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The problem of electron-electron scattering is solved using the Boltzmann equation and a spe-
cial set of basis functions. This basis treats different scattering mechanisms on the same footing.
Corrections beyond the level of Matthiessen’s rule are easily generated. The resulting Boltzmann
equation has a simple tridiagonal form for Coulomb scattering, and values of transport properties
converge rapidly. Results for electrical and thermal conductivity, the Lorentz number, and the Hall

coefficient are presented.

I. INTRODUCTION

A resistivity p(T') o< T? is often regarded as the signa-
ture of a three-dimensional Fermi liquid. Actual metals
usually display such behavior only in a regime of high
purity and low temperature, which is difficult to attain
experimentally.!»2 However, “highly correlated” metals
have larger Coulomb effects. Examples are the “heavy
fermion” metals® where giant T2 resistivities are seen,
and the high-T, superconductors where the normal state
p(T) and Hall coeflicient Ry are anomalous. In particu-
lar, Ry, rather than being independent of T, often seems
to vary? as 1/T. Therefore, we offer in this paper some
“exact” results for electron-electron scattering in “ordi-
nary” metals. “Ordinary” means that the low-energy ex-
citations are quasiparticles whose behavior is described
by a Boltzmann equation® (BE). “Exact” means that the
Boltzmann equation has been solved with good numer-
ical convergence. In particular, we calculate the devia-
tions from Mattheissen’s rule and test the accuracy of
the usual lowest-order solution. The results confirm ear-
lier work of Smith and Wilkins® and of Lawrence and
Wilkins.” Our main motivation was to see whether any
interesting T dependence of Ry could arise by such a
route. Our answer is negative; the Hall coefficient re-
mains approximately independent of temperature even
for strong inelastic electron-electron scattering.

A realistic calculation of p(T') or Ry (T') for a real metal
is a daunting task. Assuming that the quasiparticle spec-
trum e and scattering matrices are all known, one still
has a Boltzmann equation that couples the distribution
F (k) for the electron state k near the Fermi surface (FS)
to all other states k' near the Fermi surface. It is ap-
propriate to separate the k variation into two types: (1)
“angular” variation on the Fermi surface, and (2) “ra-
dial” variation with &5 perpendicular to the Fermi sur-
face. The first effect is highly nonuniversal, depending
on the shape of the Fermi surface and other material-
dependent details, while the second effect, especially for
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Coulomb and impurity scattering, is universal to good
approximation. In the approximation that kg7 is small
compared to electronic energy scales, effects (1) and (2)
decouple from each other. Our work deals only with part
(2). We neglect “anisotropy” effects coming from angu-
lar variations of the scattering matrices, and solve the re-
maining problem exactly.® However, our method permits
the angular part of the problem to be restored if available
information were to warrant it. We also ignore the “in-
direct” electron-electron interaction through exchange of
virtual phonons,® which for many simpler metals gives
the dominant part of the T2 resistivity at low 7. To in-
clude this effect would complicate the model but not the
numerical algorithm used to solve the problem.

II. BOLTZMANN EQUATION

The linearized Boltzmann equation for electrons in a
metal with a electrical field E, a magnetic field B, and
thermal gradient VT is

(—g—‘;) (qE»vk - %VT-vk)

= (Q@)(k) + (‘Z—f-) IB . [vr x Vi2(k)], (1)
e ) h

where the energy £; is measured from the chemical po-
tential p, v = Vier/h, ®(k) is the deviation of the
distribution function F from equilibrium f, F(k) =
f(ex) — (8f/9¢) ®(k), and (Q®)(k) is the linearized col-
lision integral describing the scattering of electrons off
electrons, impurities, or phonons. The magnetic field
will be treated later.

The particular form of the driving terms and the as-
sociated currents led Allen!? to define a biorthogonal set
of basis functions (see Appendix A) indexed by {nJ}
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where n = 0,1,2,..., labels the beha.vior perpendicular
to the Fermi surface and J = z,y,2z,22,..., labels the
anisotropy of the Fermi surface. In this bams, the lin-
earized Boltzmann equation reads

7l‘kB

qEz ‘5n0 \/—

—V T‘s‘nl ‘SJ:c = Z Qan’J' Qn’J’ )

oy
()

with the electric field and the temperature gradient along
the = axis. Electrical and thermal currents have a simple
form

e =94q Zv,,,cp(k) ( f)

=499 '1’o:c = agoEz + @01 V.T, (3a)
_gZekkaQ(k) ( f)

k T
=g il D1 = a10Fz + 11V, T. (3b)

V3

The spin degeneracy is denoted by g (= 2) and the charge
of the electron by ¢ (= —e). The right-hand side of
Eq. (3) defines the coefficients o;;, which can be directly
expressed in terms of the scattering matrix Q,

oo = 94° (Q ")oz,02 (4a)

o1 = —gq E;—EB (Q_l)Ox,l:w (4b)

a10=ggq Wf/ET (Q H12,02 (4¢)
2 kB 1

a1l = —9——5 (Q )14: 1z- (4d)

The usual transport coefficients, electrical conductivity
o and thermal conductivity k, are related to the aj;
thI'Ollgh O = (oo, and Kk = —a1 + aloaa)lam.

III. ELECTRON-ELECTRON SCATTERING

The electron-phonon part of the scattering operator
Q has been treated in the {nJ} basis previously'® and
is ignored in this paper. Elastic impurity scattering is
diagonal in the energy index n. Here we model it with
an isotropic scattering time Timp,

1
J D (snn’ ‘S.IJ'- (5)

Qimp gy =
ndm!J (n/m)eﬂ' Timp

For inelastic electron-electron (Coulomb) scattering,

Q°® is

QOB (kr) = 7
X Z IV(1,2,3,4)|26(61 + €9 — €3 — 64)
2,3,4
x{f(e1) f(e2) [L — f(es)] [1 — f(ea)]}

X[®(k3) + D(ks) — (k1) — B(k2)], (6)

7995

where 1,2 and 3,4 denote the electrons scattered in and
out, respectively. |V(1,2,3,4)|? is the matrix element
of the equilibrium transition probability. The detailed
analysis of Q€ and its matrix representation in the {nJ}
basis is given in Appendix B. Assuming kT < €F, the
scattering matrix Q€ is

Am3 k3 T? gN4(0)
C _ T I
nJn'J" — I3 (n/m)e ; (JJ

where the v;(JJ') are material-dependent parameters,
N;(0) is the density of states at the Fermi level, and

(n/m)eg =) _ 6(ex)vie = gN1(0)0*(0) .
k

Ri(nn'), (7)

The important inelastic scattering effects are all included
in the universal numbers R;(nn’). Since R;(nn’') vanishes
if n + n’ is odd, the Boltzmann equation splits into two

uncoupled equations,
n'even

9Es 80010 = D, Qv Bniyrs (8a)
n'J!
7l'kB -n'odd or
7 —=VaT bp185e = Y QLyi s Py, (8b)
nIJI

where E and T designate the submatrices of even and
odd n, respectively. We despair of being able to solve the
anisotropy problem because to treat it properly requires a
microscopic theory of scattering so that we can compute
the many material-dependent parameters «;(JJ'). We
are far from having this ability except in the simplest
metals. Fortunately, it is often safe to assume that ~;(zx)
is much bigger than any off-diagonal v;(zJ’). We keep
only the J = J' = z component of Q. sy and have

4m3k3T? gN4(0)

C,E —
Qnm,n’z 3 (n/m)eﬂ'
X [v1 Ri(nn) + (72 +73) Rz(nn')],  (9a)
nzn'zs I3 ('n/m)eﬂ'

X [v1 Ri(nn') + (v2 — 73) Rz(nn’)],  (9b)

where v; is a short notation for ~;(zz). For the sake of
simplicity, we combine the different constants into a time
7(T),

Ly _ AmPRRT?

Te 3% NT(0)717 (10)

and two FS parameters,”’ = (y1 + 72 + v3)/71 and
{cos @) = v2/v1, where v; is a measure of the strength
of Coulomb scattering on the Fermi surface, A measures
the relative amount of umklapp scattering, and (cos6)
is a weighted FS average of the angle between the two
incoming electrons (see Appendix B). A temperature
Ty is defined at the crossover from impurity to Coulomb
scattering via 7.(T0) = Timp,
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T2 2 47['3 k%Tz NT (0) Timp
—_— = = —— im = . 11
2= ! 3 Whime = T (1)

The scattering matrices, including the impurity terms,
can now be written as

E _ g9
Qnan's = (n/m)egt Timp
X (Bt + 3[Ry () — (1= &) Ra(mn)]},
(12a)
N T LR
+ (1 + 2(cos0) — A) Ry(nn’)]}.
(12b)

In both cases, Q = Q™™P + QF is a symmetric tridiagonal
matrix with the welcome side effect that the inversion of
Q is a O(N) process. The electrical and thermal con-
ductivities can be expressed in the scaled temperature

t =T/To,

o(t,A) = [qz(n/m)eﬂ- *rimp] ,
(13)

&(t,A) = oo 5(t, A),

2
I‘.‘,(t, A, 0) = [%k%TO (n/m)eﬂ' Timp:| )
(14)
tR(tA,0) = o t R(t, A, 0),

where 0 and kot are the conductivities for impurity scat-
tering only. The effect of adding Coulomb scattering
is described by the dimensionless functions &(¢, A) and
k(t, A, 6).

The Boltzmann equation obeys a variational
principle,'* and usually the lowest-order (LO) case, i.e.,
(nJ) = (0z) or (1z), is already a good approximation,

1

Lo = [1 + tzA]_ y (15)
3 -1
RrLo = [1 + -5—t2 (2 — 2{cos 8) + A)] , (16)
with the Lorentz number L;o
1+ t2A
Lio(t,A,0) = L ,
Lo( )=Lo 7 (6/5 — 6/5(cos 6) + 3/5A)
(17)

where L is the free-electron result, Lo = 72 k%/3¢2. In
the limit of impurity scattering (¢ — 0), Lo — Lo. The
LO result also provides lower bounds for the FS param-
eters A and (cos#),

A >0, (18a)

2 —2(cos ) + A > 0. (18b)
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Both bounds are always fulfilled since A « (v; + vz —
v3 — v4)? and the definition of 6 ensures 1 — (cos ) > 0.

The overall behavior of the transport coefficients fol-
lows the well-known limiting cases, i.e., in the regime of
impurity scattering (low t), 0 = 09 and k = kot, while
for Coulomb scattering (large ¢), 0 oc t72 and k x t!
with the crossover at ¢ =~ 1. In both limits the Lorentz
number is a constant, but the coefficients of o, k, and
L are strongly dependent on the magnitude of A and
(cos 8); for L see Fig. 1. The dependence on A is easily
understood. The resisitivity of metal is increased if it is
a strong umklapp scatterer as a large amount of momen-
tum is transferred to the crystal lattice. The changes
in electrical and thermal conductivity are roughly pro-
portional to 1/A. Similarly, a large angle 6 leads to
a large loss of momentum and, hence, to an increase
in thermal resistivity. The Lorentz number L = k/To
shows strong deviations from the Wiedemann-Franz law
L = Ly in Fig. 1 and has become an important tool to
extract information about electron-electron scattering at
high temperatures.! We find that over the whole tem-
perature range, the exact Lorentz number L is very well
approximated by the fit

1+ (at)2A
L(t,A,0) =L ,
( )=Lo i (at)2(0.98 — 0.88(cos f) + 0.56A)
(19)
with @ = 1.06. It must be remembered that the

Wiedemann-Franz law is an empirical law and does not
hold everywhere, e.g., the Lorentz number vanishes in the
limit of pure Coulomb scattering, (¢ = co) and A — 0.
For electron-phonon scattering the Lorentz number is
usually close to its classical value Ly except at very low
temperatures.1?

Although the LO approximation is excellent at low ¢,
its quality decreases at higher temperatures. Figures 2 —
4 show the ratio of the exact (N — oo) over the LO result

L(4,6)/L,

FIG. 1. Lorentz number L vs temperature 7'/T,. L is nor-
malized to the T = 0 limit, Lo. The line styles and symbols
are explained in the inset. The solid lines are plots of the fit
Eq. (19) for a few selected parameters.
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FIG. 2. Ratio of electrical conductivity o and the low-
est-order result as a function of temperature T/To. Figure
1 explains the line styles.

as a function of the temperature t. The thermal conduc-
tivity in particular shows more than 20% deviation for
reasonable choices of the parameters A and (cos6). The
LO approximation is the better the smaller the angle 6
and the amount of umklapp scattering as measured by
A’s.

An important feature of our choice of basis functions
is the fast convergence of the transport properties; as an
example we show in Fig. 5 results for the thermal con-
ductivity x for several choices of temperature t = T'/T,
and A. A few basis functions (IV = 4) are sufficient to
be within 1% of the exact result obtained by a 1/N ex-
trapolation. The convergence happens fast in spite of a
slow convergence of the distribution function ®(k) itself.

According to Eq. (8a), the expansion coefficients ®,,,
of ®(k) are solutions of the normalized equation

S5m0 =" [0nn' + 3t2R(nn’)] @nia(t), (20)
é(k) = qE:l:'Uk:z:Timp Z q)nza'n(E). (21)
1.3+ el

0.1 1.0 10.0
T/T,
FIG. 3. Ratio of thermal conductivity « and the low-
est-order result as a function of temperature T'/T,. Figure

1 explains the line styles.
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FIG. 4. Ratio of Lorentz number L and the lowest-order
result as a function of temperature T/Ty. Figure 1 explains
the line styles.

The total distribution function F(k) is a shifted Fermi
function,

F(k) = (o) - (51 ) 20 (22)

R fler — @Fz Va7 (e, )], (23)

for a slowly varying “relaxation time” (RT) 7(e,t) =
Timp O n Pnz(t) on(e). Although we use the name relax-
ation time, note that this RT is obtained from an ex-
act solution of the linear Boltzmann equation Eq. (2)
and not from the usual relaxation time ansatz F(k) =
f(ex — qE vg,T). Figure 6 shows the slow convergence
of the partial sums 7, = 3_; ®2(t)o;(€) in the regime of
Coulomb scattering. The convergence is similar in the
case of a thermal gradient.

U T ——
% ~lA
. al
3 S e
095 B el
@ ) AN ea
< 0.90f U e
£o0 -
Q N
0.85
.
0.80 N
i 1 1 1 ?
0.0 02 04 06 0.8 1.0

1/N?

FIG. 5. Convergence of conductivity (¢, A, 8) for different
number N of basis functions. Each & is normalized with the
exact result for N = oco. The convergence is shown for several
values of temperature t = T/Tp (0, t = 0.1; A, t = 1.0; O,
t = 10.0) and A (dotted line, A = 0.1; dashed line, A = 0.9).
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FIG. 6. Convergence of the electrical relaxation time 7(¢)
as defined in the text. The parameters are T//Tp = 10.0 and
A =0.9.

IV. MAGNETIC FIELD
AND HALL COEFFICIENT

A magnetic field B can provide additional information
about quasiparticles at the FS. The weak-field Hall co-
efficient Ry = 04y/0zc 0yyB is a commonly measured
transport coefficient. In the following we assume that
only a single connected FS is present. The magnetic field
B is included in the Boltzmann equation (1) through

A 0
(40)0) = (L) LeoprBo vV, 00h),  (24)

where €,3, is the Levi-Civita antisymmetric tensor and
summation over its indices is implied. Formally simi-
lar to the electron-electron scattering term, the magnetic
field adds to the right-hand side of Eq. (2) a term!?2
En'J' AnJ,n’J' (pn'.l"y where

* 7]
Apgnig = _%eaﬁ'yBa /_ de (—b{—) 0n(€) oni (€)

x [Ny(e) v(e)] -2

XY 8(e —ex) vip Fi(k) V4 Fri(k). (25)
k

The e-dependent functions are not affected by the gradi-
ent because v X Vh(eg) vanishes for any function h(eg).
The radial integral is approximately diagonal in (nn') if
the density of states N4+(e) and the velocity v(e) vary
slowly around the Fermi level,

g

m Q¢ bpnt s (26)

Any,n’:r. =

where only J = z,y is kept, following our approximations
in the previous section. The direction of the magnetic
field is chosen along the z axis, and €, is the FS-averaged
cyclotron frequency
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qgB
Qc = f zk: S(Ek) Vek [’Uzk Vyvyk

A / > b(er) vik. (27)
k

In the free-electron case, Eq. (27) reduces to Q. =
gB,/m. In the weak-field limit, the scattering oper-
ator is expanded to first order in A4, (Q + A)™! =
Q'—Q1AQ ' +---, and we get

oy = 99° (Q7"AQ™ oy, 00- (28)

The exact answer in Boltzmann theory for the Hall coef-
ficient is

_ Aoz,0y (Q1AQ Noz,0y
ng Bz (Q_I)Om,ﬂz: AO::,Oy (Q_I)Oy,Oy,

where the first factor is the LO result and determined
by the shape of the FS only, and the second factor is
often close to one for all temperatures. This means that
the Hall coefficient is not sensitive to the nature of the
collision processes described by Q. In the approximation
of Eq. (26), the Hall coefficient reduces to

QC/BZ (Q_z)Oa:,Oa:
P(n/m)eg (@7")3z00

In this approximation it is easy to see that the Hall co-
efficient has at most a weak temperature dependence
and that it cannot change sign. The correction fac-
tor can have different values in different scattering lim-
its, leading to a weak T dependence in intermediate
regions. The LO expression for the Hall coefficient,
Ry = Q./ [quz(n/m)eﬂ], is independent of T, and
shows only small deviations of a few percent from the
result of Eq. (30) (see Fig. 7).

Any strong temperature dependence of the Hall coeffi-
cient must come from a rapid variation of the electronic
properties around the FS, i.e., a variation on the scale

Ry (29)

Ry =

(30)

.06~

1.04

1.02

RH(A)/RH,LO

1.00 b T 0 -

0.98 L. ~
0.1 1.0

T/To

FIG. 7. Ratio of the Hall coefficient Ry to the lowest-order
approximation as a function of T'/To and A. The values of A
are the same as in Fig. 1.

10.0
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kT, or from the presence of disconnected FS where the
relative weight of scattering from electron and holelike F'S
is changed with increasing temperature. This has been
observed in NbO,!? where even a change of sign in Ry is
seen.

V. CONCLUSION

Our formalism allows us to treat different interactions
(Coulomb, impurity, and electron-phonon) on the same
footing. The resulting matrix formulation of the BE in-
cludes the deviations from Matthiessen’s rule with little
extra effort. Magnetic effects are easily included. Al-
though the basis function set is not chosen for a particu-
lar scattering mechanism convergence to the exact results
is rapid.

We found that the Hall coefficient shows at most a
weak dependence on the underlying microscopic scatter-
ing mechanism and temperature but is determined by
the shape and curvature of the Fermi surface. The be-
havior found in the high-T, cuprates* and recently in the
Ceo compounds'* cannot be explained within the simple
approximations we have used here.

While more difficult than in the electron-phonon case,
it is possible to extract the strength of the Coulomb in-
teraction at the Fermi level from the experimental data,
especially if low- and high-temperature data are avail-
able. The procedure is similar to that used in the case of
electron-phonon coupling constant.!® The largest hurdle
at present in applying this approach is the difficulty of
measuring Coulomb scattering in many metals.2
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APPENDIX A: ORTHONORMAL FUNCTIONS
IN TRANSPORT THEORY

In order to cast the Bloch-Boltzmann equation into
matrix form, it is very helpful to introduce a special set
of orthonormal functions. The nature of the problem
suggests that the energy (or radial) coordinates and the
angular coordinates (i.e., coordinates on a constant en-
ergy surface) are separated. The energies are measured
from the chemical potential.

We choose!? the radial basis functions o, (€) to be poly-
nomials defined through

/wde (—% ) o (€)Tm(€) = Snrms

—O00

(A1)
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where f(x) = 1/[exp(z) + 1].
The recurrence relation for these polynomials can be
written more easily by introducing a new function (

through o, (e) = v2n + 1{,(Be/27):

*° Cn (z) Cm(f’:) _ 2
i /;oodac cosh®(zz)  2n+1

Sroms (A2a)

with (o(z) = 1 and ¢(3(z) = 2z. These polynomi-
als are a special case of a recently discovered class of
orthogonal polynomials, the so-called continuous Hahn
polynomials,*® which are defined by

/ dz P,(z) Pn(z) w(x)
_I'n+a+c)F(n+a+d(n+b+c)I(n+b+d)
T (@2n+a+btc+d-1DI'(n+a+b+c+d—1)

X rms (A3a)

w(z) = %F(a +i2)T(b + iz)T(c — ix)T(d — iz). (A3b)

The polynomial P,(z) can be expressed as a hypergeo-

metric function

n (a’ + C)"(a + d)"

¢ n!

x o F —n,n+a+b+c+d—1,a—im;1 ’
a+c,a+d

P,(z) =

(A3c)
where (a)r = a(a+ 1)---(a + k — 1). The orthogonal

polynomials defined above correspond to the special case
a =b = c=d = 1/2 with the recursion relation'”
n?Cn(x) =2(2n — 1)z ln1(x) — (n — 1)2 (u2(z). (A4)
The angular basis Fj(k) is defined through
2k (e —er) Fy(k) Fyr (k) _
>k 0(e —ex)
Further details about the angular basis can be found in

Ref. 10.
Our basis functions are defined as the biorthogonal set

81 (A5)

XnJ(k) = on(ek) Fy(k) [Nt (er) v(er), (A6a)
€ns (k) = on(er) Fy (k) v(ex) (_g_e,,) . (A6b)
with
3 xns (k) (k)
k
= _c:ds on(€)on(€) (—-%)
X {Z (5(6 - Ek) FJ(k) FJI(k)}/NT(E)
k
= bpm 6771 (A7)
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Any function can now be expressed in terms of these basis
functions, for example,

B(k) = bns xni(k), (A8a)
nJ

b = Y $(K) Ens (k). (A8b)
k

Similarly, any operator can be represented through its
matrix elements.

APPENDIX B: SCATTERING MATRIX

We present the detailed calculation of the scattering
matrix Q€ of Eq. (1) and justify the approximations that
lead to the factorized form of Q€ in Eq. (7). After lin-
earizing, the collision integral is a linear functional of

®(k):
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= (Q®)(k) (B1)

(%:%).0

- ?;_ﬂ > IV(k,p;a)*c(k +p— Kk —p)
X {(I’(k) + @(p) — @(kl) _ @(p,)}
Xfi fp (1= far) (1= fpr)

x0(er +€p — €k — €pt), (B2)

where k,p and k/,p’ are the momenta of the incom-
ing and outgoing electrons, respectively, V (k, p; q) is the
two-particle scattering potential with momentum trans-
fer ¢ = k — k/. The notation §¢ describes crystal mo-
mentum conservation for a reciprocal lattice vector G, in-
cluding normal (G = 0) and umklapp processes (G # 0),
and k,..., are vectors of the first Brillouin zone. In the
following the sum over the G vectors is implied. We ma-
nipulate the collision integral by expressing ® in the basis

Xn'J's

2
Qs = Tﬂ D V(k,p;q)*5(cn + ep — enr — £pr)

k.piq
XXnJ(k) [Xn’J'(k) + Xn'J! (P)

We use the form of our biorthogonal basis (Appendix A) to separate energy and angular variables.

the more convenient notation x,s(k) = (ne) x Fy(k).

= Xn' 3 (

Z Xna (k) (Q2)(k) =D QLrm s ®nia, (B3)
IJI
where
k') = xn 5 (P)) fi fp (1= frr) (1= fpr). (B4)

‘We introduce

The factorization of Eq. (B4) is easily done by inserting the

identities 1 = [de;16(e1 — ), etc. After we reordered and relabeled the dummy variables of the angular and radial
terms, the matrix Q¢ can be expressed through purely energy-dependent terms and dimensionless spectral functions

'y,(JJ eeee), (1=1,2,3),

[ ]

SJ,n'.I' = 27;;ﬂ N. (0)2 /d51 dep des dey 5(51 +e2 —€3— €4)f(€1)f(52) [1 - f(t‘a)][l - f(54)]

x[(ne1)(W'e1) 11 (JT €1, €2,€3,€4) + (ne1)(n'e2)yv2(JJ 51, €2,€3,€4)

+(ne1)(n'es)vs(JJ's€1,€2,€3,€4)],

with
v1(JJ';e1,€2,€3,€4) = (Fs(k) Fy (k)), (B6a)
v2(JJ';€1,€2,€3,64) = (Fs(k) Fy (P)), (B6b)
’)’3(.].],;61,62,63,64) = -2 <FJ(k) FJ!(k')), (BGC)

where the brackets denote the weighted F'S integral

V) = - 3 Vo pia)l Yi(e - e

x0(e2 —ep)b(ez — exr)0(eq — pr)-

(B6d)

So far we have made no approximations beyond those
contained in the Boltzmann equation itself. By keeping
only the leading term in a kg7 /ep-type expansion, we
get a simpler form that allows more insight. Two en-
ergy scales are involved in our problem: the temperature
scale kT and a scale over which the density of states

(B5)

N;(e), v(e), and other electronic properties vary, usu-
ally on the order of 0.1-5.0 eV > kgT. The product of
the Fermi functions is sharply peaked around the chem-
ical potential due to energy conservation with a width
o< kpT. In most practical cases, kgT is small com-
pared to the energy scale er on which electronic prop-
erties like N4+ (e) are varying. Then we can approximate
’)’i(JJI; €1,€2,E3, 64) by ’)’i(JJl; 0000) = ")’,;(JJ’), and the
spectral functions become FS averaged measures of the
strength of the screened e-e interaction.

At the same time we replace (ne) by o, (g)/N+(0)v(0).
We can simplify Eq. (B5) further by using 1 — f(¢) =
f(—¢). Since o, is either even or odd, this change of sign
is easily accounted for. This allows us to write

c _ 4n® 4> gN;(0) Z

nJn'J T ﬁ,Bz (n/m) JJ,) R (’I‘I,’I’L)

(B7)
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where we used N;(0)v2(0) = (n/m).g/g and the dimen-
sionless energy integrals R;(nn’) have the form

3

Ry(nn') = zﬂ? deideadesdey (g1 + €2 + €3 + €4)

X f(e1)f(e2) f(e3)f(ea) on(e1)on(e1), (B8)

63
Rz(’nn’) = 2——5 /d&‘l deo dez dey 5(61 + &2+ €3+ 64)
x f(e1)f(e2) f(e3)f(ea) on(e1)on (e2),
Rs(nn') = (=1)™ Ry(nn).

(B9)
(B10)

The matrices R;(nn') are calculated in Appendix C. We
shall see that they vanish if n + n’ is odd, i.e., the scat-
tering matrix Q€ separates into an even and odd block.
In the next section, we present closed expressions for the
radial integrals R, ».

APPENDIX C: ENERGY INTEGRALS

The radial integral of Appendix B is given by the two
basic radial integrals Ry(nn’) and Rz(nn'),

Ry(nn') = 775 / " dz f(@)Io(@)on(@)ow (@), (C1)
Ra(nn') = 212 _dods! f()£(=)
sz(z + 2')on(z)on (z'), (C2)
and I,(z) is®
Ln() = /dxl---d:cnfm)---f(zn)
x0(xy + -+ xp + ) (C3)
1 ot

= [1 - (—1)"exp(—=z)] _lin—l(n — 1)1 82n1

z=0

(C4)

8001

with
1) = Tty (G52)
Lz) = — 2t (C5b)

2[1 + exp(—=z)]”

The integral R, (nn’) can easily be solved with the help
of the recursion of the radial basis functions o,,, and the
result is
(n+1)%(n +2)2

Ba (') = 4/(2n + 1)(2n + 3)2(2n + 5)

n+2,’n’

nfn+1)24+n2+n—1 5

2(2n — 1)(2n + 3) ™
(n — 1)2n?

4,/(2n —3)(2n — 1)2(2n + 1)

n—2,n' .
(Ce)

The matrix elements Ry(nn'), after some tedious cal-
culations, can be expressed as complicated sums over
Bernoulli numbers.!® When we computed these matrix
elements, we found the surprising result that R, is a
banded matrix just like R; and its elements are given
by the simple expression

(n+1)(n+2)

O Rl = G+ Dan $32@n 5 5)

n+2,n’

n?+4+n-—1

+ (2n —1)(2n + 3) Sn.n
n(n -1) ,
oV @n -9 @n-1@n 1) Oz
(C7)

We checked the validity of Eq. (C7) for n,n’ < 32 on an
IBM RS6000 workstation. The radial matrices R; » are

symmetric banded matrices and split into even and odd
blocks.
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