and third frequency moments are al-
ready built in, but the density nG has to be calculated
&om the solutions of Kohn-Sham equations. Thus, we
have to consider the 6fth &equency moment. This is
obtained from the last terin in (38), which depends on
y(G, G', id).

In the ALDA, we have

(C, G', id) = ) y (G, G"; id) e~'„~, (q -+ 0, ~d).

(51)

t«(q, id) = ec~ (q, id) + c~ (q, id)

with

tgG. (q, id) = h«+ v~+c, y (q + G, q + G'; id) (56)

and

=-«(q ~) = ) K"'(G —G")X'(q+ G",q+ G', ~).
Glt

(57)

E~c (q, id) is forinally identical to the microscopic di-
electric matrix introduced by Adler and Wiser in
the RPA. The inatrix =cc (q, id) accounts for dynam-
ical exchange-correlation efFects and, in the ALDA, we
have

ZG G'
yP(G, G';id) = —— nc g,m (52)

Here, yP(G, C";id) is the independent particle response
function, denoted by an upper index 0, which is calcu-
lated using the (self-consistent) solutions of the Kohn-
Sham equations. Z~~, (q -+ O, id) is an element of the
inverse of the microscopic dielectric matrix ec~ (q -+
O, id), which is related to yP(G, C', id). Its precise form
will be given later. It is sufBcient to note here that
e~c (q w O, id) = h«+ . and e&&, (q w O, id)
bGG~ —~. .. Now, the independent particle response func-
tion y (G, G'; id) has the high frequency behavior,

Kxc( )
d

Vxc~ ) Kxc(G) iG r

G

with

V"'(r) = [ns„,(n)]~„„(,) = ) VP'e'

It follows from (58) and (59) that

G Vc' = ) K"'(G —G')G'n~

(58)

(59)

(60)

and, for large co, we have

2 O2

(u4 m n
GQO

~s g - ~ - (& G)(G G')(G' 9)
m2

GQO G'QO

AG Q&xV GVG~
AO

(53)

Whereas V"'(r) enters the Kohn-Sham equations, which
provide the single particle states to calculate yP, K"'(r)
contributes to the self-consistent dynamical potential.
s„,(n) is the exchange-correlation energy per electron in
the jellium model of density n. Equation (60) will be
important in checking the ful6lment of the sum rules in
the ALDA.

For q ~ 0, (54) reduces to 1/e~~ (q ~ 0, id) =
happ (q ~

O, ~d), or

e~~ (q -+ 0, ~) = 1/epp'(q ~ 0' ~)
This is formally identical with the exact result (48) when
only the 6rst three odd moments are considered, but the
density nG is obtained &om the solutions of the Kohn-
Sham equations (or &om the Hartree equations for the
RPA). Note that V~ is the bare crystal potential. We
see that the use of (38) as the starting point to calculate
the optical properties avoids automatically inconsisten-
cies with respect to the 6rst, third, and fifth frequency
moment sum rules. However, most SCF calculations de-

= happ(q W O, id) —) ) Ep~(q W 0, id)
Ggo G'QO

x M~~, (id)e~ip (q ~ 0& id) & (61)

where M~~, (id) is the inverse of the submatrix or mi-
nor M«~(id), which is the microscopic dielectric ma-
trix EGG without the first row and 6rst column. To see
whether or not (61) satisfies the first three sum rules, we
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consider the high frequency expansions of the elements
of the microscopic dielectric matrix that constitute the
right-hand side of (61). Specifically, we need

()IGGI ——lim vq+Gq-+0
(q+ G) (q+ G')

nG —G'

(~)

epp(q M 0, (d) = 1—Ioo

For GQO,

(3) (5)
Ioo Ioo (62a)~4 ~6

) - ..(») (G" + q)(G'+ q)

G I I

(66)

and, in particular,
I(~) I(3)

epc(q M 0, id) =-
Cu4

(62b) (3) . (qG)3-Ipp: vq ) Vcnc
m

Ggo
(67)

(&) (3)
IGo IGo

ecp(g M 0, (d) =- ~ ~ ~

(d

andfor G $0, G'Q0

(62c)
(3) ~- ~- (qG)(G G')(G'q)-

Ioo —va g ms —G G'nG —G')
Ggo GI+o

(~)

Mcc, (id) = = bcc + + . (62d)(-~) IGG
EGG~ (0, id)

(3) - (qG')(G'G)-
Ioc ———vq) V G nc G

Gl

For any G and G', IGG, is defined by

+OO
(2n —1) 2n —1-IIIcc, —— ~ ecc, (q -+ 0, td).

7l
(63)

+OO

+) IP'(—G') id ycc (q H O, id),
Gl —OO

(69)

Inserting (62) in (61), we obtain the asymptotic expan-
sion of e~~ (q ~ 0, cd). The expansion coefficients are then

the sum rules IALDA for e~~ (q —i 0, id) in terms of the sum
(2n —Z)rules IGG,

(3) (qG') (G'G)
Ico ———vc ) V cnc

Ggo

) ) gxc(G Gi) (q )( )

GI GII QO

(~) (~)
ALDA 00 ~ (64a)

X Vg» ngI @II (7O)

(3) (~) (i)
IA&DA —Ioo + ) IOGIco~

Ggo

IALDA: Ioo + ) (IocIco + oc Icp)(5) (5) (&) (3) (3) (i)

Ggo
(&) (i) (i)+ ) ) Oc Gc' G'0'

Ggo GIZMO

and for 1le~~ (q ~ 0, ~)

(64b)

(64c)

where the single particle potential VG. that enters the
Kohn-Sham equations is defined by

VG ——VG + vGnG + VG'.

Inserting (66)—(70) into (64) and (65) and using (75) and
(60) one finds that the first, third, and fifth frequency
moment sum rules are satisfied in the AIDA. If, how-
ever, the solutions of the Kohn-Sham equations are used
to calculate the dielectric function in the RPA, i.e., ne-
glecting K"'(r), then (for example)

(~) (~)
+ALDA —Ioo ~ (65a)

4~e2 G 2
(3)

4n.e ). (qG)
m2 (72)

(3) (3) (&) (~)
ALDA Oo + ) OGIGO&

+Ar. DA = Ioo + ) (IocIco + IocIGo)(5) (5) - (~) (3) (3) (i)

G
- (~) (~) (&)+) ) IocIGG~IG~O

G G'

(65b)

(65c)

The additional term V"G is responsible for the viola-

tion of I(3~ given by (35).
Finally, we point out that the general definition of the

optical mass given in (32) and evaluated in the SCF ap-
proximation is equivalent to the well-known determina-
tion of I, ~q &om the band structure directly. This is
outlined brieBy in Appendix B.

To prove that IALDA is formally identical with I(
and EALDA with E( ) as derived in Sec. II, we need

to evaluate the appropriate elements IGG, . For any G(2n —X)

and G', we find

B. Sum rules for local Held corrections

Before we consider the seventh frequency moment sum
rule, we consider once more (61). As the right-hand side
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of (61) shows, two contributions to e~~ (q m 0, u) can be
distinguished. The first term, Epp can be interpreted as
arising from direct interband and intraband transitions,
whereas in the second term, the oK-diagonal element ipG
and iGO describe the coupling of long-wavelength and
short-wavelength Huctuations. This term is denoted local
field corrections (lfc) and originates from the microscopic
inhomogeneity of the system. Obviously, its calculation
increases the computational work considerably and one is
naturally interested to find arguments for neglecting lfc
as the Ehrenreich-Cohen approximation suggests. Here
sum rules can provide some useful information. We define
for the lfc

~I(2n —1) 2n —1I
7r

Ggp G'Qp

x(q + O, ~)M~~, (~)ig 0(q + O, ~))

(d Im 6~~ Q M 0, (d

Whether or not lfc are important will of course depend
on the system in question.

C. Violation of the seventh frequency moment
sum rule by RPA and ALDA

It is appealing that a consistent RPA/Hartree or
ALDA/LDA calculation satisfies the first three sum rules.
This, however, is not true for the seventh frequency mo-
ment sum rule, as we shall demonstrate for NFE systems.
As pointed out in Sec. II, working to second order in the
weak pseudopotential e~(q -+ 0, u) can be expressed in
terms of the density response function y(q, ~) of the jel-
lium model taken at q = G = IGI, where G are reciprocal
lattice vectors. The third moment of y" (G, u) is needed,
which evaluated in the RPA yields

RPA

(75)

and find that

—Eoo(g M 0, Q/) } (73)

(74a)

It differs &om the exact result M~ 1(G) [Eq. (43)], by
the neglect of all terms that account for exchange and
correlation e8'ects. The ALDA yields

4me
AI~ i= — ) (qG) n ~(VC —Vc j

Ggo

) (qG) n ~(n~vc + Vg),m
Ggo

where the last step reqires (71).

(74b)

+w&(1 —ger. DA(G) )
with (I(:~3 ——3~~no)

(q )'
az, D&(q) = zo

I F

(76)

(77)

. ):).(~G)(GG')
Ggp G'Qp

x(G'g)n~ c,i(V g, VC —V C, V~ ). (74c)

It is interesting to note that local Geld corrections do not
contribute to the f sum rule, so that lfc lead only to a
redistribution of oscillator strengths. The enhancement
in one part of the spectrum must necessarily be accompa-
nied by the reduction in some other part of the spectrum.
It appears that lfc tend to enhance the oscillator strength
in the high frequency spectrum and to suppress the low
frequency part, and this can be shown explicitly in the
NFE approximation.

AI( ) provides us with an overall estimate of the er-
ror that is made in the Ehrenreich-Cohen approxima-
tion when Ime~~(q ~ 0, (d) = Imeoo(q ~ 0, ~). Since
the two terms in (74b) tend to cancel, the Ehrenreich-
Cohen approximation appears to be more reasonable
than a (inconsistent) RPA calculation using LDA sin-
gle particle states [see (72) or (67) with (71)]. If
IAI~~ xl/I~~ xll && 1 for n = 3 and n = 5, one has
some indications that lfc might be unimportant, but if
IbI~2 1/I&2 xll 1 then lfc are definitely important.

and

1 d„.fn[~-(n) + s.(n)l)l-=-.

1 7t 2 QEc= —+ —nr,
4 6 'dr,

7C 3 8 Ec2—0!P (78)

where n = (4/9vr) ~ and vk~ = v~ —k~,
(3/47ro()r, i—, and s, are in atomic units. In order to

agree with the exact xnoxnent M~31(q) [see Eq. (43)],
Q~LDA(q) would have to be equal to

4 (q' )

&3(q) = I(q) ——,
I I

[(&kin) —(&kin)o](2m)
4 (q2) d= I(q)+ —., I, I „„[""(")1 (79)

g~LDA(q), however, is completely different froxn Q3(q),
as we show for r, = 2 in Fig. 1. This failure
of the ALDA to account properly for dynamic corre-
lation eEects sheds some light on the limitations of
both the ALDA and the LDA, since the ground state
theorem relates the exchange-correlation energy e, via
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1.0 i[
/

~ G„„„(q)

0.5 —2—[3—g(o)]~~

approxixnation, i.e. , g(q, u) = g(q). They are not only
used in calculations of static or low &equency proper-
ties, but also to study dynamical properties such as the
plasmon dispersion. We shall show that the meaning of
"static" here is not unique.

An ixnportant constraint (for id = 0) on g(q, 0) comes
Rom the requirement that y(q, id) must satisfy the com-
pressibility sum rule24 in the limit q —+ 0. Applied to
yH(q, id) gives

—0.5

q/kF
limg(q, o) = go( ) (81)

FIG. 1. Limiting forms of g(q, u) for r, = 2. Notice
Qs(q) = Q(q, oo). Partially redrawn from Fig. 4(b) of Ref.
13.

frequency-, momentum-, and coupling-constant integra-
tions of g"(q, id;r, ). This violation of the seventh mo-
ment sum rule by e~(u) evaluated in the RPA and in
the ALDA is of course not limited to NFE systems, but
applies also to the general case, when the crystal po-
tential is not weak and M&s&(G) has to be replaced by
M&s&(C, C') derived in Appendix A.

D. Sum rules and the "generalired. mean Beld
approximation"

A method to overcome these problems, in princi-
ple, is provided by the so-called generalized mean field
approximation. Following a many-body analysis by
Hubbard, 2 a so-called local field factor g(q, u) is intro-
duced to account for dynamical exchange-correlation ef-
fects within the jellium model (not to be confused with
local field efFects arising from inhomogeneity). In this ap-
proximation, the density response function (indexed by
II for Hubbard) is given by

pp was defined in (78) and can be calculated using re-
sults &om MC calculations. The ALDA obviously
satisfies this constraint, but there it is assumed to be
valid for arbitrary q. To go beyond the ALDA, Utsumi
and Ichixnaru2s designed a form of Q(q) by interpolat-
ing between the limit (81) and a large q limit derived by
Ki.mbaO

lim g(q) = [1 —g(0)] (82)

did Imp (q, (d)

~p p ~ 11+vq[1 —&(q)]~'(q, ~)l'
The physical meaning of Q(q) that interpolates between
(81) and (82) is not clear because, in principle, (83) de-
termines Q(q) for arbitrary q, when S(q) is known from
MC simulations.

Furthermore, the third frequency moment M( ) (q)
again fixes a difFerent static Q(q) = Qs(q) for any q, where
g3(q) was defined by (79). In the small q limit, gs(q) re-
duces to

where g(0) is the pair distribution function at r = G. But
g(q) defined by (82) has nothing to do with g(q, O) be-
cause, (82) follows from the fluctuation-dissipation (FD)
theorem with the assumption that g(q) is independent of
v, r.e.,

Xxx(q, ~) = x'(q, ~)
1+vq[1 —g(q, ~)]& (q, 'd)

(80) (q 5'
»m &s(q) = ~s Iq~p (ky ) (84)

Again, g(q, id) cannot be calculated exactly. In most
cases, phenomenological forms are designed by fitting
them to exact constraints arising &om sum rules, asyxnp-
totic limits, and the Huctuation-dissipation (FD) the-
orem. Of course, a Q(q, id) obtained in this way de-
pends crucially on the choice of yo(q, id) used in (80). In
most cases, the independent particle response function
yP(q, u) is the well-known Lindhard function. Consider-
able confusion has been caused by a definition used by
Niklasson, where the Fermi function in the definition of
the Lindhard function is replaced by the true momentum
distribution of the interacting electrons. This has impor-
tant consequences when the third &equency moment of
gH (q, id) is evaluated, and this has been overlooked many
times in the literature, as will be discussed below. If
g (q, u) is the Lindhard function, then y~ (q, id) goes over
into the RPA result when g(q, w) = 0.

Practically all forms used in applications are "static"

with

&--"[*(-)+ .(-)])4 23"
eg 5 dn

3 11 13 2 (&c—+ —'KAf'88'c + —7l CRT
20 10 10 ' dr, (85)

In Fig. 2, pp(r, ) and 7s(r, ) are plotted as functions of r„
together with g(O, r, ). Obviously ps(r, ) g pp(r ). The
rather difFerent behavior of g~x,D~(q), which coincides
for small q with g(q, 0) and which is plotted together
with Qs(q) in Fig. 1, demonstrates the incompatibility of
the static local field factors g(q) satisfying difFerent ex-
act requirements, as pointed out previously by Iwamoto.
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0.3 u limit, when dynamical screening becomes inefficient,
the approximations become equivalent and yield for any
q (in atomic units),

0.2—

0.1—

lim Q" (q, (u) = 1 c (qi'
vx& (d ~ (ky ) (S9a)

with c = 46vr/15. (Glick and Long find c = 23vr/15. )
Using (87), one finds for large frequencies

0
0

I
S

1 c t'qi'
lim g'(q, (u) = g(q, oo)—

ur —+ao gx, ~s/2 ( /g~ )
(s9b)

FIG. 2. Parameters po(r, ), p (3r,), and g(0; r, ) that deter-
mine limiting forms of Q(q, &u) in the sxnall and large q limits.

&(q ~) = &'(q ~) + +"(q ~) (86)

and satisfies Kramers-Kronig relations, for example,

From a fundamental point of view, a &equency indepen-
dent local field factor is an ill-defined concept.

Nevertheless, in dealing with small u and small q
properties, it appears that the ALDA, which satisfies
the compressibility sum rule, is a reasonable approxima-
tion. Even the small q plasmon dispersion constant o, is
much better described by Q(q, O) = gAx, DA(q) than by
g3 (q) . The latter one hardly changes the RPA value of
a. Whereas in the small q regime g(q) is important, for
very large q (q )) 2k~) the screening denominator in (80)
becomes inefFective because it tends to unity. The impor-
tance of g(q), therefore, diminishes. This might explain
the success of LDA calculations. The largest uncertainty
prevails in the intermediate q region for k~ & q ( 3k~,
which afFects the optical properties, because the small
and most important reciprocal lattice vectors C related
to the potential coefIj.cient V~ are located in this region.

In order to satisfy all known requirements, it is crucial
to keep the frequency dependence of Q(q, ur). In fact,
g(q, u) is a complex function of u,

Nik(q)
(3)

I
(E

m (2m) (2m)

+~~ [& —gNo (q, ~)1I (90)

which on comparing with the exact result (43) gives

gN;g(q, oo) = I(q),
with the large q limit

(91)

2
lim gN;k(q, oo) = —[1 —g(0)].q~ oo

(92)

However, adopting the Lindhard function for y (q, u)
and using (79) and (82) leads to

hm g(q, oo) = lim gs(q)
q —+oo q —+oo

= -[1—g(o)]+ —,
I I

[«-(& )]=2 4 fq'l
3 (2m) c)t',

As noted above, there is considerable confusion in the
literature about the large q lixnit of g(q, oo) = gs(q). If
we adopt for yo(q, u) in (80) the form that Niklasson2s
uses in his derivation, the third frequency moment gives

&'( ) —& ( ) = &
7t (d —(d

(87)

For u = 0, we obtain an important sum rule for Q(q, ~),

g(q, O) —gs(q) = P (88)

when gs(q) and g(q, 0) are known, where gs(q) is given
by (79) and Q(q, 0) satisfies the coxnpressibility sum rule.
We observe that dynamical processes that constitute
g"(q, w) are responsible for the difFerence between g(q, 0)
and Q's(q) = g(q, oo), where the last equality follows
Irom (87). Such dynamical correlation processes are, for
example, multiple particle-hole pair excitations, multi-
ple plasmon excitations, and combined plasmon particle-
hole pair excitations. For small q, these were studied
by Dubois and Kivelson, 2~ Hasegawa and Watabe, and
Glick and Long in the high density limit. In the large

which goes to (—oo) as q . The q2 divergence is known in
the literature and the completely difFerent behavior is
illustrated in Fig. 1. Pathak and Vashishta also point
out that working with the Lindhard function, they arrive
at Qs(q) = I(q) when they neglect the difFerence between
(Ex,;„) and (Ex,;„)o.

Apart from the constraints on g(q, u) discussed above,
very little is known for arbitrary q and ~. Based on the
knowledge of Q(q, 0), Q(q, oo) for small q and on (89a),
Gross and Kohn and Iwamoto and Gross designed a
Pade like interpolation formula for g(q, ~). Dabrowskiis
tried to extend this interpolation scheme to arbitrary q
adopting various approximate forxns of g(q) for g(q, 0)
available in the literature. This would be relevant for
application to the optical properties in the NFE approx-
imation, for example. Further work along these lines is
needed.
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IV. CONCLUSION

The optical constants can be evaluated equally well
from the transverse dielectric function e~(q, u) or the
longitudinal dielectric function e~~(q, u) in the limit of
q —+ 0. Since the calculation of the macroscopic di-
electric function &om the microscopic structure consti-
tutes a complicated many-body problem, one must de-
pend on approximations. Sum rules provide general cri-
teria to examine the quality of the involved approxima-
tions. We have shown that in the optical limit the Grst
four odd &equency moments of both Ime~(q ~ 0, u) and
Im —

1/e~~ (q ~ 0, u) can be evaluated. With increasing
order, the general information that is contained in the
moments becomes increasingly detailed. While the first
moment depends on the number density of the electrons,
the third and fifth moments refIect the inhomogeneity of
the electronic system determined by the external poten-
tial V(r) that causes the inhomogeneous distribution of
the electron density n(r). Correlation contributions to
the kinetic energy and exchange-correlation effects aris-
ing &om the Coulomb interaction give important contri-
butions to the seventh moment.

The moments are obtained by first rewriting e~(q ~
0, u) in terms of density response functions. The fifth and
seventh frequency moments of Ime~(q ~ 0, ~) are re-
lated to the Grst and third &equency moments of the den-
sity response functions. The moments of Im —1/e~~(q ~
O, u) can then be expressed in terms of the &equency
moments of Ime~(q -+ 0, cu).

e~(q + O, u) evaluated in the RPA or ALDA sat-
is6es the 6rst, third, and Gfth moments, provided the
band structure is evaluated in the Hartree approxima-
tion or LDA, respectively. Many RPA calculations are
based on LDA band structure calculations, such as the
Xn method, and this leads to violations of sum rules.
To satisfy in this case the first three odd moments, the
dielectric function must be calculated in the ALDA us-
ing the same approximation for xc effects as in the LDA
band structure calculation.

In SCF approximations, such as the RPA or the ALDA,
sum rules for local field effects arising &om the inhomo-
geneity of the system can be de6ned and the Grst few mo-
ments can be calculated. In this way, one can estimate
the overall error which is made when local Geld effects
are neglected. This is important information, since the
evaluation of the local Geld effects increases the computa-
tional effort substantially. A comparison of approximate
forms of the third &equency moment shows that the ne-
glect of local Gelds appears to be more reasonable than an
RPA calculation inconsistently based on a band structure
calculation in the LDA.

Although the seventh &equency moment can be for-
mally derived for arbitrary crystals, its numerical evalu-
ation is presently possible only for NFE systems, in which
case the third moment of the density response function of
the jellium model is required. Numerical estimates can be
obtained &om computer simulations of the ground state
properties of the jellium model.

Both the RPA and the ALDA lead to a violation of
the seventh moment sum rule. The RPA by definition

neglects xc effects altogether, whereas the ALDA can-
not properly account for dynamic exchange-correlation
effects. In principle, these deficiencies can be overcome
within the "generalized mean field theory" of the jellium
model. In this approach, exchange-correlation effects in
the density response are expressed in term of a local Geld
factor g(q, u). As is clear &om (80), it influences deci-
sively the response at small and intermediate q values up
to about three k~, whereas for very large q, the screening
denominator approaches unity and the speci6c form of
P(q, ur) becomes less important. In most applications, a
"static" approxiination g (q, u) = g (q) is used. Such an
approximation cannot be valid, in general. As pointed
out by Iwamoto, 2 a Q(q) = Q(q, O) that is compatible
with the compressibility sum rule as derived, for exam-
ple, in the ALDA is incompatible with a g(q) = gs(q) de-
rived &om the third &equency moment. Both forms are
incompatible with a g(q) = gFD(q) that is fitted to S(q)
obtained by computer simulation using the FD theorem.
Q(q) = QUi(q) as designed by Utsumi and Ichimaru
satis6es the compressibility sum rule for small q and the
large q limit obtained by Kimball, using the FD theo-
rem. Whether such a procedure yields any improvement
over the ALDA is doubtful. For small q and &equencies
up to the plasma &equency u„, the ALDA appears to be
a reasonable approximation.

To satisfy all the known requirements, one has to keep
the &equency dependence of Q(q, u). In fact, Q(q, u) is
complex and can be chosen to satisfy Kramers-Kronig
relations and all known constraints. Using g(q, O) and
g(q, oo) = gs(q), a suin rule for Img(q, ur) can be de-
rived &om Kramers-Kronig relations. In addition, for
large u, Im g(q, ~) ur ~ is known &om a high density
expansion.

Some confusion exists in the literature about t (q, oo).
This can be traced to difFerent definitions of g(q, u) as
defined, for example, by Niklasson and by many other
workers in the field. Due to the fact that Niklasson de-
6nes an independent particle response function, where
the Fermi function that is used in the Lindhard func-
tion is replaced by the true momentum distribution, we
have gN;i, (q, oo) = I(q) and lim~~ I(q) = sll —g(0)j,
whereas the de6nition through the Lindhard function
leads to an additional term to g(q, oo) that diverges as
(—q') for q m oo.

Very little is known for arbitrary values of q and
For small q, Gross, Kohn, and Iwamoto (GKI) de-

signed a Pade like interpolation formula that by con-
struction satisfies appropriate requirements, i.e., Q(q, D),
Q(q, oo), and lim ~ Im Q(q, u). Dubois and Kivelson "
and Hasegawa and Watabe2 calculated Im e(q, u) as aris-
ing &om dynamical correlation processes called multipair
excitations such as pair-pair excitation, plasmon-plasmon
excitations, and plasmon-pair excitations. It is based on
a decoupling of a four body correlation function by a
product of two body correlation functions. A numeri-
cal evaluation leads to a form of Iin Q(q, ur) that differs
substantially &om the GKI form in the small and inter-
mediate u regimes, but approaches the same limit for
u ~ oo. Q(q, u) can be used to determine small q plas-
mon dispersion and daxnping. Details will be published
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elsewhere.
A diferent, momentum conserving decoupling scheme

was used by Toigo and WoodruK Kugler demonstrated
that this is an example of a general scheme proposed by
Tahir-Kehli and Jarrett. Although, in principle, appli-
cable for arbitrary q and ~, it has a number of disad-
vantages. (See review article by Kugler. ) For the eval-
uation of optical properties in the NFE approximation,
Q(q, u) is required for q = G with kx; & 1 & 3k~ and

y p Qpp & ct) & 2')p In this intermediate q and u regime,
g(q, u) is very uncertain. More work is needed to un-
derstand the rather complicated dynamical correlation
processes in this (q, u) regime.

APPENDIX A

Here we present the result of a straightforward but
lengthy evaluation of the commutators that lead to
M&s&(q, q') needed for the evaluation of the seventh &e-
quency moment sum rule in (41) in the general case. We
obtain

M"'(q, q') = ' ' (q q')(&(q q')+T(q. q')

ACKNOWLEDGMENT +W(q, q') + (u„[1—I(q, q')]), (A1)

I am grateful to R. O. Jones for a critical reading of
the manuscript, where

354(q q')' 2 h2(q. q') 52(q q')
(A2)

(A3)

w(q, q') = 1 1 ~ (q" q) (q —q") q'
n (q q') m2 (A4)

and APPENDIX B

with

I(q, q') = ——), K(q, k)
1 . (k. q)

N (q' q)

x [S(q —k, q' —k) —1],

(k. q) q. (q —k)
k2 /q —k/2

(A5)

(A6)

In Sec. II, we gave a general de6nition of the optical
mass in terms of density response functions [see Eq. (32)].
In Sec. III, we saw that lfc do not contribute to the f
sum rule. Thus, within the SCF approximation, m pt can
be determined by the f sum rule for Ixnepp(q ~ O, u).
Furthermore, for q m 0, happ(q M 0 (a/) = happ(q -+ 0 (d),
which is given explicitly by

and

S(q, q') = — (o~n,n, .~0) .
1 1

Onq q
(A7)

For q = q' and systems of cubic symmetry, (Al) reduces
to

p2

Imepp(q m 0, (u) = n. " —" b(~)
Ap mopt

+ ) ) (qG)
Ggo G'go

x (G'q) V ~V~ g" (G, G'; ~). (B1)

The f suxn rule yields

1 1 ~ (q. q)(q —q) q
Ap q m2 q&—q

qgo

+~,' I' —1(~ ~))l. (A8)

For a homogeneous system, i.e., V~ = 0, (A8) reduces to
(43).

v m
1 ——

p mop
) ) (qG)(G'vy)V c,
Ggo C'$0
1 l9

xV~ — y' (C, C': (u)
2 1960 w=p

(B2)

On the other hand, it is very well known that the opti-
cal mass can be calculated directly from the band struc-
ture according to
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v
mopt

, —,) f&'& f(~i~) (nva)'we~ (B3) (B3) look rather difFerent. The equivalence of the two
definitions follows &om the efFective mass theoremss and
the identity f. g f.',

Here, f. are band indices and ski„~Ek) are the eigenstates
of the Kohn-Sham equations. The integral in (B3) ex-
tends over the Grst Brillouin zone. Note that occupied
bands do not contribute to the right-hand side of (B3).

At first sight, the two definitions of m zt (B2) and (B4)
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